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Introduction

@ Minimal surfaces in 3-dimensional Euclidean space R3
isometric to rotational surfaces were first introduced by Bour
[2] in 1862.
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Introduction

@ Minimal surfaces in 3-dimensional Euclidean space R3
isometric to rotational surfaces were first introduced by Bour
[2] in 1862.

o see Giiler [22], Giiler, Yayl and Hacisalihoglu [23], Giiler and
Yayli [24].
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Introduction

@ Minimal surfaces in 3-dimensional Euclidean space R3
isometric to rotational surfaces were first introduced by Bour
[2] in 1862.

o see Giiler [22], Giiler, Yayl and Hacisalihoglu [23], Giiler and
Yayli [24].

e also Ozgiir, Arslan and Murathan, [25].
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Introduction

@ All such minimal surfaces are given via the well-known
Weierstrass representation for minimal surfaces by choosing
suitable data depending on a parameter m, as shown by
Schwarz [17].
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Introduction

@ All such minimal surfaces are given via the well-known
Weierstrass representation for minimal surfaces by choosing
suitable data depending on a parameter m, as shown by
Schwarz [17].

@ They are called Bour's minimal surfaces 8B, of value m.
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@ Furthermore, when m is an integer greater than 1, B,
become algebraic, that is, there is an implicit polynomial
equation satisfied by the three coordinates of %5 ,,, see also
Gray [7], Nitsche [15], Whittemore [21].
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o Kobayashi [11] gave an analogous Weierstrass-type
representation for conformal spacelike surfaces with mean
curvature identically 0, called maximal surfaces, in
3-dimensional Minkowski space R?1.
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Introduction

@ However, unlike the case of minimal surfaces in IR3, maximal
surfaces generally have singularities.
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Introduction

@ However, unlike the case of minimal surfaces in IR3, maximal
surfaces generally have singularities.

@ Details about singularities of maximal surfaces can be found
in Fujimori et al [6], Umehara and Yamada [20].
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Introduction

e We remark that Magid [14] gave a Weierstrass-type
representation for timelike surfaces with mean curvature
identically 0, called timelike minimal surfaces, in R2!, see also
Inoguchi and Lee [10].
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Figure 1. Bour's minimal surfaces of value 3 and 6 in R3.
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Introduction

@ On the other hand, Lawson [12] showed that there is an
isometric correspondence between constant mean curvature
(CMC for short) surfaces in Riemannian space forms,
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Introduction

@ On the other hand, Lawson [12] showed that there is an
isometric correspondence between constant mean curvature
(CMC for short) surfaces in Riemannian space forms,

e and Palmer [16] showed that there is an analogous
correspondence between spacelike CMC surfaces in Lorentzian

space forms.
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Introduction

e In particular, minimal surfaces in R? correspond to CMC 1
surfaces in 3-dimensional hyperbolic space H3, and maximal
surfaces in R>! correspond to CMC 1 surfaces in
3-dimensional de Sitter space $%1.
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Introduction

e In particular, minimal surfaces in R? correspond to CMC 1
surfaces in 3-dimensional hyperbolic space H3, and maximal
surfaces in R>! correspond to CMC 1 surfaces in
3-dimensional de Sitter space $%1.

@ Thus it is natural to expect existence of corresponding
Weierstrass-type representations in these cases. Bryant [3]
gave such a representation formula for CMC 1 surfaces in H3,
and Umehara, Yamada [18] applied it.
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Introduction

e In particular, minimal surfaces in R? correspond to CMC 1
surfaces in 3-dimensional hyperbolic space H3, and maximal
surfaces in R>! correspond to CMC 1 surfaces in
3-dimensional de Sitter space $%1.

@ Thus it is natural to expect existence of corresponding
Weierstrass-type representations in these cases. Bryant [3]
gave such a representation formula for CMC 1 surfaces in H3,
and Umehara, Yamada [18] applied it.

