Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Bour surface companions in non-Euclidean space forms

Erhan GÜLER & Masashi YASUMOTO

Bartın University, Turkey & Kobe University, Japan June 05-10, 2015 XVIIth International Conference, Geometry, Integrability and Quantization Varna, Bulgaria

Introduction (1) pacelike maximal Bour type surfaces in Minkowski 3-space (2) imelike minimal Bour type surfaces in Minkowski 3-space (3) CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (4) Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5) References

Acknowledgements

We thank Wayne Rossman for helpful discussions.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Acknowledgements

- We thank Wayne Rossman for helpful discussions.
- The first author was supported by the 2219-TUBITAK
 International Post Doctoral Research Fellowship Programme.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Acknowledgements

- We thank Wayne Rossman for helpful discussions.
- The first author was supported by the 2219-TUBITAK
 International Post Doctoral Research Fellowship Programme.
- The second author was supported by the Grant-in-Aid for JSPS Fellows Number 26-3154.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Minimal surfaces in 3-dimensional Euclidean space R³ isometric to rotational surfaces were first introduced by Bour
 [2] in 1862.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- Minimal surfaces in 3-dimensional Euclidean space R³ isometric to rotational surfaces were first introduced by Bour
 [2] in 1862.
- see Güler [22], Güler, Yaylı and Hacısalihoğlu [23], Güler and Yaylı [24].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- Minimal surfaces in 3-dimensional Euclidean space R³ isometric to rotational surfaces were first introduced by Bour
 [2] in 1862.
- see Güler [22], Güler, Yaylı and Hacısalihoğlu [23], Güler and Yaylı [24].
- also Özgür, Arslan and Murathan, [25].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

 All such minimal surfaces are given via the well-known Weierstrass representation for minimal surfaces by choosing suitable data depending on a parameter m, as shown by Schwarz [17].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- All such minimal surfaces are given via the well-known Weierstrass representation for minimal surfaces by choosing suitable data depending on a parameter m, as shown by Schwarz [17].
- They are called Bour's minimal surfaces \mathfrak{B}_m of value m.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• Furthermore, when m is an integer greater than 1, \mathfrak{B}_m become algebraic, that is, there is an implicit polynomial equation satisfied by the three coordinates of \mathfrak{B}_m , see also Gray [7], Nitsche [15], Whittemore [21].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• Kobayashi [11] gave an analogous Weierstrass-type representation for conformal spacelike surfaces with mean curvature identically 0, called maximal surfaces, in 3-dimensional Minkowski space $\mathbb{R}^{2,1}$.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• However, unlike the case of minimal surfaces in \mathbb{R}^3 , maximal surfaces generally have singularities.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- However, unlike the case of minimal surfaces in \mathbb{R}^3 , maximal surfaces generally have singularities.
- Details about singularities of maximal surfaces can be found in Fujimori et al [6], Umehara and Yamada [20].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

ullet We remark that Magid [14] gave a Weierstrass-type representation for timelike surfaces with mean curvature identically 0, called timelike minimal surfaces, in $\mathbb{R}^{2,1}$, see also Inoguchi and Lee [10].

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referer	

Figure 1. Bour's minimal surfaces of value 3 and 6 in \mathbb{R}^3 .

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

 On the other hand, Lawson [12] showed that there is an isometric correspondence between constant mean curvature (CMC for short) surfaces in Riemannian space forms,

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- On the other hand, Lawson [12] showed that there is an isometric correspondence between constant mean curvature (CMC for short) surfaces in Riemannian space forms,
- and Palmer [16] showed that there is an analogous correspondence between spacelike CMC surfaces in Lorentzian space forms.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• In particular, minimal surfaces in \mathbb{R}^3 correspond to CMC 1 surfaces in 3-dimensional hyperbolic space \mathbb{H}^3 , and maximal surfaces in $\mathbb{R}^{2,1}$ correspond to CMC 1 surfaces in 3-dimensional de Sitter space $\mathbb{S}^{2,1}$.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referer	

- In particular, minimal surfaces in \mathbb{R}^3 correspond to CMC 1 surfaces in 3-dimensional hyperbolic space \mathbb{H}^3 , and maximal surfaces in $\mathbb{R}^{2,1}$ correspond to CMC 1 surfaces in 3-dimensional de Sitter space $\mathbb{S}^{2,1}$.
- Thus it is natural to expect existence of corresponding Weierstrass-type representations in these cases. Bryant [3] gave such a representation formula for CMC 1 surfaces in H³, and Umehara, Yamada [18] applied it.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referer	

- In particular, minimal surfaces in \mathbb{R}^3 correspond to CMC 1 surfaces in 3-dimensional hyperbolic space \mathbb{H}^3 , and maximal surfaces in $\mathbb{R}^{2,1}$ correspond to CMC 1 surfaces in 3-dimensional de Sitter space $\mathbb{S}^{2,1}$.
- Thus it is natural to expect existence of corresponding Weierstrass-type representations in these cases. Bryant [3] gave such a representation formula for CMC 1 surfaces in H³, and Umehara, Yamada [18] applied it.
- Similarly, Aiyama, Akutagawa [1] gave a representation formula for CMC 1 surfaces in $\mathbb{S}^{2,1}$.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Fimelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in IH ³ and S ^{2,1}	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

 However, analogues of Bour's surfaces in other 3-dimensional space forms had not yet been studied.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• In Sections 2 and 3 of this talk, in order to show that several maximal and timelike minimal Bour's surfaces of value m are algebraic, we review Weierstrass-type representations for maximal surfaces and timelike minimal surfaces in $\mathbb{R}^{2,1}$, and give explicit parametrizations for spacelike and timelike minimal Bour's surfaces of value m.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• In Section 4, we introduce Bour type CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$, and show several properties of those surfaces.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- In Section 4, we introduce Bour type CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$, and show several properties of those surfaces.
- Finally, in Section 5, we calculate the degrees, classes, implicit
 equations of the maximal and timelike minimal Bour's
 surfaces of values 2, 3, 4 in R^{2,1} in terms of their coordinates.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

• We remark that in the cases of \mathbb{H}^3 and $\mathbb{S}^{2,1}$, all surfaces are algebraic in some sense, because the Lorentz $(\mathbb{R}^{3,1})$ norm of all elements in $\mathbb{H}^3 \subset \mathbb{R}^{3,1}$ or $\mathbb{S}^{2,1} \subset \mathbb{R}^{3,1}$ is constant.

