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Introduction

Introduction

J. S. Kim, M. K. Dwivedi and M. M. Tripathi obtained the Ricci
curvature of integral submanifolds of an S-space form in
[KDT-2007]. On the other hand, D. Fetcu and C. Oniciuc studied
biharmonic Legendre curves in Sasakian space forms in
[Fetcu-2008] and [Fetcu-2009]. We studied biharmonic Legendre
curves of S—space forms in [0G-2014]. J. T. Cho, J. Inoguchi and
J.E. Lee defined and studied slant curves in Sasakian 3-manifolds
in [CIL-2006].

Motivated by these studies, in the present talk, we focus our
interest on biharmonic slant curves in S—space forms. We find
curvature characterizations of these special curves in four cases.
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Introduction

Let (M, g) and (N, h) be two Riemannian manifolds and
¢ (M,g) — (N, h) a smooth map. The energy functional of ¢ is
defined by

1
E0) =5 | ldof us

The critical points of the energy functional E(¢) are called
harmonic [Eells-Sampson-1964|. The Euler-Lagrange equation
gives the harmonic map equation

7(¢) = traceVdp = 0,

where 7(¢) is called the tension field of ¢ .
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Introduction

The bienergy functional of ¢ is given by

Ea0) = 5 [ 7@ v

A biharmonic map is a critical point of Ex(¢). The Euler-Lagrange
equation of Ex(¢) gives the biharmonic map equation

m(¢) = —J(7(¢)) = —AT(¢) — traceR" (dop, 7(¢))d¢ = 0,

where J? is the Jacobi operator of ¢. T2(¢) is called the bitension
field of ¢ [Jiang-1986].
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Introduction

The bienergy functional of ¢ is given by

Ea0) = 5 [ 7@ v

A biharmonic map is a critical point of Ex(¢). The Euler-Lagrange
equation of Ex(¢) gives the biharmonic map equation

m(¢) = —J(7(¢)) = —AT(¢) — traceR" (dop, 7(¢))d¢ = 0,

where J? is the Jacobi operator of ¢. T2(¢) is called the bitension
field of ¢ [Jiang-1986].

In a different setting, in [Chen-1996], B.Y. Chen defined a
biharmonic submanifold M C E” of the Euclidean space as its
mean curvature vector field H satisfies AH = 0, where A is the
Laplacian.
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S —space form and its submanifolds

S —space form and its submanifolds

Let (M, g) be a (2m + s)-dimensional framed metric manifold
[Yano-Kon-1984] with a framed metric structure (f,&4,n%, g),
a € {l,..,s}, thatis, fis a (1,1) tensor field defining an
f-structure of rank 2m; &, ..., & are vector fields; 1, ..., n° are
1-forms and g is a Riemannian metric on M such that for all
X,Y € TMand o, € {1,...,s},

f2=—14+n*® &, n*(€p) =05, (&) =0, n*of =0

s

g(IX,fY) = g(X,Y) = > _n*(X)n*(Y), (2)

a=1

dn®(X,Y) =g(X,fY) = —dn*(Y,X), n*(X)=g(X,§).
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S —space form and its submanifolds

(M2m+s £ ¢,.n%, g) is also called framed f-manifold
[Nakagawa-1966] or almost r-contact metric manifold
[Vanzura-1972].
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S —space form and its submanifolds

(M2m+s £ ¢,.n%, g) is also called framed f-manifold
[Nakagawa-1966] or almost r-contact metric manifold
[Vanzura-1972].

If the Nijenhuis tensor of f equals —2dn® ® &, for all
a€{l,..,s}, then (f,&,n%, g) is called S-structure [Blair-1970].
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S —space form and its submanifolds

(M2m+s £ ¢,.n%, g) is also called framed f-manifold
[Nakagawa-1966] or almost r-contact metric manifold
[Vanzura-1972].

If the Nijenhuis tensor of f equals —2dn® ® &, for all
a€{l,..,s}, then (f,&,n%, g) is called S-structure [Blair-1970].

