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1 Introduction

The special interest in the present work is devoted to the classical and quantum description
of an affinely-rigid body.

Let (M,V,→) be an affine space and (M,V,→, g) be the corresponding Euclidean one,
where M is a physical space in which the classical system of material points (discrete or
continuous) is placed, V is a linear space of translations (free vectors) inM , and g ∈ V ∗⊗V ∗
is the metric tensor.

Also let us introduce an affine (N,U,→) and the corresponding Euclidean (N,U,→, η)
spaces, where N is the material space of labels which are assigned to every material point
of our body in some way, U is the corresponding linear space of translations in N , and
η ∈ U ∗ ⊗ U ∗ is the metric tensor.

Then the affine mapping from the material space into the physical one is as follows:

xi(t, a) = ri(t) + ϕiA(t)aA,

where ϕ(t) is a linear part of the affine mapping (ϕ is non-singular for any time instant t),
i.e., ϕ(t) ∈ LI(U, V ), where LI(U, V ) is a manifold of linear isomorphisms from the linear
space U into the linear space V , r(t) is the radius-vector of the centre of mass of our body
if in the material space the position of the centre of mass is aA = 0.

If the system is continuous, then the label a becomes the Lagrangian radius-vector (ma-
terial variables) and x becomes the Eulerian radius-vector (physical variables).
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At any fixed t ∈ R the configuration space Q of our problem is given by the following
expression:

Q = AfI(N,M) = Qtr ×Qint = M × LI(U, V ),

where �tr� and �int� refer to the translational (spatial translations) and internal (rotations
and homogeneous deformations) motions respectively.

The considered system is called an affinely-rigid body, i.e., during any admissible motion
all affine relations between constituents of the body are invariant (the material straight
lines remain straight lines, their parallelism is conserved, and all mutual ratios of segments
placed on the same straight lines are constant). The concept of the affinely-rigid body is
a generalization of the usual metrically-rigid body, in which during any admissible motion
all distances (metric relations) between constituents of the body are constant.

We concentrate mainly on the case of such an affinely-rigid body that is subject to the
additional constraints, i.e., it can deform homogeneously in the two-dimensional central
plane of the body and simultaneously performs one-dimensional oscillations orthogonal to
this central plane.

Then the material space N is presented as the Cartesian product R+×R2 and the group
of material transformations has the form R+×GL (2,R), where R+ is the dilatation group
in the third dimension and the material transformations in R2 act as in the case of the
usual affinely-rigid body with degenerate dimension.
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We can identify configurations Φ : R3 → R3 with the pairs (%, ϕ), where ϕ describes
the immersion of the central plane in the physical space, i.e., analytically ϕiA is the 3× 2
matrix. An element (k,B) acts on (%, ϕ) as follows:

(k,B) ∈ R+ ×GL(2,R) : (%, ϕ) 7→ (k%, ϕB).
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The conservation of orthogonality of the direction of dilatations to the central plane
means that the matrix

Φ =

 Φ1
1 Φ1

2 Φ1
3

Φ2
1 Φ2

2 Φ2
3

Φ3
1 Φ3

2 Φ3
3


fulfils the condition that third column has to be proportional to the vector product of first
and second ones. If we consider

Φa
1, Φb

2, a, b = 1, 2, 3,

as independent and arbitrary, then

Φa
3 = ` εabcΦ

b
1Φ

c
2,

where εabc is the completely antisymmetrical Levi-Civita (permutation) symbol,
` is the parameter which depends both on the variable describing one-dimensional os-

cillations orthogonal to the central plane of the body and on the ones describing the state
of deformation in this central plane, e.g., for the two-polar (singular value) decompositions
we have

`two−polar =
%

λµ
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and for the polar decompositions we have respectively that

`polar =
%

ξζ − α2
,

where the meaning of variables λ, µ, α, ξ, ζ, % will be described later.
The above-described orthogonality is well known in the theory of plates and shells as the

Kirchhof f�Love condition.