Introduction (1) proceedings of the maximal Bour type surfaces in Minkowski 3-space (2) Fimelike minimal Bour type surfaces in Minkowski 3-space (3) CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (4) Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5) References

Introduction

• However, we have the following remaining problems:

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- However, we have the following remaining problems:
- What is the class of maximal and timelike minimal Bour's surfaces of general value m in $\mathbb{R}^{2,1}$?

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- However, we have the following remaining problems:
- What is the class of maximal and timelike minimal Bour's surfaces of general value m in $\mathbb{R}^{2,1}$?
- Are there any other implicit equations for CMC 1 Bour type surfaces? If there exist implicit equations, what are the corresponding degrees and classes?

Let

$$\mathbb{R}^{n,1} := (\{x = (x_1, \cdots, x_n, x_0)^t | x_i \in \mathbb{R}\}, \langle \cdot, \cdot \rangle)$$

be the (n+1)-dimensional Lorentz-Minkowski (for short, Minkowski) space with Lorentz metric

$$\langle x,y\rangle=x_1y_1+\cdots+x_ny_n-x_0y_0.$$

Then the 3-dimensional hyperbolic space \mathbb{H}^3 and 3-dimensional de Sitter space $\mathbb{S}^{2,1}$ are defined as follows:

$$\begin{split} \mathbb{H}^3 &:= \{x \in \mathbb{R}^{3,1} | \langle x, x \rangle = -1, \ x_0 > 0\} \cong \left\{ F \bar{F}^t | F \in \mathrm{SL}_2 \mathbb{C} \right\}, \\ \mathbb{S}^{2,1} &:= \{x \in \mathbb{R}^{3,1} | \langle x, x \rangle = 1\} \cong \left\{ F \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \bar{F}^t | F \in \mathrm{SL}_2 \mathbb{C} \right\}. \end{split}$$

• A vector $x \in \mathbb{R}^{n,1}$ is called spacelike if $\langle x, x \rangle > 0$, timelike if $\langle x, x \rangle < 0$, and lightlike if $x \neq 0$ and $\langle x, x \rangle = 0$.

- A vector $x \in \mathbb{R}^{n,1}$ is called spacelike if $\langle x, x \rangle > 0$, timelike if $\langle x, x \rangle < 0$, and lightlike if $x \neq 0$ and $\langle x, x \rangle = 0$.
- A surface in $\mathbb{R}^{n,1}$ is called spacelike (resp. timelike, lightlike) if the induced metric on the tangent planes is a positive definite Riemannian (resp. Lorentzian, degenerate) metric.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	ces

• Kobayashi [11] found a Weierstrass-type representation for spacelike conformal maximal surfaces in $\mathbb{R}^{2,1}$.

Theorem (1)

Let g, ω be holomorphic functions defined on a simply connected open subset $\mathcal{U} \subset \mathbb{C}$ such that ω does not vanish on \mathcal{U} . Then

$$f(z) = Re \int \begin{pmatrix} (1+g^2) \omega \\ i(1-g^2) \omega \\ 2g\omega \end{pmatrix} dz$$

is a spacelike conformal immersion with mean curvature identically 0 (i.e. spacelike conformal maximal surface). Conversely, any spacelike conformal maximal surface can be described in this manner.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Remark (1). A pair of a holomorphic function g and a holomorphic function ω , (g, ω) is called Weierstrass data for a maximal surface. In Section 4, we also call (g, ω) the Weierstrass data for CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$.

• We call maximal surfaces \mathfrak{B}_m $(m \in \mathbb{Z}_{\geq 2} := \{n \in \mathbb{Z} | n \geq 2\})$ given by $(g, \omega) = (z, z^{m-2})$ the spacelike Bour's maximal surfaces \mathfrak{B}_m of value m (spacelike \mathfrak{B}_m , for short).

Spacelike maximal Bour type surfaces

- We call maximal surfaces \mathfrak{B}_m $(m \in \mathbb{Z}_{\geq 2} := \{n \in \mathbb{Z} | n \geq 2\})$ given by $(g, \omega) = (z, z^{m-2})$ the spacelike Bour's maximal surfaces \mathfrak{B}_m of value m (spacelike \mathfrak{B}_m , for short).
- Several properties of spacelike \mathfrak{B}_m can be found in Güler [8].

Spacelike maximal Bour type surfaces

The parametrization of spacelike $\mathfrak{B}_m(u, v)$ is

$$\operatorname{Re}\left(\frac{\frac{1}{m-1}\sum_{k=0}^{m-1}\binom{m-1}{k}u^{m-1-k}(iv)^{k} + \frac{1}{m+1}\sum_{k=0}^{m+1}\binom{m+1}{k}u^{m+1-k}(iv)^{k}}{\frac{i}{m-1}\sum_{k=0}^{m-1}\binom{m-1}{k}u^{m-1-k}(iv)^{k} - \frac{i}{m+1}\sum_{k=0}^{m+1}\binom{m+1}{k}u^{m+1-k}(iv)^{k}}\right) \frac{2}{m}\sum_{k=0}^{m}\binom{m}{k}u^{m-k}(iv)^{k}$$

$$(1)$$

Spacelike maximal Bour type surfaces

with Gauss map

$$n = \left(\frac{2u}{u^2 + v^2 - 1}, \frac{2v}{u^2 + v^2 - 1}, \frac{u^2 + v^2 + 1}{u^2 + v^2 - 1}\right),$$

where z = u + iv.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referer	

Next, we give the Weierstrass-type representation for timelike minimal surfaces in $\mathbb{R}^{2,1}$, which was obtained by M. Magid [14] (see also Inoguchi and Lee [10]).

Theorem (2)

Let $g_1(u)$, $\omega_1(u)$ (resp. $g_2(v)$, $\omega_2(v)$) be smooth functions depending on only u (resp. v) on a connected orientable 2-manifold with local coordinates u, v. Then

$$\hat{f}(u,v) = \int \begin{pmatrix} 2g_1\omega_1 \\ (1-g_1^2)\omega_1 \\ -(1+g_1^2)\omega_1 \end{pmatrix} du + \int \begin{pmatrix} 2g_2\omega_2 \\ (1-g_2^2)\omega_2 \\ (1+g_2^2)\omega_2 \end{pmatrix} dv.$$

is a timelike surface with mean curvature identically 0 (i.e. timelike minimal surface). Conversely, any timelike minimal surface can be described in this manner.