If a framed metric structure on M is an S-structure, then the
following equations hold [Blair-1970]:

(VxO)Y =" {a(fX, V)t + n*(Y)FX}, (4)
Véa =—f, ae{l,..s}. (5)
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S —space form and its submanifolds

A plane section in T,M is an f-section if there exist a vector
X € T,M orthogonal to &1, ..., &s such that {X, fX} span the
section. The sectional curvature of an f-section is called an
f-sectional curvature. In an S-manifold of constant f-sectional
curvature, the curvature tensor R of M is of the form

R(X,Y)Z = Z{n X)nP(Z)F2Y —n*(Y)nP(Z2)F2X

—&(fX, fZ) “(Y)Es + g (fY, )" (X)) (6)
+e83 (g (Y, fZ)F2X + g(X, 2)f2Y'}
s (e(X. 7)Y — g(¥., Z)iX + 2g(X. F¥)fZ}

forall X,Y,Z € TM [CFF-1993]. An S-manifold of constant
f-sectional curvature c is called an S-space form which is denoted
by M(c).

When s = 1, an S-space form becomes a Sasakian space form
[Blair-2002].
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S —space form and its submanifolds

A submanifold of an S-manifold is called an integral submanifold if
n%(X) =0, a =1,...,s, for every tangent vector X [KDT-2007].
We call a 1-dimensional integral submanifold of an S-space form
(M?m+s £ £..n% g) a Legendre curve of M. In other words, a
curve v : | — M = (M?m+s f ¢,,n g) is called a Legendre curve
if n*(T) =0, for every a = 1, ...s, where T is the tangent vector
field of ~.

Let v be a unit-speed curve in an S-manifold (M2™+s f ¢, 0%, g).
We call v a slant curve, if there exists a constant angle 8 such that
n*(T) = cos#, for all « =1,...s. Here, 6 is called the contact
angle of . Every Legendre curve is slant with contact angle 7.
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S —space form and its submanifolds

We can give the following essential proposition for slant curves:

Proposition 1

Let M = (M?™+s f &,,n% g) be an S-manifold. If 0 is the
contact angle of a non-geodesic unit-speed slant curve in M, then

-1 1
— < cosf < —.

Vs Vs
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Biharmonic Slant curves in S-Space Forms

Let v: 1 — M be a curve parametrized by arc length in an
n-dimensional Riemannian manifold (M, g). If there exists
orthonormal vector fields Eq, E», ..., E, along v such that

El = ’7/ = T7
VrEl = k1B,
ViE = —ki1E1 + koEs, (7)
V1E = —kr1E,

then ~ is called a Frenet curve of osculating order r, where
K1, ..., ky—1 are positive functionson [ and 1 < r < n.
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Biharmonic Slant curves in S-Space Forms

A Frenet curve of osculating order 1 is a geodesic; a Frenet curve
of osculating order 2 is called a circle if k1 is a non-zero positive
constant; a Frenet curve of osculating order r > 3 is called a helix
of order r if k1, ..., K,_1 are non-zero positive constants; a helix of
order 3 is shortly called a helix.
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Biharmonic Slant curves in S-Space Forms

Now let (M2m+s f ¢, 1% g) be an S-space form and vy : [ — M a
slant curve of osculating order r. Differentiating

n*(T) = cosb (8)
and using (7), we find
n*(E2) =0, a € {1,...,s}. (9)
Then, (1) and (9) give us
f°E, = —E>. (10)
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Biharmonic Slant curves in S-Space Forms

By the use of (1), (2), (3), (6), (7), (9) and (10), it can be seen
that
VVrT = —E%El + H’lEz + k1Ko E3,

ViVeVrT = =3rriE+ (k] — K3 — Ii]_l{',%) E>
+ (2/1'1/12 + R11‘£I2) Es + k1ikok3Eq,

c+3s
4

R(T,VTT)T = —k1|s°cos®f+ (1—scos’0)| E

(c—5s)
4

—3/431 g(fT, Eg)f—r
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Biharmonic Slant curves in S-Space Forms

So we have

2(7)

ViVeVeT —-R(T,V+T)T
—3k1Kk1 E1
+ {k{ — K3 — K1K3 (11)