@ Similarly, Aiyama, Akutagawa [1] gave a representation
formula for CMC 1 surfaces in 1.
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@ However, analogues of Bour's surfaces in other 3-dimensional
space forms had not yet been studied.
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@ In Sections 2 and 3 of this talk, in order to show that several
maximal and timelike minimal Bour's surfaces of value m are
algebraic, we review Weierstrass-type representations for
maximal surfaces and timelike minimal surfaces in R?!, and
give explicit parametrizations for spacelike and timelike
minimal Bour's surfaces of value m.
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@ In Section 4, we introduce Bour type CMC 1 surfaces in H3
and S21, and show several properties of those surfaces.
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Introduction

@ In Section 4, we introduce Bour type CMC 1 surfaces in H3
and $21, and show several properties of those surfaces.

@ Finally, in Section 5, we calculate the degrees, classes, implicit
equations of the maximal and timelike minimal Bour's
surfaces of values 2, 3, 4 in R%! in terms of their coordinates.
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@ We remark that in the cases of H3 and §2'1, all surfaces are
algebraic in some sense, because the Lorentz (R*!) norm of
all elements in H3 C R3! or §21 < R31 is constant.
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@ However, we have the following remaining problems:
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Introduction

@ However, we have the following remaining problems:

@ What is the class of maximal and timelike minimal Bour's
surfaces of general value m in R>1?
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Introduction

@ However, we have the following remaining problems:
@ What is the class of maximal and timelike minimal Bour's
surfaces of general value m in R>1?

@ Are there any other implicit equations for CMC 1 Bour type
surfaces? If there exist implicit equations, what are the
corresponding degrees and classes?
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Spacelike maximal Bour type surfaces in Minkowski 3-space (2)

Spacelike maximal Bour type surfaces

Let
R™ = ({X = (x1, - anvXO)t|Xi € R}, (-, >)

be the (n+ 1)-dimensional Lorentz-Minkowski (for short,
Minkowski) space with Lorentz metric

<va> =Xx1y1+ -+ Xp¥Yn — Xo)0.
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Spacelike maximal Bour type surfaces

Then the 3-dimensional hyperbolic space H® and 3-dimensional de
Sitter space 52! are defined as follows:

H® := {x € R¥!|(x,x) = —1, xp > 0} = {FF!|F € SL,C},

S21 .= {x € R¥|(x,x) = 1} = {F ((1) _01> Ft|F € SLQC}.
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Spacelike maximal Bour type surfaces

e A vector x € R™! is called spacelike if (x,x) >0, timelike if
(x,x) <0, and lightlike if x # 0 and (x, x) = 0.
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Spacelike maximal Bour type surfaces in Minkowski 3-space (2)

Spacelike maximal Bour type surfaces

e A vector x € R™! is called spacelike if (x,x) >0, timelike if
(x,x) <0, and lightlike if x # 0 and (x, x) = 0.

e A surface in R™! is called spacelike (resp. timelike, lightlike)
if the induced metric on the tangent planes is a positive
definite Riemannian (resp. Lorentzian, degenerate) metric.
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Spacelike maximal Bour type surfaces

e Kobayashi [11] found a Weierstrass-type representation for
spacelike conformal maximal surfaces in R>!.
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Spacelike maximal Bour type surfaces

Theorem (1)

Let g, w be holomorphic functions defined on a simply connected
open subset U C C such that w does not vanish on U. Then

(1+8*) w
f(z) = Re/ i(12—g2)w i
gw

is a spacelike conformal immersion with mean curvature identically
0 (i.e. spacelike conformal maximal surface). Conversely, any
spacelike conformal maximal surface can be described in this

manner.
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Spacelike maximal Bour type surfaces

Remark (1). A pair of a holomorphic function g and a
holomorphic function w, (g, w) is called Weierstrass data for a
maximal surface. In Section 4, we also call (g, w) the Weierstrass
data for CMC 1 surfaces in H3 and S*!.
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Spacelike maximal Bour type surfaces

e We call maximal surfaces B, (m € Z>, := {n € Z|n > 2})
given by (g, w) = (z,2™2) the spacelike Bour’'s maximal
surfaces B, of value m (spacelike B, for short).
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Spacelike maximal Bour type surfaces in Minkowski 3-space (2)

Spacelike maximal Bour type surfaces

e We call maximal surfaces B, (m € Z>, := {n € Z|n > 2})
given by (g, w) = (z,2™2) the spacelike Bour’'s maximal
surfaces B, of value m (spacelike B, for short).