The timelike minimal surfaces given by $(g_1(u), \omega_1(u)) = (u, u^{m-2}), (g_2(v), \omega_2(v)) = (v, v^{m-2})$ are called timelike Bour surfaces \mathfrak{B}_m of value m (timelike \mathfrak{B}_m , for short) in $\mathbb{R}^{2,1}$, where $m \in \mathbb{Z}_{\geq 2}$.

The parametrization of timelike \mathfrak{B}_m is

$$\mathfrak{B}_{m}(u,v) = \begin{pmatrix} \frac{\frac{2}{m}(u^{m} + v^{m})}{\frac{1}{m-1}(u^{m-1} + v^{m-1}) - \frac{1}{m+1}(u^{m+1} + v^{m+1})}, \\ -\frac{1}{m-1}(u^{m-1} - v^{m-1}) - \frac{1}{m+1}(u^{m+1} - v^{m+1}) \end{pmatrix},$$
(2)

with Gauss map

$$n = \left(\frac{uv - 1}{1 + uv}, \frac{u + v}{1 + uv}, \frac{u - v}{1 + uv}\right).$$

Figure 2. Left two pictures: spacelike \mathfrak{B}_3 and \mathfrak{B}_6 in $\mathbb{R}^{2,1}$, right two pictures: timelike \mathfrak{B}_3 and \mathfrak{B}_6 in $\mathbb{R}^{2,1}$

Spacelike maximal Bour type surfaces in Minkowski 3-space(2) Timelike minimal Bour type surfaces in Minkowski 3-space(3)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5)
References

• In this section we consider CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$. Here we identify elements in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ with $\mathsf{SL}_2\mathbb{C}$ matrix forms as in Section 2.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

- In this section we consider CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$. Here we identify elements in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ with $\mathsf{SL}_2\mathbb{C}$ matrix forms as in Section 2.
- In this setting Bryant [3] showed the following representation formula for CMC 1 surfaces in \mathbb{H}^3 :

Theorem (3)

Let $F \in SL_2\mathbb{C}$ be a solution of the equation

$$dF = F \begin{pmatrix} g & -g^2 \\ 1 & -g \end{pmatrix} \omega, \ F|_{z=z_0} \in SL_2\mathbb{C}$$
 (3)

for some z_0 in a given domain, where (g,ω) is Weierstrass data. Then the surface $f=F\bar{F}^t$ is a conformal CMC 1 immersion into \mathbb{H}^3 . Conversely, any conformal CMC 1 immersion in \mathbb{H}^3 can be described in this way. The metric of f is $(1+|g|^2)^2|\omega|^2$.

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Similarly, Aiyama and Akutagawa [1] showed the following Bryant-type representation formula for CMC 1 surfaces in $\mathbb{S}^{2,1}$:

Theorem (4)

Let $\hat{F} \in \operatorname{SL}_2\mathbb{C}$ be a solution of Equation (3), where (g,ω) is Weierstrass data. Then the surface $f = F\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \bar{F}^t$ is a spacelike conformal CMC 1 immersion into $\mathbb{S}^{2,1}$. Conversely, any spacelike conformal CMC 1 immersion in $\mathbb{S}^{2,1}$ is described in this way. The metric of f is $(1-|g|^2)^2|\omega|^2$.

Introduction	(I)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Note that, unlike in \mathbb{H}^3 , CMC 1 surfaces in $\mathbb{S}^{2,1}$ generally have singularities. Their singularities have been investigated Fujimori et al [6], Umehara and Yamada [20].

Introduction	(I)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

We call CMC 1 surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ given by the Weierstrass data $(g,\omega)=(z,z^{m-2})$ the Bour type CMC 1 cousins \mathfrak{B}_m of value m (\mathfrak{B}_m cousin, for short).

Introduction (1 Spacelike maximal Bour type surfaces in Minkowski 3-space (2 Timelike minimal Bour type surfaces in Minkowski 3-space (3 CMC 1 Bour type surfaces in \mathbf{H}^3 and $\mathbf{S}^{2,1}$ (4 Degree and class of Bour type surfaces in $\mathbf{R}^{2,1}$ (5 Reference

CMC 1 Bour type surfaces

We now describe F explicitly:

Theorem (5)

Let
$$F(z) = \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix} \in SL_2\mathbb{C}$$
 be a solution of Equation (3) with $(g, \omega) = (z, z^{m-2}dz)$ and with initial condition $F(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Theorem (5)

(Cont.) Then

$$\begin{split} &a(z)=m^{\frac{1}{m}}\Gamma\left(\frac{m+1}{m}\right)z^{\frac{m-1}{2}}\text{Bessel I}\left(-\frac{m-1}{m},\frac{2}{m}z^{\frac{m}{2}}\right),\\ &b(z)=-m^{\frac{1}{m}}\Gamma\left(\frac{m+1}{m}\right)z^{\frac{m+1}{2}}\text{Bessel I}\left(\frac{m+1}{m},\frac{2}{m}z^{\frac{m}{2}}\right),\\ &c(z)=m^{\frac{-1}{m}}\Gamma\left(\frac{m-1}{m}\right)z^{\frac{m-1}{2}}\text{Bessel I}\left(\frac{m-1}{m},\frac{2}{m}z^{\frac{m}{2}}\right),\\ &d(z)=-m^{\frac{-1}{m}}\Gamma\left(\frac{m-1}{m}\right)z^{\frac{m+1}{2}}\text{Bessel I}\left(-\frac{m+1}{m},\frac{2}{m}z^{\frac{m}{2}}\right), \end{split}$$

Introduction ((1)
Spacelike maximal Bour type surfaces in Minkowski 3-space (
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ ((5)
Reference	

Theorem (5)

(Cont.) where Γ denotes the Gamma function and Bessel I represents the modified Bessel function.

• The definition of Bessel I can be found in standard textbooks, for example, see [9].

Figure 3. Left two pictures: \mathfrak{B}_3 cousin in \mathbb{H}^3 , right two pictures: its dual cousin in \mathbb{H}^3 (in the Poincare ball model for \mathbb{H}^3)

Spacelike maximal Bour type surfaces in Minkowski 3-space (2 Timelike minimal Bour type surfaces in Minkowski 3-space (3 CMC 1 Bour type surfaces in H³ and S².1 (4 Degree and class of Bour type surfaces in R².1 (5 Reference

CMC 1 Bour type surfaces

Figure 4. Left two pictures: \mathfrak{B}_6 cousin in \mathbb{H}^3 , right two pictures: its dual cousin in \mathbb{H}^3

Proof.