2 Two-polar decomposition

In the language of the two-polar (singular value) decomposition the con�gurations are:

Φ
(
k;λ, µ, %; θ

)
= R

(
k
)
D (λ, µ, %)U (θ)−1 , λ, µ, % > 0,

where R,U ∈ SO(3,R) are proper orthogonal matrices (whereas k is a rotation vector, i.e.,
a non-normalized vector codirectional with the rotation axis whose magnitude is equal to
the rotation angle) and D is diagonal, i.e.,

D(λ, µ, %) =

 λ 0 0
0 µ 0
0 0 %

 , U(θ)−1 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
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Then the co-moving angular velocities for R- and U -tops are as follows:

ω = R−1Ṙ = RT Ṙ =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , ωT = −ω,

and

ϑ = U−1U̇ = UT U̇ = θ̇

 0 −1 0
1 0 0
0 0 0

 , ϑT = −ϑ.

For Φ̇ and Φ̇T we have the following expressions:

Φ̇ = R
(
Ḋ + ωD −Dϑ

)
U−1, Φ̇T = U

(
Ḋ + ϑD −Dω

)
RT .

The kinetic energy is assumed to have the usual form (we have only to substitute the
constraints):

T = 1
2Tr
(
JΦ̇T Φ̇

)
= 1

2Tr
(
U−1JU

[
Ḋ + ϑD −Dω

][
Ḋ + ωD −Dϑ

])
,

where J ∈ U ⊗ U is the twice contravariant, symmetric, non-singular, positively-definite
tensor describing the inertial properties of our affinely-rigid body.
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If we take the tensor of inertia in the diagonal form, i.e., J = Diag (J1, J2, J3), then the
above kinetic energy can be rewritten as follows:

T =
J1 cos2 θ + J2 sin2 θ

2

(
dλ

dt

)2

+
J1 sin2 θ + J2 cos2 θ

2

(
dµ

dt

)2

+
J3
2

(
d%

dt

)2

+

(
J1 sin2 θ + J2 cos2 θ

)
µ2 + J3%

2

2
ω2
1

+

(
J1 cos2 θ + J2 sin2 θ

)
λ2 + J3%

2

2
ω2
2 + (J1 + J2)λµω3

dθ

dt

+ (J1 − J2) sin 2θ

[(
µ
dµ

dt
− λdλ

dt

)
dθ

dt
+

(
λ
dµ

dt
− µdλ

dt

)
ω3 + λµω1ω2

]

+

(
J1 cos2 θ + J2 sin2 θ

)
λ2 +

(
J1 sin2 θ + J2 cos2 θ

)
µ2

2
ω2
3

+

(
J1 sin2 θ + J2 cos2 θ

)
λ2 +

(
J1 cos2 θ + J2 sin2 θ

)
µ2

2

(
dθ

dt

)2

.

The above expressions significantly simplify when we consider the isotropic case in the
central plane of the body, i.e., when we have J1 = J2 = J .
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Then

T =
J

2

[(
dλ

dt

)2

+

(
dµ

dt

)2
]

+
J3
2

(
d%

dt

)2

+
Jµ2 + J3%

2

2
ω2
1

+
Jλ2 + J3%

2

2
ω2
2 + 2Jλµω3

dθ

dt
+
J

2

(
λ2 + µ2

) [
ω2
3 +

(
dθ

dt

)2
]
.

We also remind here that the corresponding expression for the kinetic energy in the canon-
ical variables has the following form:

T =
s21

2 (Jµ2 + J3%2)
+

s22
2 (Jλ2 + J3%2)

+

(
λ2 + µ2

) (
s23 + p2θ

)
− 4λµpθs3

2J (λ2 − µ2)2
+
p2λ + p2µ

2J
+

p2%
2J3

.

Introducing some modelled potentials we obtained the Hamiltonian (total energy) and
corresponding equations of motion for the isotropic case with the help of the Poisson brack-
ets.
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3 Polar decomposition

Later on we concentrate on the polar decomposition. The main feature of this decompo-
sition is the more physically intuitive division on three main terms in the kinetic energy
expression and the possibility to obtain the equations of motion in the quite simple form
even for the general case, when the inertial tensor is not isotropic in the central plane
(J1 6= J2).

