Gauss map of real hypersurfaces in complex projective space and submanifolds in complex 2-plane Grassmannians

Makoto Kimura (Ibaraki University, Japan)

17th International Conference, Geometry, Integrability and Quantization

June 5-10, 2015, Varna, Bulgaria
Gauss map of hypersurfaces in sphere

For an immersion $x : M^n \to S^{n+1} \subset \mathbb{R}^{n+1}$, let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+1}$ be the position vector at $p \in M^n$, and let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M^n$.

Then the Gauss map $\gamma : M^n \to \mathbb{E}^{2n+2} \sim = Q_n$ is defined by $\gamma(p) = x(p) \wedge N_p$ (B. Palmer, 1997).
For an immersion $x : M^n \rightarrow S^{n+1} \subset \mathbb{R}^{n+1}$, let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and...
For an immersion \(x : M^n \rightarrow S^{n+1} \subset \mathbb{R}^{n+1} \),

let \(x(p) \in S^{n+1} \subset \mathbb{R}^{n+2} \) be the position vector at \(p \in M \), and

let \(N_p \) be a unit normal vector of oriented hypersurface \(M \subset S^{n+1} \) at \(p \in M \).
For an immersion \(x : M^n \to S^{n+1} \subset \mathbb{R}^{n+1} \),
let \(x(p) \in S^{n+1} \subset \mathbb{R}^{n+2} \) be the position vector at \(p \in M \), and
let \(N_p \) be a unit normal vector of oriented hypersurface \(M \subset S^{n+1} \) at \(p \in M \).

Then the Gauss map \(\gamma : M \to \tilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n \) is defined by
Gauss map of hypersurfaces in sphere

For an immersion $x : M^n \to S^{n+1} \subset \mathbb{R}^{n+1}$,
let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vector at $p \in M$, and
let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.

Then the Gauss map $\gamma : M \to \tilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n$ is defined by
$\gamma(p) = x(p) \wedge N_p$ (B. Palmer, 1997).
Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n.

Moreover, if $M_n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.

For parallel hypersurface $M_r := \cos rx + \sin rN$ of M, the Gauss image is not changed: $\gamma(M) = \gamma(M_r)$.
Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n.

Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.
Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n.

Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.

Also for parallel hypersurface $M_r := \cos rx + \sin rN$ ($r \in \mathbb{R}$) of M, the Gauss image is not changed: $\gamma(M) = \gamma(M_r)$.
Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n.

Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.

Also for parallel hypersurface $M_r := \cos rx + \sin rN$ ($r \in \mathbb{R}$) of M, the Gauss image is not changed: $\gamma(M) = \gamma(M_r)$.

We define Gauss map $\gamma : M^{2n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ for real hypersurface M^{2n-1} in \mathbb{CP}^n.
For a real hypersurface M^{2n-1} in \mathbb{CP}^n, we consider the following diagram:
For a real hypersurface M^{2n-1} in \mathbb{CP}^n, we consider the following diagram:

\[\begin{array}{ccc}
\pi^{-1}(M) & \xrightarrow{w} & S^{2n+1} \\
\downarrow & & \downarrow \pi \\
M^{2n-1} & \xrightarrow{x} & \mathbb{CP}^n
\end{array} \]
For a real hypersurface M^{2n-1} in \mathbb{CP}^n, we consider the following diagram:

\[
\begin{array}{ccccccc}
\pi^{-1}(M) & \xrightarrow{w} & S^{2n+1} & \xrightarrow{\iota} & \mathbb{C}^{n+1} \\
\downarrow & & \downarrow & & \downarrow & & \pi \\
M^{2n-1} & \xrightarrow{x} & \mathbb{CP}^n
\end{array}
\]

For $p \in M$, take a point $z_p \in \pi^{-1}(p) \subset \pi^{-1}(M)$ and let N'_p be a horizontal lift of unit normal of $M \subset \mathbb{CP}^n$ at z_p.
If we put $\gamma(p) = \text{span}_C \{z_p, N'_p\}$, then the map $
abla : M \to G_2(C^{n+1})$ is well-defined.
If we put $\gamma(p) = \text{span}_\mathbb{C}\{z_p, N'_p\}$, then the map $\gamma: M \rightarrow G_2(\mathbb{C}^{n+1})$ is well-defined.

We call γ as the **Gauss map** of real hypersurface M in \mathbb{CP}^n.
If we put $\gamma(p) = \text{span}_\mathbb{C}\{z_p, N'_p\}$, then the map $\gamma : M \to G_2(\mathbb{C}^{n+1})$ is well-defined.