3
+ k1 | s% cos 0+C—; 5(1—5c052«9)]}E2

—|—(2/€1Iﬁ12 + I€1/€/2)E3 + k1kok3Es

130, C Z S)g(fT, E>)fT.
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Biharmonic Slant curves in S-Space Forms

So we have
w(y) = ViVeVeT -R(T,VTT)T
= —3r1k1E
+ {k{ — KS — K1K3 (11)

3
+ k1 | s% cos 0+C—; 5(1—5c052«9)]}E2

—|—(2/€1/ﬁ12 + I~€1/<L/2)E3 + k1kok3Es

130, C Z S)g(fT, E>)fT.

Let k = min{r,4}. From (11), the curve 7 is proper biharmonic if
and only if k3 > 0 and

(1) c=sor fT L Eyor fT € span{Ey, ..., Ex}; and

(2) g(m2(7),Ei) =0, forany i =1, ..., k.

So we can state the following theorem:
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Biharmonic Slant curves in S-Space Forms

Theorem 2

Let v be a slant curve of osculating order r in an S-space form
(M?m+s f ¢0,n%, g), « € {1,...,s} and k = min{r,4}. Then v is
proper biharmonic if and only if

(1) c=sorflT L Eyor T € span{Ey, ..., Ex}; and
(2) the first k of the following equations are satisfied (replacing
KRk = 0)

k1 = constant > 0,
K3 + k3 = 5% cos? 0 + %35(1 — scos? f) + @ (T, B,
wh + A g (T, Br)g(fT, Es) =0,
K2k3 + 3(64_s)g(f7_, E>)g(fT, E4) = 0.
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Theorem 2

Let v be a slant curve of osculating order r in an S-space form
(M?m+s f ¢0,n%, g), « € {1,...,s} and k = min{r,4}. Then v is
proper biharmonic if and only if

(1) c=sorflT L Eyor T € span{Ey, ..., Ex}; and
(2) the first k of the following equations are satisfied (replacing
KRk = 0)

k1 = constant > 0,
K3 + k3 = 5% cos? 0 + %35(1 — scos? f) + @ (T, B,
wh + A g (T, Br)g(fT, Es) =0,
K2k3 + 3(64_s)g(f7_, E>)g(fT, E4) = 0.

Now we give the interpretations of Theorem 2.
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Biharmonic Slant curves in S-Space Forms

Case |: c = s.

In this case -y is proper biharmonic if and only if

K1 = constant > 0,
I‘i% + KZ% =S5,
Ko = constant,
koksz = 0.

Let y be a slant curve in an S-space form (M?™+s f £, .n%, g),
a€{l,..,s}, c=s. Then v is proper biharmonic if and only if
either 7y is a circle with k1 = /s, or a helix with k3 + k3 = s.
Moreover, if v is Legendre, then 2m + s > 3.
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Biharmonic Slant curves in S-Space Forms

Remark 4

If2m+s =3, then m=s=1. So M is a 3-dimensional Sasakian
space form. Since a Legendre curve in a Sasakian 3-manifold has
torsion 1 (see [CB — 1994]), we can write k1 > 0 and kp =1,
which contradicts k2 + k3 = s = 1. Hence v cannot be proper
biharmonic.
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Biharmonic Slant curves in S-Space Forms

Case ll: ¢ # s, fT L E.

In this case, g(fT, E;) = 0. From the main Theorem, we obtain

K1 = constant > 0,
K3 + K3 = s?cos? § + 432(1 — scos? 0),
Ko = constant,
Kkoksz = 0.

(12)
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Case ll: ¢ # s, fT L E.

In this case, g(fT, E;) = 0. From the main Theorem, we obtain

K1 = constant > 0,
K3 + K3 = s?cos? § + 432(1 — scos? 0),
Ko = constant,
Kkoksz = 0.

(12)

Firstly, we give the following proposition:
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Case ll: ¢ # s, fT L E.