In the language of the polar decomposition we have

Φ (κ;α, ξ, ζ, %) = L (κ)S (α, ξ, ζ, %) ,

where L ∈ SO(3,R) is a proper orthogonal matrix and S ∈ Sym(3,R) is symmetrical.
The connection between the polar and two-polar decompositions is given by:

L = RU−1,

ν = L−1L̇ = −νT =

 0 ν3 −ν2
−ν3 0 ν1
ν2 −ν1 0

 = U (ω − ϑ)U−1

=

 0 ω3 + θ̇ −ω1 sin θ − ω2 cos θ

−ω3 − θ̇ 0 ω1 cos θ − ω2 sin θ
ω1 sin θ + ω2 cos θ ω2 sin θ − ω1 cos θ 0

 ,
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S =

 ξ α 0
α ζ 0
0 0 %

 = UDU−1

=

 λ cos2 θ + µ sin2 θ (λ− µ) sin θ cos θ 0
(λ− µ) sin θ cos θ λ sin2 θ + µ cos2 θ 0

0 0 %

 .
Let us consider the Lagrangian L = T − V (Φ) and Hamiltonian H = T + V (Φ), where

the kinetic energy in the polar decomposition is as follows:

T = Trot + Trot−def + Tdef ,

where

Trot =
J1α

2 + J2ζ
2 + J3%

2

2
ν21 +

J1ξ
2 + J2α

2 + J3%
2

2
ν22

+
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2

2
ν23 − (J1ξ + J2ζ)αν1ν2

describes coupling between the angular velocity ν of the L-top and deformation matrix S,
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Trot−def =

(
J1α

dξ

dt
− J2α

dζ

dt
− (J1ξ − J2ζ)

dα

dt

)
ν3

describes the connection between the angular and deformation velocities,

and finally

Tdef =
J1 + J2

2

(
dα

dt

)2

+
J1
2

(
dξ

dt

)2

+
J2
2

(
dζ

dt

)2

+
J3
2

(
d%

dt

)2

describes the kinetic energy of the deformation oscillations.

The potential term V (Φ) depends on Φ only through the Green deformation tensor
G = S2, i.e., the potential term adapted to the polar decomposition is a function only of
α, ξ, ζ, and %.
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Performing the Legendre transformation we obtain that

π1 =
∂T

∂ν1
=
(
J1α

2 + J2ζ
2 + J3%

2
)
ν1 − (J1ξ + J2ζ)αν2,

π =
∂T

∂ν2
=
(
J1ξ

2 + J2α
2 + J3%

2
)
ν2 − (J1ξ + J2ζ)αν1,

π =
∂T

∂ν3
=
(
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2
)
ν3 + J1αξ̇ − J2αζ̇ − (J1ξ − J2ζ) α̇,

pα =
∂T

∂α̇
= (J1 + J2) α̇− (J1ξ − J2ζ) ν3,

p =
∂T

∂ξ̇
= J1

(
ξ̇ + αν3

)
,

pζ =
∂T

∂ζ̇
= J2

(
ζ̇ − αν3

)
,

p% =
∂T

∂%̇
= J3%̇,

where πi are canonical �spin� variables conjugate to angular velocities νi.
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Therefore after inverting the above dependencies, i.e.,