Equation (3) gives

$$X'' - \frac{\omega'}{\omega}X' - g'\omega X = 0, \quad (X = a(z), c(z))$$
 (5)

$$X'' - \frac{\omega'}{\omega} X' - g' \omega X = 0, \quad (X = a(z), c(z))$$
 (5)
$$Y'' - \frac{(g^2 \omega)'}{g^2 \omega} Y' - g' \omega Y = 0 \quad (Y = b(z), d(z)),$$
 (6)

which are given by Umehara and K. Yamada [18]. Here we solve Equation (5).

Proof. (cont.) Inserting $(g, \omega) = (z, z^{m-2})$ into Equation (5), we have

$$X'' - \frac{m-2}{z}X' - z^{m-2}X = 0. \ (m \in \mathbb{Z}_{\geq 2})$$
 (7)

Proof. (cont.)

We give two independent power series solutions of the differential equation (7) by the Frobenius method. The indicial equation at z=0 is $\rho(\rho-1)-(m-2)\rho=0$. So we see that the characteristic exponents of the equation (7) are 0 and m-1.

Proof. (cont.)

Then we have a solution of the form

$$z^{m-1}\sum_{p=0}^{\infty}a_pz^p,$$

where the coefficients a_p are inductively given by

$$\begin{aligned} a_{mk+l} &= 0 \quad (l = 0, \cdots, m), \\ a_{mk+m+1} &= \frac{a_{m(k-1)+m-1}}{(m-2)k(mk+m-1)} \\ &= \frac{\Gamma(\frac{m-1}{m} + k)}{m^2\Gamma(\frac{m-1}{m} + k + 1)} a_{m(k-1)+m-1} \quad (l \ge m+1). \end{aligned}$$

Proof. (cont.)

Therefore we obtain a solution of the differential equation (7):

$$z^{\frac{m-1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(\frac{m-1}{m}+k+1)} \left(\frac{z^{\frac{m}{2}}}{m}\right)^{2k+\frac{m-1}{m}}$$

$$= z^{\frac{m-1}{2}} \operatorname{Bessel} \operatorname{I}\left(\frac{m-1}{m}, \frac{2}{m}z^{\frac{m}{2}}\right).$$

Proof. (cont.)
Similarly, we obtain another independent solution as

$$z^{\frac{m-1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(-\frac{m-1}{m} + k + 1)} \left(\frac{z^{\frac{m}{2}}}{m}\right)^{2k - \frac{m-1}{m}}$$

$$= z^{\frac{m-1}{2}} \operatorname{Bessel} \operatorname{I}\left(-\frac{m-1}{m}, \frac{2}{m}z^{\frac{m}{2}}\right).$$

Introduction (1)
Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)
CMC 1 Bour type surfaces in ${f H}^3$ and ${f S}^{2,1}$ (4)
Degree and class of Bour type surfaces in ${\Bbb R}^{2,1}$ (5)
References

CMC 1 Bour type surfaces

Proof. (cont.)

So we have two independent solutions of Equation (5). Next, we find two independent solutions of Equation (6).

Proof. (cont.) Inserting $(g,\omega)=(z,z^{m-2})$ into Equation (6), we have $Y''-\frac{m}{z}Y'-z^{m-2}Y=0. \ \ (m\in\mathbb{Z}_{\geq 2})$

Proof. (cont.) Similarly to the way we solved Equation (5), we have two independent solutions

$$z^{\frac{m+1}{2}}\operatorname{Bessel}\operatorname{I}\left(\frac{m+1}{m},\frac{2}{m}z^{\frac{m}{2}}\right),\quad z^{\frac{m+1}{2}}\operatorname{Bessel}\operatorname{I}\left(-\frac{m+1}{m},\frac{2}{m}z^{\frac{m}{2}}\right).$$

Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\S^{2,1}$. (4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$. (5)
References

CMC 1 Bour type surfaces

Proof. (cont.) Using the initial conditions, we have the solution F as in Equations (4).

Remark (2). If F is a solution of Equation (3), the surface

$$f^\sharp = (F^{-1})\overline{(F^{-1})}^t \quad \left(\text{resp. } f^\sharp = (F^{-1}) egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \overline{(F^{-1})}^t
ight)$$

is also a CMC 1 surface in \mathbb{H}^3 (resp. $\mathbb{S}^{2,1}$).

This was proven by Umehara and Yamada [19] (resp. Lee [13]). The surface f^{\sharp} is called the CMC 1 dual of f.

4 D > 4 D >

Introduction	(1)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

Using the explicit parametrization of the \mathfrak{B}_m cousin, we can easily show the following corollary, which implies the rotational symmetric property of the \mathfrak{B}_m cousins in \mathbb{H}^3 , $\mathbb{S}^{2,1}$.

Corollary (1)

Let $F(z) \in SL_2\mathbb{C}$ be the form as in Theorem 5 with complex coordinate z. Then

$$F(e^{i\frac{2\pi}{m}}\cdot z) = \begin{pmatrix} a(z) & e^{i\frac{2\pi}{m}}\cdot b(z) \\ e^{-i\frac{2\pi}{m}}\cdot c(z) & d(z) \end{pmatrix}.$$

Writing \mathfrak{B}_m cousin in \mathbb{H}^3 or $\mathbb{S}^{2,1}$ as $f(z) = (x_1(z), x_2(z), x_3(z), x_0(z))^t$, given by Theorem 5, and setting $f\left(e^{i\frac{2\pi}{m}} \cdot z\right) = (\hat{x}_1(z), \hat{x}_2(z), \hat{x}_3(z), \hat{x}_0(z))^t$.

CMC 1 Bour type surfaces

By Corollary (1), we have

$$\begin{split} \hat{x}_1(z) &= \cos\left(\frac{2\pi}{m}\right) x_1(z) - \sin\left(\frac{2\pi}{m}\right) x_2(z),\\ \hat{x}_2(z) &= \sin\left(\frac{2\pi}{m}\right) x_1(z) + \cos\left(\frac{2\pi}{m}\right) x_2(z),\\ \hat{x}_3(z) &= x_3(z), \ \hat{x}_0(z) = x_0(z), \end{split}$$

that is, by rotating z by angle $\frac{2\pi}{m}$, the first and second coordinates are also rotated by the same angle.

Introduction	(I)
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)
	(3)
	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

CMC 1 Bour type surfaces

So like in \mathbb{R}^3 and $\mathbb{R}^{2,1}$, \mathfrak{B}_m has symmetry with respect to rotation by angle $\frac{2\pi}{m}$. Its dual $(\mathfrak{B}_m)^\sharp$ also has the same symmetry.

Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)

CMC 1 Bour type surfaces in H³ and S^{2,1} (4)

Degree and class of Bour type surfaces in R²,1 (5)

References

CMC 1 Bour type surfaces

• In order to see CMC 1 surfaces in \mathbb{H}^3 , we use a stereographic projection.

CMC 1 Bour type surfaces

- In order to see CMC 1 surfaces in \mathbb{H}^3 , we use a stereographic projection.
- Consider the map

$$\mathbb{H}^3 \ni (x_1, x_2, x_3, x_0)^t \mapsto \left(\frac{x_1}{1+x_0}, \frac{x_2}{1+x_0}, \frac{x_3}{1+x_0}\right)^t \in \mathbb{B}^3,$$

where \mathbb{B}^3 denotes the 3-dimensional unit ball.

CMC 1 Bour type surfaces

- In order to see CMC 1 surfaces in \mathbb{H}^3 , we use a stereographic projection.
- Consider the map

$$\mathbb{H}^3 \ni (x_1, x_2, x_3, x_0)^t \mapsto \left(\frac{x_1}{1+x_0}, \frac{x_2}{1+x_0}, \frac{x_3}{1+x_0}\right)^t \in \mathbb{B}^3,$$

where \mathbb{B}^3 denotes the 3-dimensional unit ball.

• This is the Poincaré ball model for \mathbb{H}^3 .

Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)
CMC 1 Bour type surfaces in H³ and S^{2,1} (4)
Degree and class of Bour type surfaces in R^{2,1} (4)
References

CMC 1 Bour type surfaces

• In order to show graphics of CMC 1 surfaces in $\mathbb{S}^{2,1}$, the hollow ball model is used, see Fujimori [4] for example.

CMC 1 Bour type surfaces

- In order to show graphics of CMC 1 surfaces in S^{2,1}, the hollow ball model is used, see Fujimori [4] for example.
- Consider the map

$$\begin{split} \mathbb{S}^{2,1} & \ni \quad (x_1, x_2, x_3, x_0)^t \\ & \mapsto \quad \left(\frac{\mathrm{e}^{\arctan(x_0)} \cdot x_1}{\sqrt{1 + x_0^2}}, \frac{\mathrm{e}^{\arctan(x_0)} \cdot x_2}{\sqrt{1 + x_0^2}}, \frac{\mathrm{e}^{\arctan(x_0)} \cdot x_3}{\sqrt{1 + x_0^2}} \right)^t \\ & \in \quad \mathbb{B}^3_{(-\pi,\pi)}, \end{split}$$

where

$$\mathbb{B}^3_{(-\pi,\pi)} := \{ (y_1, y_2, y_3)^t \in \mathbb{R}^3 \mid e^{-\pi} < y_1^2 + y_2^2 + y_3^2 < e^{\pi} \}.$$

Introduction (1)
Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)

CMC 1 Bour type surfaces in H³ and S^{2,1} (4)
Degree and class of Bour type surfaces in R^{2,1} (8)
References

CMC 1 Bour type surfaces

Figure 5. Left two pictures: \mathfrak{B}_3 cousin in $\mathbb{S}^{2,1}$, right two pictures: its dual cousin in $\mathbb{S}^{2,1}$

Introduction (1)
Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)

CMC 1 Bour type surfaces in H³ and S²¹ (4)

Degree and class of Bour type surfaces in R².¹ (8)

References

CMC 1 Bour type surfaces

Figure 6. Left two pictures: \mathfrak{B}_6 cousin in $\mathbb{S}^{2,1}$, right two pictures: its dual cousin in $\mathbb{S}^{2,1}$

Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)	
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)	(5.1) Degree and class of spacelike Bour of value 2
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$		(5.2) Degree and class of timelike Bour of value 2
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)	

References

Degree and class of Bour type surfaces

• For $\mathbb{R}^{2,1}$, the set of roots of a polynomial Q(x,y,z)=0 gives an algebraic surface.

Degree and class of Bour type surfaces

- For $\mathbb{R}^{2,1}$, the set of roots of a polynomial Q(x,y,z)=0 gives an algebraic surface.
- An algebraic surface f is said to be of degree (or order) n when $n = \deg(f)$.

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in \mathbb{R}^{2} .

Degree and class of Bour type surfaces

The tangent plane at a point (u, v) on a surface f(u, v) = (x(u, v), y(u, v), z(u, v)) is given by

$$Xx + Yy - Zz + P = 0, (8)$$

where the Gauss map is n = (X(u, v), Y(u, v), Z(u, v)) and P = P(u, v).

Introduction	(1)	
Spacelike maximal Bour type surfaces in Minkowski 3-space	(2)	
Timelike minimal Bour type surfaces in Minkowski 3-space	(3)	
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)	
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)	

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,3}$

(5.2) Degree and class of timelike Bour of value 2,3,4 in \mathbb{R}^2

Degree and class of Bour type surfaces

We have inhomogeneous tangential coordinates a = X/P, b = Y/P, and c = Z/P.

Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (4
Timelike minimal Bour type surfaces in Minkowski 3-space(3
Spacelike maximal Bour type surfaces in Minkowski 3-space(2
	(- .

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

(5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of Bour type surfaces

References

When we can obtain an implicit equation $\hat{Q}(a,b,c)=0$ of f(u,v) in tangential coordinates, the maximum degree of the equation gives the *class* of f(u,v).

Spacelike maximal Bour type surfaces in Minkowski 3-space (
Timelike minimal Bour type surfaces in Minkowski 3-space(
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5
Reference	e

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of Bour type surfaces

Next, using polynomial elimination methods (in Maple software), we calculate the implicit equations, degrees and classes of spacelike and timelike \mathfrak{B}_2 , \mathfrak{B}_3 and \mathfrak{B}_4 .

From (1), the parametrization of \mathfrak{B}_2 (maximal Enneper surface) is

$$\mathfrak{B}_{2}(u,v) = \begin{pmatrix} \frac{1}{3}u^{3} - uv^{2} + u \\ u^{2}v - \frac{1}{3}v^{3} - v \\ u^{2} - v^{2} \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix},$$

where $u, v \in \mathbb{R}$.

ppacelike maximal Bour type surfaces in Minkowski 3-space ((2)
Fimelike minimal Bour type surfaces in Minkowski 3-space (
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ ((4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ ((5)
Reference	- 60

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of spacelike Bour of value 2,3,4

• In this section, $Q_m(x, y, z) = 0$ denotes the irreducible implicit equation that spacelike or timelike \mathfrak{B}_m will satisfy.