We call γ as the Gauss map of real hypersurface M in \mathbb{CP}^n.

Note that for parallel hypersurface $M_r := \pi(\cos r z_p + \sin r N'_p)$ of M, image of the Gauss map $\gamma : M^{2n-1} \to \mathbb{CP}^n$ is not changed: $\gamma(M) = \gamma(M_r)$.
For a real hypersurface M^{2n-1} in Kähler manifold (\tilde{M}^n, J) and a unit normal vector N, a vector $\xi := -JN$ tangent to M is called the structure vector of M. And when ξ is an eigenvector of the shape operator A of M, we call M a Hopf hypersurface in fM^n.
For a real hypersurface M^{2n-1} in Kähler manifold (\mathbb{M}^n, J) and a unit normal vector $N,$ a vector $\xi := -JN$ tangent to M is called the structure vector of $M.$
For a real hypersurface M^{2n-1} in Kähler manifold (\tilde{M}^n, J) and a unit normal vector N, a vector $\xi := -JN$ tangent to M is called the structure vector of M.

And when ξ is an eigenvector of the shape operator A of M, we call M a Hopf hypersurface in \tilde{M}.
A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.
A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.

Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$ (μ is necessarily constant), and for $r \in (0, \pi/2)$ with $\mu = 2\cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then
A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.

Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$ (μ is necessarily constant), and for $r \in (0, \pi/2)$ with $\mu = 2\cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then $\phi_r(M)$ is a complex submanifold of $\mathbb{CP}^n(4)$ and M lies on a tube over $\phi_r(M)$. (Cecil-Ryan, 1982).
After that, Borisenko (2001) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.
After that, Borisenko (2001) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.

For example, he showed that compact embedded Hopf hypersurface in \mathbb{CP}^n lies on a tube over an algebraic variety.
After that, Borisenko (2001) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.

For example, he showed that compact embedded Hopf hypersurface in \mathbb{CP}^n lies on a tube over an algebraic variety.

In this talk, we will give a characterization of Hopf hypersurface M in \mathbb{CP}^n by using the Gauss map $\gamma : M \rightarrow G_2(\mathbb{C}^{n+2})$.
Complex 2-plane Grassmann manifold $\tilde{M} = \mathbb{G}_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure (\tilde{g}, Q):
Complex 2-plane Grassmann manifold $\tilde{M} = G_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure $({\tilde{g}, Q})$:

Here, \tilde{g} is a Riemannian metric of \tilde{M}, Q is a subbundle of $\text{End}T\tilde{M}$ with rank 3, satisfying:
Complex 2-plane Grassmann manifold $\tilde{M} = G_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure (\tilde{g}, Q):

Here, \tilde{g} is a Riemannian metric of \tilde{M}, Q is a subbundle of $\text{End}(T\tilde{M})$ with rank 3, satisfying:

For each $p \in \tilde{M}$, there exists a neighborhood $U \ni p$, such that there exists local frame field $\{\tilde{I}_1, \tilde{I}_2, \tilde{I}_3\}$ of Q.
\[\tilde{I}_1^2 = \tilde{I}_2^2 = \tilde{I}_3^2 = -1, \quad \tilde{I}_1\tilde{I}_2 = -\tilde{I}_2\tilde{I}_1 = \tilde{I}_3, \]
\[\tilde{I}_2\tilde{I}_3 = -\tilde{I}_3\tilde{I}_2 = \tilde{I}_1, \quad \tilde{I}_3\tilde{I}_1 = -\tilde{I}_1\tilde{I}_3 = \tilde{I}_2. \]
Quaternionic Kähler manifold

\[\tilde{I}_1^2 = \tilde{I}_2^2 = \tilde{I}_3^2 = -1, \quad \tilde{I}_1 \tilde{I}_2 = -\tilde{I}_2 \tilde{I}_1 = \tilde{I}_3,\]
\[\tilde{I}_2 \tilde{I}_3 = -\tilde{I}_3 \tilde{I}_2 = \tilde{I}_1, \quad \tilde{I}_3 \tilde{I}_1 = -\tilde{I}_1 \tilde{I}_3 = \tilde{I}_2.\]

For each \(L \in Q_p\), \(\tilde{g}\) is invariant, i.e.,
\[\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0\] for \(X, Y \in T_p\tilde{M}\), \(p \in \tilde{M}\).
For each \(L \in Q_p \), \(\tilde{g} \) is invariant, i.e.,
\[
\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0 \quad \text{for} \quad X, Y \in T_p\tilde{M},
p \in \tilde{M}.
\]

Vector bundle \(Q \) is parallel with respect to the Levi-Civita connection of \(\tilde{g} \) at \(\text{End} \, T\tilde{M} \).
A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called **almost Hermitian submanifold**, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

1. $\tilde{I}^2 = -1$,
2. $\tilde{I}TM = TM$.