ν1 =

(
J1ξ

2 + J2α
2 + J3%

2
)
π1 + (J1ξ + J2ζ)απ2

J1J2 (α2 − ξζ)2 + [J1ξ2 + J2ζ2 + (J1 + J2)α2] J3%2 + J2
3%

4
,

ν2 =
(J1ξ + J2ζ)απ1 +

(
J1α

2 + J2ζ
2 + J3%

2
)
π2

J1J2 (α2 − ξζ)2 + [J1ξ2 + J2ζ2 + (J1 + J2)α2] J3%2 + J2
3%

4
,

ν3 =
(J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα

J1J2 (ξ + ζ)2
,

dα

dt
=

(J1ξ − J2ζ) [π3 + α (pζ − pξ)] +
(
J1ξ

2 + J2ζ
2
)
pα

J1J2 (ξ + ζ)2
,

dξ

dt
=
pξ
J1
− α(J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα

J1J2 (ξ + ζ)2
,

dζ

dt
=
pζ
J2

+ α
(J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα

J1J2 (ξ + ζ)2
,

d%

dt
=
p%
J3
,
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we obtain the kinetic energy in the canonical variables as follows:

T =

(
J1ξ

2 + J2α
2 + J3%

2
)
π21 +

(
J1α

2 + J2ζ
2 + J3%

2
)
π22

2
(
J1J2 (α2 − ξζ)2 + [J1ξ2 + J2ζ2 + (J1 + J2)α2] J3%2 + J2

3%
4
)

+
(J1ξ + J2ζ)απ1π2

J1J2 (α2 − ξζ)2 + [J1ξ2 + J2ζ2 + (J1 + J2)α2] J3%2 + J2
3%

4

+
J1 + J2

2J1J2 (ξ + ζ)2
[π3 + α (pζ − pξ)]2 +

J1ξ
2 + J2ζ

2

2J1J2 (ξ + ζ)2
p2α

+
J1ξ − J2ζ

J1J2 (ξ + ζ)2
[π3 + α (pζ − pξ)] pα +

p2ξ
2J1

+
p2ζ
2J2

+
p2%
2J3

.

We can see that the generalized velocities α̇, ξ̇, ζ̇ corresponding to α, ξ, ζ and other variables
describing the motion in the central plane of the body are separated from the generalized
velocity %̇ describing the one-dimensional oscillations orthogonal to this central plane.

The same can be said also about the above expression in the canonical variables, i.e., the
momentum p% conjugated to % is orthogonal (in the sense of metrics encoded in the kinetic
energy expression) to the other canonical momenta.

Hence, the most simple are those dynamical models in which also the isotropic potential
will have the separated form:

V (α, ξ, ζ, %) = Vplane (α, ξ, ζ) + V% (%) ,
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where the potential V% can describe the nonlinear oscillations

V%(%) =
a

%
+
b

2
%2, a, b > 0,

where the first term prevents from the unlimited compressing of the body, whereas the
second one restricts the motion for large values of %, i.e., prevents from the non-physical
unlimited stretching of the body.

So, the Hamiltonian (total energy) can be written as follows:

H = T + Vplane (α, ξ, ζ) + V%(%).

Then the equations of motion can be calculated with the help of the following Poisson
brackets:

dπi
dt

= {πi, H} ,
dpα
dt

= {pα, H} ,
dpξ
dt

= {pξ, H} ,
dpζ
dt

= {pζ , H} ,
dp%
dt

= {p%, H} .

The only non-zero basic Poisson brackets are

{α, pα} = {ξ, pξ} = {ζ, pζ} = {%, p%} = 1, {πi, πj} = −εijkπk,

and they are based on the structure constants of the special orthogonal group SO (3,R).
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The kinetic energy can be written in a more symbolic way:

T =
Ω (π1, π2)

2Ξ
+

Υ (π3 + α (pζ − pξ) , pα)

2J1J2 (ξ + ζ)2
+

p2ξ
2J1

+
p2ζ
2J2

+
p2%
2J3

,

where

Ξ = J1J2
(
α2 − ξζ

)2
+
[
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2
]
J3%

2 + J2
3%

4,

and two expressions built of the canonical momenta are as follows:

Ω (π1, π2) =
(
J1ξ

2 + J2α
2 + J3ρ

2
)
π21 + 2 (J1ξ + J2ζ)απ1π2

+
(
J1α

2 + J2ζ
2 + J3ρ

2
)
π22,

Υ (π3 + α (pζ − pξ) , pα) = (J1 + J2) [π3 + α (pζ − pξ)]2 +
(
J1ξ

2 + J2ζ
2
)
p2α

+ 2 (J1ξ − J2ζ) [π3 + α (pζ − pξ)] pα.
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Then we obtain the following equations of motion:

dπ1
dt

= −
[
(J1ξ + J2ζ)απ1 +

(
J1α

2 + J2ζ
2 + J3%

2
)
π2
]
π3

Ξ

+
π2 [(J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα]

J1J2 (ξ + ζ)2
,

dπ2
dt

=

[(
J1ξ

2 + J2α
2 + J3%

2
)
π1 + (J1ξ + J2ζ)απ2

]
π3

Ξ

− π1 [(J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα]

J1J2 (ξ + ζ)2
,

dπ3
dt

=
(J1ξ + J2ζ)α

(
π21 − π22

)
+
[
J1
(
α2 − ξ2

)
+ J2

(
ζ2 − α2

)]
π1π2

Ξ
,

dα

dt
= −∂Vplane

∂α
−
(
J2π

2
1 + J1π

2
2

)
α + (J1ξ + J2ζ) π1π2

Ξ

+
2J1J2α

(
α2 − ξζ

)
+ (J1 + J2)αJ3%

2

Ξ2
Ω (π1, π2)

− (J1 + J2) [π3 + α (pζ − pξ)] + (J1ξ − J2ζ) pα

J1J2 (ξ + ζ)2
(pζ − pξ) ,
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dξ

dt
= −∂Vplane

∂ξ
− J1ξπ

2
1 + J1απ1π2

Ξ
+
J1J2ζ

(
ξζ − α2

)
+ J1ξJ3%

2

Ξ2
Ω (π1, π2)

− J1ξp
2
α + J1 [π3 + α (pζ − pξ)] pα

J1J2 (ξ + ζ)2
+

Υ (π3 + α (pζ − pξ) , pα)

J1J2 (ξ + ζ)3
,

dζ

dt
= −∂Vplane

∂ζ
− J2ζπ

2
2 + J2απ1π2

Ξ
+
J1ξJ2

(
ξζ − α2

)
+ J2ζJ3%

2

Ξ2
Ω (π1, π2)

− J2ζp
2
α − J2 [π3 + α (pζ − pξ)] pα

J1J2 (ξ + ζ)2
+

Υ (π3 + α (pζ − pξ) , pα)

J1J2 (ξ + ζ)3
,

d%

dt
= −dV%

d%
− J3ρ

Ξ

(
π21 + π22

)
+

+
J3%

Ξ2

[
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2 + 2J3ρ
2
]

Ω (π1, π2) .

The structure of the above expressions implies that even in the simplest case of the
completely separated potential the dynamical coupling between the parameter describing
one-dimensional oscillations orthogonal to the central plane of the body and the variables
living in this central plane is present.
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4 Stationary ellipsoids as special solutions

The above equations of motion are strongly nonlinear and in a general case there is hardly
a hope to solve them analytically.

Nevertheless, there exists a way for imaging some features of the phase portrait of such
a dynamical system, i.e., we have to find some special solutions, namely, the stationary
ellipsoids, which are analogous to the ellipsoidal figures of equilibrium well known in astro-
and geophysics, e.g., in the theory of the Earth's shape.

In the case of the two-polar (singular value) decomposition we obtain the special solutions
just putting the deformation invariants λ, µ, % and the angular velocities ω, ϑ equal to some
constant values.

In the case of the polar decomposition, the Green deformation tensor G, therefore the
deformation matrix S, and the angular velocity ν of the L-top have to be constant:

dG

dt
=

d

dt

(
ΦTΦ

)
=

d

dt

(
S2
)

= 0,
dν

dt
=

d

dt

(
L−1L̇

)
= 0.