@ Several properties of spacelike B, can be found in Giiler [8].
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Spacelike maximal Bour type surfaces

The parametrization of spacelike B, (u, v) is

m 12 ( )um 1— k(lv) m+l Zm+1( ) m+1—k (iv)k
Re | iy Lo (" = (i) — o St (M) a1k (i)

> o (R)um* (iv)*
(1)
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Spacelike maximal Bour type surfaces

with Gauss map

_ 2u 2v v+ v+l
w4 vi—1"w+v2 -1 +v2-1)"

where z = u + iv.
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Timelike minimal Bour type surfaces

Next, we give the Weierstrass-type representation for timelike
minimal surfaces in R%?, which was obtained by M. Magid [14]
(see also Inoguchi and Lee [10]).
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Timelike minimal Bour type surfaces

Theorem (2)

Let g1(u), wi(u) (resp. g2(v), wa(v)) be smooth functions
depending on only u (resp. v) on a connected orientable
2-manifold with local coordinates u, v. Then

X 2g1w1 2g2w2
f(u, v):/ (l—g1 wl du+/ 1—g2 wy | dv.
—(1+gf) wr (1+g7) w2

is a timelike surface with mean curvature identically 0 (i.e. timelike
minimal surface). Conversely, any timelike minimal surface can be
described in this manner.
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Timelike minimal Bour type surfaces

The timelike minimal surfaces given by

(g1(v), wi(u)) = (u,u™2?), (g2(v),w2(v)) = (v,v"?) are
called timelike Bour surfaces B, of value m (timelike %B,,, for
short) in R??, where m € Z>».
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Timelike minimal Bour type surfaces

The parametrization of timelike B, is

2(u +v7
o) = gt A ) G (g
S L (ymet ey Ky (um L — ym+1)

m—1 m+1

(2)
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Timelike minimal Bour type surfaces

with Gauss map

h— uww—1 u+v u—v
S \1l4+w'l4+wl4uv )
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Timelike minimal Bour type surfaces

Figure 2. Left two pictures: spacelike B3 and Bg in R>!,
right two pictures: timelike B3 and B¢ in R??
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CMC 1 Bour type surfaces

@ In this section we consider CMC 1 surfaces in H3 and §21.
Here we identify elements in H3 and S%! with SL,C matrix
forms as in Section 2.
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

@ In this section we consider CMC 1 surfaces in H3 and §21.
Here we identify elements in H3 and S%! with SL,C matrix
forms as in Section 2.

o In this setting Bryant [3] showed the following representation
formula for CMC 1 surfaces in H3:
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CMC 1 Bour type surfaces

Theorem (3)

Let F € SL,C be a solution of the equation

52
oF = F (ﬁ’ g ) W, Fli— € SLoC (3)

for some zy in a given domain, where (g, w) is Weierstrass data.
Then the surface f = FF' is a conformal CMC 1 immersion into
H3. Conversely, any conformal CMC 1 immersion in H? can be
described in this way. The metric of f is (1 + |g|?)?|w|?.
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CMC 1 Bour type surfaces

Similarly, Aiyama and Akutagawa [1] showed the following
Bryant-type representation formula for CMC 1 surfaces in 521
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CMC 1 Bour type surfaces

Theorem (4)

Let F € SL,C be a solution of Equation (3), where (g, w) is

0 —1
spacelike conformal CMC 1 immersion into S>'. Conversely, any
spacelike conformal CMC 1 immersion in S** is described in this
way. The metric of f is (1 — |g|?)?|w|?.