If we write the almost complex structure on M which is induced by \tilde{I} as I, then with respect to the induced metric, (M, I) is an almost Hermitian manifold.
A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called **almost Hermitian submanifold**, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

1. $\tilde{I}^2 = -1$, and
2. $\tilde{I}TM = TM$.

If we write the almost complex structure on M which is induced by \tilde{I} as I, then with respect to the induced metric, (M, I) is an almost Hermitian manifold.
A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called **almost Hermitian submanifold**, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

1. $\tilde{I}^2 = -1$, and
2. $\tilde{I}TM = TM$.

If we write the almost complex structure on M which is induced by \tilde{I} as I, then...
A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called **almost Hermitian submanifold**, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

1. $\tilde{I}^2 = -1$, and
2. $\tilde{I}TM = TM$.

If we write the almost complex structure on M which is induced by \tilde{I} as I, then

with respect to the induced metric, (M, I) is an almost Hermitian manifold.
In particular, when almost Hermitian submanifold \((M, \bar{g}, I)\) is Kähler, we call \(M\) a Kähler submanifold of quaternionic Kähler manifold \(\tilde{M}\).
In particular, when almost Hermitian submanifold \((M, \bar{g}, I)\) is Kähler, we call \(M\) a Kähler submanifold of quaternionic Kähler manifold \(\tilde{M}\).

Similarly, an almost Hermitian submanifold \((M, \bar{g}, I)\) is called **totally complex submanifold** if at each point \(p \in M\), with respect to \(\tilde{L} \in Q_p\) which anti-commute with \(\tilde{I}_p, \tilde{L}T_pM \perp T_pM\) hold.
In particular, when almost Hermitian submanifold (M, \bar{g}, I) is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \tilde{M}.

Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p, $\tilde{L}T_p M \perp T_p M$ hold.

In quaternionic Kähler manifold, a submanifold is totally complex if and only if it is Kähler (Alekseevsky-Marchiafava, 2001).
Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n, and let $\gamma : M \rightarrow G_2(\mathbb{C}^{n+1})$ be the Gauss map.
Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n, and let $\gamma : M \rightarrow G_2(\mathbb{C}^{n+1})$ be the Gauss map.

If M is not Hopf, then the Gauss map γ is an immersion.
Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n, and let $\gamma : M \to G_2(\mathbb{C}^{n+1})$ be the Gauss map.

- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $G_2(\mathbb{C}^{n+1})$.
Theorem (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n, and let $\gamma : M \rightarrow G_2(\mathbb{C}^{n+1})$ be the Gauss map.

- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $G_2(\mathbb{C}^{n+1})$.
- And a Hopf hypersurface M in \mathbb{CP}^n is a total space of a circle bundle over a Kähler manifold such that the fibration is nothing but the Gauss map $\gamma : M \rightarrow \gamma(M)$.
Let $\varphi : \Sigma^{n-1} \rightarrow G_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
Let $\varphi : \Sigma^{n-1} \rightarrow \mathbb{G}_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

Then, for each point p in Σ, if we assign $\tilde{I}_p \in Q_{\varphi(p)}$,
Let \(\varphi : \Sigma^{n-1} \to G_2(\mathbb{C}^{n+1}) \) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

Then, for each point \(p \) in \(\Sigma \), if we assign \(\tilde{I}_p \in Q_{\varphi(p)} \), then we have a submanifold \(\tilde{I}(\Sigma) \) of the twistor space \(Z = \{ \tilde{I} \in Q | \tilde{I}^2 = -1 \} \) of \(G_2(\mathbb{C}^{n+1}) \)(natural lift).
Let $\varphi : \Sigma^{n-1} \to G_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

Then, for each point p in Σ, if we assign $\tilde{I}_p \in Q_{\varphi(p)}$, then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{ \tilde{I} \in Q | \tilde{I}^2 = -1 \}$ of $G_2(\mathbb{C}^{n+1})$(natural lift).