Then

$$Q_{2}(x, y, z) = -64z^{9} + 432x^{2}z^{6} - 432y^{2}z^{6} + 1215x^{4}z^{3} + 6318x^{2}y^{2}z^{3} - 3888x^{2}z^{5} + 1215y^{4}z^{3} - 3888y^{2}z^{5} + 1152z^{7} + 729x^{6} - 2187x^{4}y^{2} - 4374x^{4}z^{2} + 2187x^{2}y^{4} + 6480x^{2}z^{4} - 729y^{6} + 4374y^{4}z^{2} - 6480y^{2}z^{4} - 729x^{4}z + 1458x^{2}y^{2}z + 3888x^{2}z^{3} - 729y^{4}z + 3888y^{2}z^{3} - 5184z^{5},$$

Spacelike maximal Bour type surfaces in Winkowski 3-space (2)	
Timelike minimal Bour type surfaces in Minkowski 3-space (3)	(5.1) Degree a
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (4)	(5.2) Degree
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5)	, , ,

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of spacelike Bour of value 2,3,4

• Its degree is $deg(\mathfrak{B}_2) = 9$.

spacelikė maximal Bour typė surfacės in Minkowski 3-spacė. (
Fimelike minimal Bour type surfaces in Minkowski 3-space(
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5
Reference	

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of spacelike Bour of value 2,3,4

- Its degree is $deg(\mathfrak{B}_2) = 9$.
- Therefore, \mathfrak{B}_2 is an algebraic maximal surface.

• To find the class of the surface \mathfrak{B}_2 , we obtain

$$P_2(u,v) = \frac{(u^2 + v^2 - 3)(u - v)(u + v)}{3(u^2 + v^2 - 1)},$$

where $P_m(u, v)$ denotes the function as in Equation (8) for spacelike or timelike \mathfrak{B}_m .

• To find the class of the surface \mathfrak{B}_2 , we obtain

$$P_2(u,v) = \frac{(u^2 + v^2 - 3)(u - v)(u + v)}{3(u^2 + v^2 - 1)},$$

where $P_m(u, v)$ denotes the function as in Equation (8) for spacelike or timelike \mathfrak{B}_m .

• The inhomogeneous tangential coordinates are

$$a = \frac{6u}{\alpha(u, v)}, \ b = \frac{6v}{\alpha(u, v)}, \ c = \frac{6(u^2 + v^2 + 1)}{\alpha(u, v)},$$

where
$$\alpha(u, v) = (u^2 + v^2 - 3)(u - v)(u + v)$$
.

• In the tangential coordinates a, b, c,

$$\begin{split} \hat{Q}_2(a,b,c) &= 4a^6 + 9a^4 + 9b^4 + 6a^2b^2c^2 + 12b^2c^3 \\ &-3b^4c^2 - 18b^4c - 4a^4b^2 + 18a^4c - 12a^2c^3 \\ &-4a^2b^4 - 3a^4c^2 + 18a^2b^2 - 4a^2b^4 + 4b^6, \end{split}$$

where $\hat{Q}_m(a,b,c)=0$ denotes the irreducible implicit equation for spacelike or timelike \mathfrak{B}_m in terms of tangential coordinates.

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

• In the tangential coordinates a, b, c,

$$\begin{split} \hat{Q}_2(a,b,c) &= 4a^6 + 9a^4 + 9b^4 + 6a^2b^2c^2 + 12b^2c^3 \\ &-3b^4c^2 - 18b^4c - 4a^4b^2 + 18a^4c - 12a^2c^3 \\ &-4a^2b^4 - 3a^4c^2 + 18a^2b^2 - 4a^2b^4 + 4b^6, \end{split}$$

where $\hat{Q}_m(a,b,c)=0$ denotes the irreducible implicit equation for spacelike or timelike \mathfrak{B}_m in terms of tangential coordinates

• Therefore, the class of the spacelike \mathfrak{B}_2 is $cl(\mathfrak{B}_2)=6$.

Similarly,

$$\mathfrak{B}_{3}\left(u,v\right) \ = \ \begin{pmatrix} \frac{u^{4}}{4} + \frac{v^{4}}{4} - \frac{3}{2}u^{2}v^{2} + \frac{u^{2}}{2} - \frac{v^{2}}{2} \\ u^{3}v - uv^{3} - uv \\ \frac{2}{3}u^{3} - 2uv^{2} \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix},$$

$$\mathfrak{B}_{4}\left(u,v\right) \ = \ \begin{pmatrix} \frac{1}{3}u^{3} - uv^{2} + \frac{1}{5}u^{5} - 2u^{3}v^{2} + uv^{4} \\ -u^{2}v + \frac{1}{3}v^{3} + u^{4}v - 2u^{2}v^{3} + \frac{1}{5}v^{5} \\ \frac{1}{2}u^{4} - 3u^{2}v^{2} + \frac{1}{2}v^{4} \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix},$$

and

$$\begin{split} Q_3(x,y,z) &= -43046721z^{16} + 272097792x^3z^{12} \\ -816293376xy^2z^{12} + 3009871872x^6z^8 \\ +14834368512x^4y^2z^8 + (69 \text{ other lower order terms}), \\ Q_4(x,y,z) &= -1514571848868138319872z^{25} \\ +9244212944751820800000x^4z^{20} \\ -24192761655761718750000000x^4y^{12}z^5 \\ -55465277668510924800000x^2y^2z^{20} \\ -3065257232666015625000000x^{12}y^6z^2 \\ +(233 \text{ other lower order terms}), \end{split}$$

and their degrees are $\deg(\mathfrak{B}_3)=16$, $\deg(\mathfrak{B}_4)=25$.