In this case, g(fT, E;) = 0. From the main Theorem, we obtain

K1 = constant > 0,
K3 + K3 = s?cos? § + 432(1 — scos? 0),
Ko = constant,
Kkoksz = 0.

(12)

Firstly, we give the following proposition:

Proposition 5

Let v be a slant curve of osculating order 3 in an S-space form
(M2m+s f ¢,.n% g), a € {1,...,s} and fT L E,. Then

{T =E,E, E5,fT,NV1fT,&, ..., } is linearly independent at
any point of ~y. Therefore m > 3.
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Biharmonic Slant curves in S-Space Forms

Now we can state the following Theorem:

Theorem 6

Let v be a slant curve in an S-space form (M?™+s f ¢,,n%, g),
a€{l,...s},c#sand fT L Ey. Then ~y is proper biharmonic if

and only if either

(1) m> 2 and v is a circle with k1 = \/c + 3s — (c — s)s cos? 0,
where ¢ > —3s + (c — s)scos? @ and {T = Ey, B, fT,V 1T,
&1, ...,&s} is linearly independent; or

(2) m >3 and v is a helix with k3 + k3 =
where ¢ > —3s + (¢ — s)scos? 0 and {T = E, B, E3, T, VTfT
&1,...,&s} is linearly independent.

c+3s—(c—s)scos? 0
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Biharmonic Slant curves in S-Space Forms

Case lll: ¢ # s, fT || E;

In this case, fT = +v/1 — scos? 0E, g(fT, Ez) = (1 — scos? ),
g(fT,E3) =0 and g(fT, E4) = 0. From Theorem 2, v is
biharmonic if and only if

k1 = constant > 0,
K3+ K3 = ¢ — scos? O(c — s),
Kp = constant,

Kkokz = 0.

S. GUVENC and C. 0ZGUR Slant Curves in S—Space Forms



Biharmonic Slant curves in S-Space Forms

Case lll: ¢ # s, fT || E;

In this case, fT = +v/1 — scos? 0E, g(fT, Ez) = (1 — scos? ),
g(fT,E3) =0 and g(fT, E4) = 0. From Theorem 2, v is
biharmonic if and only if
k1 = constant > 0,
K3+ K3 = ¢ — scos? O(c — s),
Ko = constant,

Kkokz = 0.
We can assume that fT = /1 — scos? §E,. From equation (1), we
get
V1—scos?0ffy = f°T = -T+» n*(T)a=—T+cos0> &
a=1 a=1
(13)
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Biharmonic Slant curves in S-Space Forms

From (13), we find

VrflT = —scosHT+Z£a
a=1
-1 cos @ °
+K — T + —— « 14
! v1—scos24 \/l—scos29aZl£ (14)

= V1-—scos?0(—r1T + KkoE3).
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Biharmonic Slant curves in S-Space Forms

From (13), we find

VrflT = —scosHT+Z£a
a=1

+K1

-1 cosf >
74+ 27 N¢, |14
V1—scos?d \/l—scos29;£]( )
= V1-—scos?0(—r1T + KkoE3).

Using (14), we can write

K1 cosf °
14+ — —scosfOT + o | = K21 — scos? OE;,
( \/l—sc0520> ( az::lg ) 2 3
(15)

which gives us the following Theorem:
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Biharmonic Slant curves in S-Space Forms

Theorem 7

Let ~ be a slant curve in an S-space form (M?™+s f ¢, 1%, g),
a€{l,..,s},c#sandfT || E,. Then ~ is proper biharmonic if
and only if it is one of the following:

i) a Legendre helix with the Frenet frame field

1 S
{T’ T @Zja}

and k1 = v/c — s and kp = /s, where ¢ > s;
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ii) a non-Legendre slant circle with the Frenet frame field

")
"V1—scos20

and

—v/1—scos?6

R1 =
"~ cosf

\/c—scos29(c—s)

iii) a non-Legendre slant helix with the Frenet frame field

T 1
{ "V1—5cos?0’ \/s\/scos2 — cos(26) (Z{a—scosé?T>}

and
K3 4+ K3 = c — scos’ B(c — s).
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Thus, we can give the following corollary for Legendre curves:

Corollary 8

Let v be a Legendre Frenet curve in an S-space form
(M?m+s f ¢,.,n% g), « €{L,...,s}, c# s and T || E;. Then

1 S
{T’ & ﬁ%ﬁ“}

is the Frenet frame field of v and ~y is proper biharmonic if and
only if it is a helix with k1 = \/c — s and kp = /s, where ¢ > s. If
c < s, then ~y is biharmonic if and only if it is a geodesic

[OG — 2014].
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Biharmonic Slant curves in S-Space Forms

Case IV: c # s, fT }f E; and g(fT, E;) # 0.