Since Σ is a totally complex submanifold of $G_2(\mathbb{C}^{n+1})$, $\tilde{I}(\Sigma)$ is a **Legendrian submanifold** of the twistor space \mathcal{Z} with respect to a complex contact structure (Alekseevsky-Marchiafava, 2004).
Twistor space \mathcal{Z} of $G_2(C^{n+1})$ is naturally identified with the space $L(CP^n)$ of oriented geodesics in CP^n.
Twistor space \mathcal{Z} of $G_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n.

Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1. Then E is S^1-bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ and each fiber is identified with oriented geodesic in \mathbb{CP}^n.
Twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{C}P^n)$ of oriented geodesics in $\mathbb{C}P^n$.

Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1. Then E is S^1-bundle over $\mathcal{Z} \cong L(\mathbb{C}P^n)$ and each fiber is identified with oriented geodesic in $\mathbb{C}P^n$.

With respect to the following diagram:
Twistor space \mathcal{Z} of $G_2(\mathbb{C}^{n+1})$ is naturally identified with the space $L(\mathbb{CP}^n)$ of oriented geodesics in \mathbb{CP}^n.

Let E be the quotient space of complex Steifel manifold $V_2(\mathbb{C}^{n+1})$ under diagonal action of S^1. Then E is S^1-bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ and each fiber is identified with oriented geodesic in \mathbb{CP}^n.

With respect to the following diagram:

\[\tilde{I}^* E \xrightarrow{\eta} E \xrightarrow{\psi} \mathbb{CP}^n \]

\[\downarrow \quad \downarrow \]

\[\Sigma^{n-1} \xrightarrow{\tilde{I}} \mathcal{Z} \cong L(\mathbb{CP}^n) \]
The map $\Phi := \psi \circ \eta : \tilde{I}^*E \to \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and
The map $\Phi := \psi \circ \eta : \tilde{I}^*E \rightarrow \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and

its parallel hypersurface $\phi_r(\tilde{I}^*E)$ gives Hopf hypersurface with $A\xi = 2 \tan 2r\xi$ (on open subset of regular points of $M = \tilde{I}^*E$).
Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $\mathbb{G}_2(\mathbb{C}^{n+1})$.
Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $G_2(\mathbb{C}^{n+1})$.

For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n, we define Gauss map $\gamma : M \to G_{1,1}(\mathbb{C}_{1}^{n+1})$, and
Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $\mathbb{G}_2(\mathbb{C}^{n+1})$.

For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n, we define Gauss map $\gamma : M \rightarrow \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and we obtain similar results for Hopf hypersurfaces in \mathbb{CH}^n by using para-quaternionic Kähler structure (J.T. Cho and M.K., Topol. Appl. 2015).
\[\tilde{\mathbb{H}} = C(2, 0) = C(1, 1), \]
Split-quaternions (or coquaternions, para-quaternions):

\[q = q_0 + iq_1 + jq_2 + kq_3, \quad i^2 = -1, \quad j^2 = k^2 = 1, \]
\[ij = -ji = -k, \quad jk = -kj = i, \quad ki = -ik = -j, \]
\[|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2, \quad \exists \text{ zero divisors}, \]
\[\mathbf{H} = C(2, 0) = C(1, 1), \text{ Split-quaternions (or coquaternions, para-quaternions)}: \]

\[q = q_0 + iq_1 + jq_2 + kq_3, \quad i^2 = -1, \quad j^2 = k^2 = 1, \]

\[ij = -ji = -k, \quad jk = -kj = i, \quad ki = -ik = -j, \]

\[|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2, \quad \exists \text{ zero divisors}, \]

\[\text{http://en.wikipedia.org/wiki/Split-quaternion} \]
\[\tilde{\mathbb{H}} = C(2, 0) = C(1, 1), \] Split-quaternions (or coquaternions, para-quaternions):

\[q = q_0 + iq_1 + jq_2 + kq_3, \quad i^2 = -1, \quad j^2 = k^2 = 1, \]

\[ij = -ji = -k, \quad jk = -kj = i, \quad ki = -ik = -j, \]

\[|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2, \quad \exists \text{ zero divisors}, \]