Weierstrass data. Then the surface f = F (1 L ) Ftisa
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CMC 1 Bour type surfaces

Note that, unlike in IH3, CMC 1 surfaces in §2! generally have
singularities. Their singularities have been investigated Fujimori et
al [6], Umehara and Yamada [20].
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CMC 1 Bour type surfaces

We call CMC 1 surfaces in H3 and S?! given by the Weierstrass
data (g, w) = (z,2™2) the Bour type CMC 1 cousins B, of
value m (B, cousin, for short).
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

We now describe F explicitly:
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CMC 1 Bour type surfaces

Theorem

Let F(z <igi ) € SLoC be a solution of Equation (3)

with (g, w)

00y

z,z™ z) and with initial condition
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CMC 1 Bour type surfaces

Theorem (5)

(Cont.) Then

a(z) = m%F (m+ 1) zmT_lBesseII <_m— 1, 22'5) ,
m m 'm
b(z) = —m%F <m+ 1> zmTHBesseII <m+ 1, 2zr2"> ,
" no (4)
_ —1 m —1 2 n
c(z) = m#=T (m) leBesselI (m' z?) .
m m 'm
d(z) = —m=T <m_ 1) 2”7 Bessel I (_m+1’ 22?>
m m 'm
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CMC 1 Bour type surfaces

(Cont.) where I' denotes the Gamma function and Bessel I
represents the modified Bessel function.

@ The definition of Bessell can be found in standard textbooks,
for example, see [9].
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CMC 1 Bour type surfaces

Figure 3. Left two pictures: B3 cousin in IH3, right two pictures:
its dual cousin in H* (in the Poincare ball model for H?)

Erhan GULER & Masashi YASUMOTO Bour type surfaces



CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Figure 4. Left two pictures: B¢ cousin in H3, right two pictures:
its dual cousin in H3
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Proof.
Equation (3) gives

X" — (ZJ/X' —gwX = 0, (X=a(z), c(2)) (5)
v _ (gzw)/
g’w

Y —g'wY = 0 (Y=5b(2), d(z)), (6)

which are given by Umehara and K. Yamada [18]. Here we solve
Equation (5).
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Proof. (cont.)

Inserting (g, w) = (z,z2™?)

into Equation (5), we have

m-—2

X" — X' —z"2X =0. (m€Zs>,) (7)

V4
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CMC 1 Bour type surfaces

Proof. (cont.)

We give two independent power series solutions of the differential
equation (7) by the Frobenius method. The indicial equation at
z=0isp(p—1) — (m—2)p = 0. So we see that the
characteristic exponents of the equation (7) are 0 and m — 1.
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CMC 1 Bour type surfaces

Proof. (cont.)
Then we have a solution of the form

o0
Zzm1 Z apzP,
p=0

where the coefficients a, are inductively given by

amk+/IO (I:0,~~,m),

Amk+m+1 = “m{k—L)+m—1

" (m—2)k(mk+m—1)
r(m=% +k)

m2I (2=l 4 k+1)

am(k-1)+m-1 (I = m+1).

Erhan GULER & Masashi YASUMOTO Bour type surfaces



CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Proof. (cont.)
Therefore we obtain a solution of the differential equation (7):
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CMC 1 Bour type surfaces

Proof. (cont.)
Similarly, we obtain another independent solution as

m
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CMC 1 Bour type surfaces

Proof. (cont.)
So we have two independent solutions of Equation (5). Next, we
find two independent solutions of Equation (6).
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Proof. (cont.)