This means that the L-top performs the stationary rotation, i.e., if at the initial time t = 0
we have that the configuration of the body is L0, then at the time instant t the configuration
will be as follows:

L0 ◦ eνt,
where ◦ is the function composition symbol.
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The whole affinely-rigid body, which at the initial time t = 0 has the internal configuration
Φ0 = L0 ◦ S, at the time instant t will be in the following configuration:

Φ(t) = L0 ◦ eνt ◦ S = eν̂t ◦ L0 ◦ S = eν̂t ◦ Φ0,

where ν̂ = L0 ◦ ν ◦ L−10 .
While the a�nely-rigid body rotates in the stationary way around the axis �xed in the

physical and material spaces, the deformation and the angular velocity of rotation are not

independent and related by some algebraic expressions.

5 Summary

It is interesting to note that the special solutions obtained for the polar decomposition case
are conceptually different from those obtained for the two-polar one because for the polar
decomposition the Green deformation tensor G = S2 has a constant value (i.e., Ġ = 2SṠ =
0) contrary to the two-polar case when the Green deformation tensor G = ΦTΦ = UD2U−1,
as well as the Cauchy one C = Φ−1TΦ−1 = RD2R−1, depended on time explicitly through
the time dependence of U and R respectively, i.e.,

dG

dt
= U

(
ϑD2 −D2ϑ

)
U−1 6= 0,

dC

dt
= R

(
ωD2 −D2ω

)
R−1 6= 0,

and performed the stationary rotations around their principal axes, whereas the deformation
invariants λ, µ, % had the constant values.
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So, if we additionally keep in mind that for the two-polar decomposition we obtain the
stationary solutions only for the isotropic model J1 = J2 = J and for the polar one the
general situation J1 6= J2 is allowed, then we can compare the four studied cases according
to the following scheme:

• The only degrees of freedom we can manipulate are the rotational degrees of R- and U -
tops, because the deformation matrixD is constant for this type of stationary solutions.

• To achieve the constant behaviour of the Green deformation tensor
G = S2 =

(
UDU−1

)2
= UD2U−1 we have to suppose that the U -top is fixed and does

not rotate at all. If U is constant, then the principal axes of the R- and L
(
= RU−1

)
-

tops (for the two-polar and polar decompositions respectively) rotate in the same man-
ner, i.e., at any moment ones can be obtained from others with the help of applying
some constant orthogonal transformation. This situation corresponds to the three cases
describing the stationary rotations of the L-top around its three principal axes.

• If U -top is not fixed, then the Green deformation is not constant and we have to
consider three branches of the stationary motion forR- and U -tops when they rotate not
independently but in the correlated manner, i.e., either both around their first principal
axes or both around the second ones or both around the third ones. Nevertheless, for
our affinely-rigid body subject to the Kirchhoff�Love constraints only the third case is
possible.
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Quantized version of the theory is based on the formulas:

H = T + V (λ, µ),

where

T =
S1

2

2Jµ2
+

S2
2

2Jλ2
+

λ2 + µ2

2J (λ2 − µ2)
S3

2 +
λ2 + µ2

2J (λ2 − µ2)
pθ

2

− 2λµ

J (λ2 − µ2)2
pθS3 −

~2

2J

∂2

∂λ2
− ~2

2J

∂ lnP
∂λ

∂

∂λ

− ~2

2J

∂2

∂µ2
− ~2

2J

∂ lnP
∂µ

∂

∂µ
.

P(λ, µ) = λµ
(
λ2 − µ2

)
,

Sa,pθ are co-moving components of spin and vorticity (with respect to the bases R- and
θ-co-moving).
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Wave functions are substituted as series of matrix elements of irreducible representations:

Ψ(R;λ, µ; θ) =
∑

j,m,m′ ,k

f j,k
m′ ,m

(λ, µ) Dj

m m′(R) eikθ.

Substituting this to the Schrödinger equation

HΨ = EΨ

one obtains the system of equation for functions f ijmm′ defending only on two variables
(λ, µ). This is the far-reaching reduction of variables from (R, θ, λ, µ).
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***

Thank You for Your attention

***
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