Introduced by James Cockle in 1849.
Para-quaternionic structure

\[\{I_1, I_2, I_3\}, \quad I_1^2 = -1, \quad I_2^2 = I_3^2 = 1, \]
\[I_1I_2 = -I_2I_1 = -I_3, \quad I_2I_3 = -I_3I_2 = I_1, \]
\[I_3I_1 = -I_1I_3 = -I_2 \] gives para-quaternionic structure,
{I_1, I_2, I_3}, \ I_1^2 = -1, \ I_2^2 = I_3^2 = 1, \\
I_1 I_2 = -I_2 I_1 = -I_3, \ I_2 I_3 = -I_3 I_2 = I_1, \\
I_3 I_1 = -I_1 I_3 = -I_2 \text{ gives \ para-quaternionic \ structure},

\tilde{V} = \{aI_1 + bI_2 + cI_3 | \ a, b, c \in \mathbb{R} \} \cong \mathfrak{su}(1, 1) \cong \mathbb{R}^3_1,

and

Gauss map of real hypersurfaces
Para-quaternionic structure

\[\{I_1, I_2, I_3\}, \quad I_1^2 = -1, \quad I_2^2 = I_3^2 = 1, \]
\[I_1I_2 = -I_2I_1 = -I_3, \quad I_2I_3 = -I_3I_2 = I_1, \]
\[I_3I_1 = -I_1I_3 = -I_2 \]
gives para-quaternionic structure,

\[\tilde{V} = \{aI_1 + bI_2 + cI_3\mid a, b, c \in \mathbb{R}\} \cong \mathfrak{su}(1, 1) \cong \mathbb{R}^3, \]
and

\[Q_+ = \{I \in \tilde{V}\mid I^2 = 1\} \cong S^2_1: \text{ de-Sitter space}, \]
\[Q_- = \{I \in \tilde{V}\mid I^2 = -1\} \cong H^2: \text{ hyperbolic space}, \]
\[Q_0 = \{I \in \tilde{V}\mid I^2 = 0, \ I \neq 0\} \cong \text{lightcone}. \]
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $g : M \rightarrow \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map.
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $\mathcal{G} : M \to G_1,1(\mathbb{C}_{1}^{n+1})$ be the Gauss map.
Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \leq |\mu| < 2$).
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $g : M \rightarrow G_{1,1}(\mathbb{C}^{n+1})$ be the Gauss map. Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \leq |\mu| < 2$). Then $g(M)$ is a real $(2n - 2)$-dimensional submanifold of $G_{1,1}(\mathbb{C}^{n+1})$, and
There exist sections \tilde{I}_1, \tilde{I}_2 and \tilde{I}_3 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
Theorem 2

There exist sections \tilde{I}_1, \tilde{I}_2 and \tilde{I}_3 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that they are orthonormal with respect to natural inner product on $\tilde{Q}_{g(p)}$ for $p \in \Sigma$ satisfying:

- $(\tilde{I}_1)^2 = -1$ (resp. $(\tilde{I}_1)^2 = 1$),
- $(\tilde{I}_2)^2 = 1$ (resp. $(\tilde{I}_2)^2 = -1$),
- $(\tilde{I}_3)^2 = 1$,

such that $dg_x(TxM)$ is invariant under \tilde{I}_1 and \tilde{I}_2, \tilde{I}_3 $dg_x(TxM)$ are orthogonal to $dg_x(TxM)$.
Theorem 2

There exist sections \tilde{I}_1, \tilde{I}_2 and \tilde{I}_3 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that they are orthonormal with respect to natural inner product on $\tilde{Q}_{g(p)}$ for $p \in \Sigma$ satisfying

\[(\tilde{I}_1)^2 = -1 \quad (\text{resp.} (\tilde{I}_1)^2 = 1), \]
\[(\tilde{I}_2)^2 = 1 \quad (\text{resp.} (\tilde{I}_2)^2 = -1) \quad \text{and} \quad (\tilde{I}_3)^2 = 1, \]
Theorem 2

There exist sections \tilde{I}_1, \tilde{I}_2 and \tilde{I}_3 of the bundle $\tilde{Q}_{|g(M)}$ of the para-quaternionic Kähler structure such that

- they are orthonormal with respect to natural inner product on $\tilde{Q}_g(p)$ for $p \in \Sigma$ satisfying

\[(\tilde{I}_1)^2 = -1 \quad \text{(resp.} (\tilde{I}_1)^2 = 1)\),

\[(\tilde{I}_2)^2 = 1 \quad \text{(resp.} (\tilde{I}_2)^2 = -1)\] and \[(\tilde{I}_3)^2 = 1,\]

such that $dg_x(T_xM)$ is invariant under \tilde{I}_1 and $\tilde{I}_2 dg_x(T_xM)$, $\tilde{I}_3 dg_x(T_xM)$ are orthogonal to $dg_x(T_xM)$.