Inserting (g, w) = (z,z™?)

into Equation (6), we have

m

y" — ;Y’ —z"2Y =0. (m€ Zxy)
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Proof. (cont.)
Similarly to the way we solved Equation (5), we have two
independent solutions

2”7 Bessel I <m+ z2> . 2" Bessel I <—m+, 22> )
m 'm m 'm
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CMC 1 Bour type surfaces

Proof. (cont.)
Using the initial conditions, we have the solution F as in Equations

(4).
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

Remark (2). If F is a solution of Equation (3), the surface

ff=(FYH(FD)' (resp- ff=(F) (é _01) (Fl)t>

is also a CMC 1 surface in H3 (resp. §%1).
This was proven by Umehara and Yamada [19] (resp. Lee [13]).
The surface f* is called the CMC 1 dual of f.
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CMC 1 Bour type surfaces

Using the explicit parametrization of the B, cousin, we can easily
show the following corollary, which implies the rotational
symmetric property of the B8, cousins in H3, §>1,
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CMC 1 Bour type surfaces

Corollary (1)

Let F(z) € SL,C be the form as in Theorem 5 with complex
coordinate z. Then
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CMC 1 Bour type surfaces

Writing 9B, cousin in H3 or $%! as
f(z) = (x1(z),x(z),x3(z),x0(z))", given by Theorem 5, and

setting f (ef%" -z) = (%1(2), (2), %(2), 0(2))".
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CMC 1 Bour type surfaces

By Corollary (1), we have

that is, by rotating z by angle %” the first and second coordinates

are also rotated by the same angle.
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CMC 1 Bour type surfaces

So like in R® and R?!, B, has symmetry with respect to rotation
by angle ZZ. Its dual (B,,)* also has the same symmetry.
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CMC 1 Bour type surfaces

@ In order to see CMC 1 surfaces in H3, we use a stereographic
projection.
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CMC 1 Bour type surfaces

@ In order to see CMC 1 surfaces in H3, we use a stereographic
projection.
o Consider the map

t
H3 t X1 X2 X3 B3
> (x1, %2, x3,%0)" — <1+X0,1+X0,1+X0 € Ib~,

where B3 denotes the 3-dimensional unit ball.
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CMC 1 Bour type surfaces in H3 and %1 (4)

CMC 1 Bour type surfaces

@ In order to see CMC 1 surfaces in H3, we use a stereographic
projection.
o Consider the map

t
H3 t X1 X2 X3 B3
> (x1, %2, x3,%0)" — <1+X0,1+X0,1+X0 € Ib~,

where B3 denotes the 3-dimensional unit ball.

@ This is the Poincaré ball model for H3.
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CMC 1 Bour type surfaces

@ In order to show graphics of CMC 1 surfaces in $>1, the
hollow ball model is used, see Fujimori [4] for example.
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CMC 1 Bour type surfaces

@ In order to show graphics of CMC 1 surfaces in $>1, the
hollow ball model is used, see Fujimori [4] for example.

o Consider the map

2t 3 (x1, x5, %)"

earctan(xo) - x1 earctan(xo) X0 earctan(xo) X3
H 1 ’
1/1+xg \/l—l—xg \/1—|—x§
3
c IB(—TL’,T[)’

where
]B?_,m) ={(.y2. ) ER | e " <y?+ys+y?<e}
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CMC 1 Bour type surfaces

A "
e PRer T

Figure 5. Left two pictures: B3 cousin in 521, right two pictures:
its dual cousin in G
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CMC 1 Bour type surfaces

ELPEL

Figure 6. Left two pictures: B¢ cousin in $%1, right two pictures:
its dual cousin in $21
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

o For R>!, the set of roots of a polynomial Q(x, y,z) = 0 gives
an algebraic surface.
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

o For R>!, the set of roots of a polynomial Q(x, y,z) = 0 gives
an algebraic surface.