Therefore, \mathfrak{B}_3 and \mathfrak{B}_4 are algebraic spacelike maximal surfaces. Furthermore,

$$P_3(u,v) = \frac{u(u^2 + v^2 - 2)(u^2 - 3v^2)}{(u^2 + v^2 - 1)},$$

$$P_4(u,v) = \frac{(3u^2 + 3v^2 - 5)(u^2 - 2uv - v^2)(u^2 + 2uv - v^2)}{30(u^2 + v^2 - 1)},$$

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

and the inhomogeneous tangential coordinates are

$$a = \frac{12}{\beta(u, v)}, b = \frac{12v}{u\beta(u, v)}, c = \frac{6(u^2 + v^2 + 1)}{u\beta(u, v)} (m = 3),$$

$$a = \frac{60u}{\gamma(u, v)}, b = \frac{60v}{\gamma(u, v)}, c = \frac{30(u^2 + v^2 + 1)}{\gamma(u, v)} (m = 4),$$

where
$$\beta(u,v)=(u^2+v^2-2)(u^2-3v^2)$$
, $\gamma(u,v)=(3u^2+3v^2-5)(u^2-2uv-v^2)(u^2+2uv-v^2)$. Then

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- Degree and class of spacelike Bour of value 2,3,4

$$\begin{split} \hat{Q}_3(a,b,c) &= 9a^8 + 72a^6b^2 - 8a^6c^2 + 144a^4b^4 - 168a^4b^2c^2 \\ -96a^2b^4c^2 + 96a^2b^2c^4 + 64b^6c^2 - 48b^4c^4 - 72a^7 \\ -288a^5b^2 + 288a^5c^2 + 288a^3b^2c^2 - 192a^3c^4 + 144a^6, \\ \hat{Q}_4(a,b,c) &= -16a^{10} - 8640a^2b^2c^5 - 9000a^4b^4c - 3600a^2b^6c \\ +12000a^2b^4c^3 + 570a^4b^4c^2 - 180a^2b^6c^2 + 15b^8c^2 - 900b^8 \\ +1440a^4c^5 + 1440b^4c^5 - 5400a^4b^4 - 3600a^2b^6 + 900b^8c \\ -2400b^6c^3 - 416a^6b^4 - 416a^4b^6 + 176a^2b^8 - 16b^{10} \\ +12000a^4b^2c^3 - 3600a^6b^2c - 180a^6b^2c^2 - 3600a^6b^2 \\ +176a^8b^2 - 2400a^6c^3 + 900a^8c + 15a^8c^2 - 900a^8. \end{split}$$

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of spacelike Bour of value 2,3,4

Therefore,

$$cl(\mathfrak{B}_3)=8$$
 and $cl(\mathfrak{B}_4)=10$.

From (2), the parametrization of \mathfrak{B}_2 (timelike Enneper surface) is

$$\mathfrak{B}_{2}\left(u,v\right)=\begin{pmatrix}u^{2}+v^{2}\\u+v-\frac{1}{3}\left(u^{3}+v^{3}\right)\\-u+v-\frac{1}{3}\left(u^{3}-v^{3}\right)\end{pmatrix}=\begin{pmatrix}x(u,v)\\y(u,v)\\z(u,v)\end{pmatrix}.$$

where $u, v \in \mathbb{R}$. Then

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

$$\begin{aligned} Q_2(x,y,z) &= -16z^9 - 2916y^4z + 4374x^4y^2 - 6318y2x^2z^3 \\ &+ 4374x^2y^4 - 15552y^2z^3 - 2916x^4z - 5832x^2y^2z - 20736z^5 \\ &+ 1152z^7 - 8748x^4z^2 + 8748y^4z^2 + 3888y^2z^5 - 3888x^2z^5 \\ &+ 15552x^2z^3 + 1215x^4z^3 + 1458x^6 + 216x^2z^6 + 1458y^6 \\ &+ 1215y^4z^3 + 216y^2z^6 + 12960y^2z^4 + 12960x^2z^4. \end{aligned}$$

pacelike maximal Bour type surfaces in Minkowski 3-space	
imelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	(4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	ices

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

• Its degree is $deg(\mathfrak{B}_2) = 9$.

Spacelike maximal Bour type surfaces in Minkowski 3-space (
Fimelike minimal Bour type surfaces in Minkowski 3-space (
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$ (
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5
Reference	e

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

- Its degree is $deg(\mathfrak{B}_2) = 9$.
- Hence, \mathfrak{B}_2 is an algebraic timelike minimal surface.

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

(5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

To find the class of surface \mathfrak{B}_2 we obtain

$$P_2(u, v) = \frac{(uv + 3)(u^2 + v^2)}{3(uv + 1)},$$

and the inhomogeneous tangential coordinates are

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

$$a = -\frac{(uv - 1)(3uv + 3)}{\hat{\alpha}(u, v)}$$

$$b = -\frac{(u + v)(3uv + 3)}{\hat{\alpha}(u, v)},$$

$$c = -\frac{(u - v)(3uv + 3)}{\hat{\alpha}(u, v)},$$

where
$$\hat{\alpha}(u, v) = (uv + 1)(uv + 3)(u^2 + v^2)$$
.

Degree and class of timelike Bour of value 2,3,4

Then

$$\begin{split} \hat{Q}_2(a,b,c) &= 16a^6 + 9a^4 + 36b^4c + 24a^2c^3 \\ &+ 24b^2c^3 - 24a^2b^2c^2 - 12a^4c^2 - 16a^2b^4 - 12b^4c^2 \\ &- 36a^4c + 16a^4b^2 + 9b^4 - 16b^6 - 18a^2b^2. \end{split}$$

Hence,
$$cl(\mathfrak{B}_2) = 6$$
.

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2.3.4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

Similarly,

$$\mathfrak{B}_{3}(u,v) = \begin{pmatrix} \frac{2}{3}(u^{3}+v^{3}) \\ \frac{1}{2}(u^{2}+v^{2}) - \frac{1}{4}(u^{4}+v^{4}) \\ -\frac{1}{2}(u^{2}-v^{2}) - \frac{1}{4}(u^{4}-v^{4}) \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix},$$

$$\mathfrak{B}_{4}(u,v) = \begin{pmatrix} \frac{1}{2}(u^{4}+v^{4}) \\ \frac{1}{3}(u^{3}+v^{3}) - \frac{1}{5}(u^{5}+v^{5}) \\ -\frac{1}{3}(u^{3}-v^{3}) - \frac{1}{5}(u^{5}-v^{5}) \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix},$$

and

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

```
Q_3(x, y, z) = 43046721z^{16} - 1836660096z^{14}
+5435817984x^6z^4+602404356096x^4z^8
+165112971264x^2z^8 + (69 \text{ other lower order terms}),
Q_4(x, y, z) = 311836912602146628334544598941564928z^{25}
-3806602937037922709161921373798400000x^4z^{20}
-22839617622227536254971528242790400000x^2y^2z^{20}
-3806602937037922709161921373798400000y^4z^{20}
-2718338279012676739330717777920000000000x^8z^{15}
+(233 \text{ other lower order terms}).
```

pacelike maximal Bour type surfaces in Minkowski 3-space	(2)
imelike minimal Bour type surfaces in Minkowski 3-space	(3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $\mathbb{S}^{2,1}$	
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$	(5)
Referen	

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

So

•
$$deg(\mathfrak{B}_3) = 16$$
, $deg(\mathfrak{B}_4) = 25$.