Now, let (M2™+s f ¢,,n% g) be an S-space form, o € {1, ..., s}
and v : [ — M a slant curve of osculating order r, where

4 <r<2m+sand m> 2. If v is biharmonic, then

fT € span{E;, E3, E4} . Let pu(t) denote the angle function
between fT and Ep, that is, g(fT, Ez) = V1 — scos? f cos pu(t).

Differentiating g(fT, E2) along « and using (1), (3), (7), we find
—V1—scos20u'(t)sinu(t) = Vrg(fT,E)
= &(VrfT,E)+g(fT,VrE)

S
= g(—scosfT + Zga + k1fEy, Ep)

a=1
+g(fT, —k1 T + kaE3)
= rog(fT, E3). (16)
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If we write fT = g(fT, E2)Ex + g(fT, E3)E3 + g(fT, E4)Ea,
Theorem 2 gives us

K1 = constant > 0,
K2 + K3 = s2cos? 0 + H35(1 — scos? ) + @ [g(fT, E2))?,
Wy + 2 g (T, E2)g (T E3) = 0,

Kok3 + 3(C4_s)g(f7—7 E>)g(fT,E4) = 0.
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Biharmonic Slant curves in S-Space Forms

If we multiply the third equation of the above system with 2k5,
using (16), we obtain

2Kk + /1 — scos? —2p/ cos pusin i) = 0,

which is equivalent to

3 —
= V1-so0 0 Dot ptw,  (17)

where wy is a constant. If we write (17) in the second equation, we
have

3
K = 52C0529+Ct1 u

3 _
—i—M (1 —scos?f+ /1 — scos20> cos? i + wp.

4

(1- s cos? 0)
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Thus p is a constant. From (16) and (17), we find g(fT, E3) =0
and rp =constant> 0. Since ||fT|| = v/1 — scos? 6 and

fT =1 —scos?0cosuEy + g(fT, E4)Ey, we get

g(fT, Ey) = /1 — scos? @ sin u. From the assumption fT }f E; and
g(fT,E) #0, it is clear that pu € (0,27)\ {5, 7, 3} . Now we
can state the following Theorem:
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Biharmonic Slant curves in S-Space Forms

Theorem 9

Let v : | — M be a slant curve of osculating order r in an S-space form
(M2mts f €, g), a €{L,....s}, wherer >4, m>2 c+#s,
fT )t E; and g(fT, Ez) # 0. Then v is proper biharmonic if and only if

ki = constant> 0, i€ {1,2,3},
KP4+ K2 = szcos29+c—;3s(l—scos29)
3 —
+¥(1—5c0520)coszu,
3(s —
Koky = %(1—sc0529)sin2p,

where fT = /1 — scos? 0 cos uEy + /1 — s cos? Osin ukEy,

p € (0,2m)\ {3, 7,3} is a constant.
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Corollary 10

Let v : | — M be a Legendre curve of osculating order r in an S-space
form (M?™+s f ¢,,n% g), a € {1,...,s}, wherer >4, m>2 c+#s,
g(fT,Ey) is not constant 0, 1 or —1. Then ~y is proper biharmonic if and

only if
ki = constant>0, i € {1,2,3},
K34+ K3 = %[c+3s+3(c—s)coszu],
ras = 3(s — ;) sin 2,u7

where ¢ > —3s, fT = cos uE, + sin s, pp € (0,20)\{%, 7,3} is a
constant such that ¢ + 3s + 3(c — s) cos? . > 0 and 3(s — ¢)sin2u > 0.
If ¢ < —3s, then v is biharmonic if and only if it is a geodesic [0G-2014].
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Slant Curves in R2"15(—3s)