@ An algebraic surface f is said to be of degree (or order) n
when n = deg(f).
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

The tangent plane at a point (u, v) on a surface
f(uv)=(x(uv) y(uv), z(uv)) is given by

Xx+Yy—Zz4+ P =0, (8)

where the Gauss map is n = (X(u,v), Y(u,v), Z(u,v)) and
P =P(u,v).
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

We have inhomogeneous tangential coordinates a = X/ P,
b=Y/P,andc=27/P.
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

When we can obtain an implicit equation Q(a, b, c) = 0 of f (u, v)
in tangential coordinates, the maximum degree of the equation
gives the class of f (u, v).
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of Bour type surfaces

Next, using polynomial elimination methods (in Maple software),
we calculate the implicit equations, degrees and classes of spacelike
and timelike B,, B3 and By.
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f spacelike Bour of valu
N of timelike Bour of va
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

From (1), the parametrization of B, (maximal Enneper surface) is

it —uw?+u x(u, v)
By(uv)=|Pv—3V3—v|=|yluv)],
u? —v2 z(u,v)

where u, v € R.
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f spacelike Bour of valu
N of timelike Bour of va
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

@ In this section, Qm(x,y,z) = 0 denotes the irreducible
implicit equation that spacelike or timelike B, will satisfy.
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and class of spacelike Bour of value 2,3,4 in ]R?-1
N and class of timelike Bour of value 2,3,4 in R?'1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

Then

Q(x,y,z) = —642° 4 432x°2% — 432y22% 4+ 1215x* 23
+6318x°y%z% — 3888x°2° 4 1215y* 2% — 3888y22°
+115227 + 729x°® — 2187x*y? — 4374x* 2% + 2187x°y*
+6480x%z* — 729y% + 4374y* 22 — 6480y°2*

—729x*z + 1458x2y?z 4 3888x%2> — 729y*z
+3888y2z3 — 518425,
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Degree and class of spacelike Bour of value 2,3,
: E of timelike Bour of value
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

o Its degree is deg(B;) = 9.
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f spacelike Bour of valu
N of timelike Bour of va
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

o Its degree is deg(B;) = 9.
@ Therefore, 9B, is an algebraic maximal surface.
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ee and class of spacelike Bour of value 2,3,4 in R2!
N and class of timelike Bour of value 2,3,4 in R?1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

@ To find the class of the surface B,, we obtain

(> +v2=3)(u—v)(u+v)

Pa(u,v) = 3(b2+v2—-1) '

where P, (u, v) denotes the function as in Equation (8) for
spacelike or timelike B ,,.
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ree and class of spacelike Bour of value 2,3,4 in ]RZ 1
N and class of timelike Bour of value 2,3,4 in R?%
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

@ To find the class of the surface B,, we obtain

w4+ v2=3)(u—v)(u+v)
3w+ v2—1) '

Py(u,v) = (

where P, (u, v) denotes the function as in Equation (8) for
spacelike or timelike %5,

@ The inhomogeneous tangential coordinates are

2,2
y 6u b 6v ,C:6(u +ve+1)
a(u, v)

where a(u, v) = (u® +v? = 3)(u—v)(u+v).
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ee and class of spacelike Bour of value 2,3,4 in R2!
N and class of timelike Bour of value 2,3,4 in R?1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

@ In the tangential coordinates a, b, c,
@ (a, b, c) = 4a° +9a* + 9b* + 62°b*c? + 12b%C3
—3b*c? — 18b*c — 42" b? 4 183" c — 122%¢°
—4a%b* — 3a%c? 4 18a%b% — 4a°b* + 4b°,
where Qn(a, b, c) = 0 denotes the irreducible implicit

equation for spacelike or timelike B, in terms of tangential
coordinates.
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ee and class of spacelike Bour of value 2,3,4 in R2!
N and class of timelike Bour of value 2,3,4 in R?1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

@ In the tangential coordinates a, b, c,

@ (a, b, c) = 43° + 9a* + 9b* + 62°b%c? + 12b°C3
—3b*c® — 18b*c — 4a*b* + 18a*c — 122°C?
—4a°b* — 33%c? +18a°b* — 4a°b* + 4b°,

where Qn(a, b, c) = 0 denotes the irreducible implicit

equation for spacelike or timelike B, in terms of tangential
coordinates.