- (5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$
- (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

In the tangential coordinates a, b, c,

$$\hat{Q}_3(a, b, c) = 81a^6b^2 - 27a^4b^4 - 72a^4b^2c^2 - 45a^2b^6$$

$$-48a^2b^4c^2 - 9b^8 - 8b^6c^2 - 108a^6b + 180a^4b^3$$

$$+432a^4bc^2 - 36a^2b^5 - 288a2b^3c^2 - 288a^2bc^4$$

$$-36b^7 - 144b^5c^2 - 96b^3c^4 + 36a^6 - 108a^4b^2$$

$$+108a^2b^4 - 36b^6,$$

(5.1) Degree and class of spacelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$ (5.2) Degree and class of timelike Bour of value 2,3,4 in $\mathbb{R}^{2,1}$

Degree and class of timelike Bour of value 2,3,4

$$\begin{split} \hat{Q}_4(a,b,c) &= -16a^{10} + 16b^{10} - 450a^8c + 15b^8c^2 \\ &- 225b^8 - 720a^4c^5 - 1350a^4b^4 + 900a^2b^6 - 450b^8c \\ &- 1200b^6c^3 - 416a^6b^4 + 416a^4b^6 + 176a^2b^8 \\ &- 4320a^2b^2c^5 + 4500a^4b^4c - 1800a^2b^6c \\ &- 6000a^2b^4c^3 + 570a^4b^4c^2 + 180a^2b^6c^2 \\ &+ 6000a^4b^2c^3 - 1800a^6b^2c + 180a^6b^2c^2 \\ &- 225a^8 - 720b^4c^5 + 900a^6b^2 - 176a^8b^2 \\ &+ 1200a^6c^3 + 15a^8c^2. \end{split}$$

Degree and class of timelike Bour of value 2,3,4

Therefore,

$$cl(\mathfrak{B}_3) = 8$$
, $cl(\mathfrak{B}_4) = 10$.

- [1] R. Aiyama and K. Akutagawa, Kenmotsu-Bryant type representation formulas for constant mean curvature surfaces in $\mathbb{H}^3(-c^2)$ and $\mathbb{S}^3_1(c^2)$, Ann. Global Anal. Geom. 17 (1), 49-75, 1998.
- [2] Bour, E. Théorie de la déformation des surfaces. Journal de l'École Imperiale Polytechnique, 22, Cahier 39, 1-148, 1862.
- [3] R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155, 321-347, 1987.
- [4] S. Fujimori, Spacelike CMC 1 surfaces with elliptic ends in de Sitter 3-Space, Hokkaido Math. J. 35, 289-320, 2006.
- [5] S. Fujimori, W. Rossman, M. Umehara, K. Yamada and S.D. Yang, Spacelike mean curvature one surfaces in de Sitter 3-space, Comm. Anal. Geom. 17(3), 383-427, 2009.

- [6] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z. 259, 827-848, 2008.
- [7] A. Gray, Modern differential geometry of curves and surfaces with Mathematica. Second edition. CRC Press, Boca Raton, FL, 1998.
- [8] E. Güler, Bour's spacelike maximal and timelike minimal surfaces in the three dimensional Lorentz-Minkowski space (presented in GeLoSP 2013, Sao Paulo, Brasil), submitted.
- [9] E. L. Ince, Ordinary Differential Equations, Dover Publications, 1956.
- [10] J. Inoguchi and S. Lee, Null curves in Minkowski 3-space. Int. Electron. J. Geom., 1 (2), 40-83, 2008.

- [11] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L³. Tokyo J. Math. 6 (2), 297-309, 1983.
- [12] H. B. Lawson Jr., Complete minimal surfaces in S³, Ann. of Math. (2) 92, 335-374, 1960.
- [13] S. Lee, Spacelike surfaces of constant mean curvature ± 1 in de Sitter 3-space $\mathbb{S}^3_1(1)$, Illinois J. Math. 49 (1), 63-98, 2005.
- [14] M. Magid, Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20 (3), 447-464, 1991.
- [15] J.C.C. Nitsche, Lectures on minimal surfaces. Vol. 1. Introduction, fundamentals, geometry and basic boundary value problems. Cambridge University Press, Cambridge, 1989.

Introduction (I)
Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
	4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5)
References	

- [16] B. Palmer, Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms, Ann. Glob. Anal. Geom. 8 (3), 217-226, 1990.
- [17] H.A. Schwarz, Miscellen aus dem gebiete der minimalflächen. Journal de Crelle, vol. 80, 1875, (published also in Gesammelte Mathematische Abhandlungen).
- [18] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space, Ann. of Math. (2) 137, 611-638, 1993.
- [19] M. Umehara and K. Yamada, A duality on CMC-1 surfaces in hyperbolic space, and a hyperbolic analogue of the Osserman inegality, Tsukuba J. Math. 21, 229-237, 1997.
- [20] M. Umehara and K. Yamada, Maximal surfaces with singularities in Mikowski space, Hokkaido Math. J. 35, 13-40.

- [21] J.K. Whittemore, Minimal surfaces applicable to surfaces of revolution. Ann. of Math. (2) 19, no. 1, 1-20, 1917.
- [22] E. Güler, Bour's theorem and lightlike profile curve, Yokohama Math. J. 54-1, 55-77, 2007.
- [23] E., Güler, Y., Yaylı, H.H., Hacısalihoğlu, Bour's theorem on Gauss map in Euclidean 3-space, Hacettepe J. Math. Stat. 39-4, 515-525, 2010.
- [24] E., Güler, Y. Yaylı, Generalized Bour's theorem, Kuwait J. Sci. 42-1, 79-90, 2015.
- [25] C., Özgür, K., Arslan, C. Murathan, On a class of surfaces in Euclidean spaces. Commun. Fac. Sci. Univ. Ank. series A1 51, 47-54, 2002.

Introduction (1)
Spacelike maximal Bour type surfaces in Minkowski 3-space (2)
Timelike minimal Bour type surfaces in Minkowski 3-space (3)
CMC 1 Bour type surfaces in \mathbb{H}^3 and $S^{2,1}$ (4)
Degree and class of Bour type surfaces in $\mathbb{R}^{2,1}$ (5)
References

Thank you