Slant Curves in R?"$(—3s)

Let us consider M = R2"+s with coordinate functions
{X1,.--Xn, Y1, --s ¥n, Z1, ..., Zs} and define

i=1

£ i) 52)
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Slant Curves in R2"15(—3s)

S n
1
g= 1" @n"+ 3> (d @ dxi +dy; @ dyy),
a=1 =1

where

- ) ) o )
X = Xi— + Yj=— Zy— M).
('8x,-+ ,8yi)+a§::1<a82a)ex( )

It is known that (R2”+5, f,{a,na,g) is an S-space form with
constant f-sectional curvature ¢ = —3s and it is denoted by
R27+5(—3s) [Hasegawa-1986).
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Slant Curves in R2"15(—3s)

The vector fields

0 8
Xi - 287)/,7 Xn+i - - 2( —H/:Za oz aZa

form a g-orthonormal basis and the Levi-Civita connection is
calculated as

S s
VxiXi = Vi, Xnrj = 0, Vx Xoyj = 6"1'2{0" Vi Xj = _5’72&“

a=1 a=1
Vx.§a = Ve, Xi = = Xoti, Vx,..6a = Ve Xnpi = Xi.
(see [Hasegawa-1986]).
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Slant Curves in R2"15(—3s)

Let v : | — R?""S(—3s) be a slant curve with contact angle 6. Let
us denote

V(&) = (0()s s ¥n(2)s Yo1(8), -, 720(8), 120 41(2), -, 12045(8)) 5

where t is the arc-length parameter. The tangent vector field of
is

T = i+ -+ + A
- 8 ’Yna ’Yn—ﬁ—l 8 72n ayn
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Slant Curves in R2"15(—3s)

In terms of the g-orthonormal basis, T can be written as

1
T =3 [Vne1 X1 + oo + V9 Xn + V1 Xn1 + oo + Y Xon
+ (Yonp1 = MYkl — - — Vo¥2n) &1 + ..
+ (Vones — ViVnd1 — - — Vnv2n) & -
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Slant Curves in R2"15(—3s)

In terms of the g-orthonormal basis, T can be written as

1

r = 2 (V1 X1+ -+ Y20 Xn + V1 X1 + -+ YnXan
+ (’Y§n+1 — ViVl = e — ’YZ’an) §1+ -
+ (Vongs — MVnt1 — - — Vv2n) &s) -

Since 7 is slant, we obtain

1
WWUZEWQM—%%H—W—%wazw%

forall « =1,...,s. Thus, we have

7§n+1 =..= 'yénJrS = 'yi’ynﬂ + ...+ %’yzn + 2cosd.
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Slant Curves in R2"15(—3s)

Since v is a unit-speed curve, we can write
(’71)2 +..+ (7§n>2 =4(1- s cos? 9).

Now we can give the following examples:
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Slant Curves in R2"t5(—3s)

Since v is a unit-speed curve, we can write
(’71)2 +..+ (7§n>2 =4(1- s cos? 9).

Now we can give the following examples:

Let n=1and s =2. Then, v:/ — R*—6), v(t) = (v2t,0,t,t)
is a slant circle with contact angle 3.
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Slant Curves in R2"t5(—3s)

Example 2

The curve 7 : | — R¥(=6), 7(t) = (12(t), 72(t), 13(t), 7a(2)) is a slant
curve with contact angle 6, where

t
7(t)=ca+2vV— cos29/ cos u(p)dp,
t

0

t
Y2(t) = & + 2V — cos20/ sin u(p)dp,
1

0

Y3(t) = 7a(t) + c3 = ¢4 + 2t cos 0

t q
+ 2V — cos 29/ cos u(q) (cz + 2v/—cos 20/ sin u(p)dp) dq,
t t

cosf € (—1/\@,1/\&) )

to € I, 1, ¢, ¢z and ¢, are arbitrary constants.
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