@ Therefore, the class of the spacelike B is c/(B,) = 6.
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(5.1) Degree and class of spacelike Bour of value
- (5.2 e timelike Bour of valt
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

Similarly,
R My
Bz (u,v) = v —uvd —uv = |y(uv)|,
%u3 —2uv? z(u, v)
T —uw?+ Ld — 203 + vt x(u, v)
By (u,v) = —u2v—|—%v3—}—u v—2u2v3—|—§v =\|y(uv) ]|,
Fut —3uPv? + v z(u,v)
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and class of spacelike Bour of value 2,3,4 in ]R?-1
N and class of timelike Bour of value 2,3,4 in R?'1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

and

@ (x,y,z) = —430467212'° 4 272097792x3 72
—816293376xy22"? + 3009871872x° 28
+14834368512x*y?2% + (69 other lower order terms),
Q4(x,y, z) = —15145718488681383198722°°
+9244212944751820800000x* z2°
—24192761655761718750000000x" y*2 25
—55465277668510924800000x2 2 z2°
—3065257232666015625000000x12 6 22

+(233 other lower order terms),

and their degrees are deg(B3) = 16, deg(B4) = 25.



e and class of spacelike Bour of valu
N nd class of timelike Bour of va
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

Therefore, B3 and B, are algebraic spacelike maximal surfaces.

Furthermore,
2 2 2 2 2
P3(u,v) = u(u® +v )(u” —3v )’
(v2 +v2 1)
Paun ) — 37 H3V =) =20 = )W+ 2uv = )

30(u? +v2 — 1) !
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and class of spacelike Bour of value 2,3,4 in ]R?-1
N and class of timelike Bour of value 2,3,4 in R?'1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

and the inhomogeneous tangential coordinates are

— 12 . 12v o 6(U2—|—v2-|-]_) o
) b= up(u, v)’ (o V) (m=3),
_ 60u _ 60v o 30(u? +v2 +1) -
T b_'y(u,v)' T (V) (m=4),

where B(u, v) = (v + v? —2)(u? — 3v?),
v(u,v) = (3u? +3v? = 5)(u? — 2uv — v?)(v? + 2uv — v?).
Then
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and class of spacelike Bour of value 2,3,4 in ]R?-1
N and class of timelike Bour of value 2,3,4 in R?'1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

Qs(a, b, c) = 9a° + 72a°b — 8a°c? + 144a*b* — 168a* b c?
—06a°b*c? + 96a%b*c* + 64b°c? — 48b*c* — 724"

—288a°b? 4 288a°c? + 288a°b*c? — 192a°c* + 1442°,

Qu(a, b, c) = —16a'% — 8640a%b>c® — 9000a* b*c — 3600a%b°c
+12000a%b*c® + 570a*b*c? — 180220 c? + 15b8 ¢ — 90048
+1440a%c® + 1440b* c® — 5400a* b* — 3600a%b° + 90068 ¢
—24000°c3 — 4162°b* — 4162*b° + 1762°b% — 16H1°
+12000a*b?c® — 3600a° b?c — 180a° b?c? — 3600a° b?
+176a°%b% — 2400a°c® 4 9002% ¢ + 15a°c? — 90028,
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Degree and class of Bour type surfaces in R%1 (5)

Degree and class of spacelike Bour of value 2,3,4

Therefore,

cl(B3) = 8 and cl/(B4) = 10.
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pacelike Bour of value 2,3,4 in R?'1

: timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

From (2), the parametrization of B, (timelike Enneper surface) is

u? +v2 x(u, v)
utv—3% (B +v3)

= | y(wv)
—utv—3 (=3 z(u,v)

By (u, v)

where u, v € IR.Then
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(5.1) Degree and class of spacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

Q(x,y,z) = —162° — 2916y*z + 4374x*y? — 6318y2x°2°
+4374x%y* — 15552223 — 2916x*z — 5832x°y?z — 207362°
+115227 — 8748x* 2% + 8748y* 2% + 3888y°2° — 3888x°2°
+15552x% 23 4 1215x% 23 + 1458x° 4 216x22° + 1458y°
+1215y* 2% + 216y%2°% 4 12960y z* + 12960x%2*.
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ke Bour of valu
: ke Bour of value
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

o Its degree is deg(B;) = 9.
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ke Bour of value 2,3,4 in H\ :

Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

o Its degree is deg(B;) = 9.
@ Hence, B is an algebraic timelike minimal surface.
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e Bour of value 2,3,4 in LR:“1
: Degree and class of timelike Bour of value 2,3,4 in R2!
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

To find the class of surface B, we obtain

(uv +3)(u? + v?)
3(uv+1)

Py(u,v) =

and the inhomogeneous tangential coordinates are
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(5.1) Degree and class of spacelike Bour of value 2 3,4 in R%!
(5.2) Degree and class of timelike Bour of value 2, 3 4 in R21

Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

~ (uv—1)(3uv +3)

2= a(u,v) '
b ~ (u+v)(Buv +3)

N a(u,v) '
c = —

=

u,v) '

where &(u, v) = (uv + 1) (uv + 3) (v + v2).

)

(
(u—v)(3uv +3)

(

(u?
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(5.1) Degree and class pacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

Then

Qg(a, b,c) = 162° 4+ 9a* + 36b%c + 242%c3
+24b°c3 — 242%°b%c? — 12a%c? — 16a°b* — 12b% 2
—36a%c + 16a%*b% + 9b* — 16K° — 182%b°.

Hence, c/(B2) = 6.
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(5.1) Degree and class of spacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

Similarly,
(B4 v x(u, v)
B3 (u,v) = %(u2+v2) —%(u4—|—v4) =|y(uv)],
) 1) ety
% (u*+v*) x(u, v)
By (u,v) = %(u3+v3) —%(u5+v5) =\|y(uv) ]|,
—% (u3—v3) —%(u5—v5) z(u, v)
and
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(5.1) Degree and class of spacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

@ (x,y,z) = 430467212*° — 18366600962
+5435817984x°z* + 602404356096x" 22
+165112971264x° 2% + (69 other lower order terms),
Qs(x,y,z) = 3118369126021466283345445989415649282>°
—3806602937037922709161921373798400000x* 22
—22839617622227536254971528242790400000x2 > z2°
—3806602937037922709161921373798400000y* z%°
—271833827901267673933071777792000000000x% 21°
+(233 other lower order terms).
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fs ke Bour of value 2
: Degree and class of timelike Bour of value 2, 3 4 in JRZ 1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

So

o deg(B3) = 16, deg(B4) =
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(5.1) Degree and class of spacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

In the tangential coordinates a, b, c,

Q3(a, b,c) = 812%h% — 272%b* — 722%b%c? — 4527 B°
—48a°b*c? — 9b® — 8b%c? — 1082°b + 180a* b3
+432a*bc?® — 36a°b° — 288a2b3c? — 288a° bc*
—36b7 — 144b°c® — 96b°c* + 362° — 108a* b?
+108a°b* — 3655,
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(5.1) Degree and class of spacelike Bour of value 2,3,4 in LR:“1
: (5.2) Degree and class of timelike Bour of value 2,3,4 in R21
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

Q4(a, b,c)= —16a'° + 1650 — 45028 ¢ + 15b8%¢2
—225b% — 720a*c® — 1350a*b* + 900a%b® — 45068 ¢
—12006°¢c® — 4162°b* + 416a*b° + 1762%H°
—43202%b%c® + 4500a* b*c — 1800a%b° ¢
—6000a°b*c3 + 570a*b* c? + 1802240 2
+6000a*b?c — 1800a° b? ¢ + 180a°b? 2

—225a8 — 720b6%c® 4 9002° b — 1762% b2
+12002°¢3 + 15282,
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fs ke Bour of value 2
: Degree and class of timelike Bour of value 2, 3 4 in JRZ 1
Degree and class of Bour type surfaces in R%1 (5)

Degree and class of timelike Bour of value 2,3,4

Therefore,

C/(%y,) = 8, C/(%4) = 10.
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