Makoto Kimura (Ibaraki University, Japan) Gauss map of real hypersurfaces
The induced metric on \(g(M) \) in \(G_{1,1}(\mathbb{C}_1^{n+1}) \) has signature \((p, q)\), where

- When \(|\mu| > 2\), \(p\) and \(q\) are both even.
- When \(0 \leq |\mu| < 2\), we have \(p = q\).
The induced metric on $g(M)$ in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p, q), where

$$p = \sum_{|\lambda|>1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \},$$

$$q = \sum_{|\lambda|<1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \}.$$
Theorem 2

The induced metric on $g(M)$ in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p, q), where

$$p = \sum_{|\lambda|>1} \dim \{ X | AX = \lambda X, \ X \perp \xi \},$$

$$q = \sum_{|\lambda|<1} \dim \{ X | AX = \lambda X, \ X \perp \xi \}.$$

When $|\mu| > 2$, p and q are both even.
Theorem 2

The induced metric on $g(M)$ in \mathbb{C}^{n+1} has signature (p, q), where

\[
p = \sum_{|\lambda| > 1} \dim \{X \mid AX = \lambda X, \ X \perp \xi\},
\]

\[
q = \sum_{|\lambda| < 1} \dim \{X \mid AX = \lambda X, \ X \perp \xi\}.
\]

- When $|\mu| > 2$, p and q are both even.
- When $0 \leq |\mu| < 2$, we have $p = q$.
Furthermore if $p + q = 2n - 2$, the induced metric of $g(M)$ is non-degenerate and $g(M)$ is a pseudo-Kähler (resp. para-Kähler) submanifold of $G_{1}(C_{n}+1)$.
Furthermore if $p + q = 2n - 2$,
then the induced metric of $g(M)$ is non-degenerate and
Furthermore if \(p + q = 2n - 2 \),
then the induced metric of \(g(M) \) is non-degenerate and
\(g(M) \) is a pseudo-Kähler (resp. para-Kähler) submanifold of \(G_{1,1}(\mathbb{C}^{n+1}) \).
Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $g : M \rightarrow G_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map.
Theorem 2

Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $g : M \rightarrow \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map. Suppose M is a Hopf hypersurface with $|\mu| = 2$.
Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and let $g : M \to \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map. Suppose M is a Hopf hypersurface with $|\mu| = 2$. Then $g(M)$ is a real $(2n - 2)$-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and
There exist sections \tilde{I}_1 and \tilde{I}_2 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that they are orthonormal with respect to natural inner product on \tilde{Q}_x for $p \in M$ satisfying $(\tilde{I}_1)^2 = 1$, $(\tilde{I}_2)^2 = 0$, such that $\tilde{I}_1 \, dg_x(T_xM), \tilde{I}_2 \, dg_x(T_xM)$ are orthogonal to $dg_x(T_xM)$.
Theorem 2

There exist sections \tilde{I}_1 and \tilde{I}_2 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- they are orthonormal with respect to natural inner product on $\tilde{Q}_g(p)$ for $p \in \Sigma$ satisfying
Theorem 2

There exist sections \tilde{I}_1 and \tilde{I}_2 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- they are orthonormal with respect to natural inner product on $\tilde{Q}_{g(p)}$ for $p \in \Sigma$ satisfying

\[
(\tilde{I}_1)^2 = 1, \quad (\tilde{I}_2)^2 = 0
\]
Theorem 2

There exist sections \tilde{I}_1 and \tilde{I}_2 of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- they are orthonormal with respect to natural inner product on $\tilde{Q}_{g(p)}$ for $p \in \Sigma$ satisfying

\[(\tilde{I}_1)^2 = 1, \quad (\tilde{I}_2)^2 = 0\]

- such that $\tilde{I}_1 dg_x(T_x M), \tilde{I}_2 dg_x(T_x M)$ are orthogonal to $dg_x(T_x M)$.

Makoto Kimura (Ibaraki University, Japan) Gauss map of real hypersurfaces
The induced metric on $g(M)$ in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p, q), where

$$p = \sum |\lambda| > 1 \dim \{ X | AX = \lambda X, X \perp \xi \},$$

$$q = \sum |\lambda| < 1 \dim \{ X | AX = \lambda X, X \perp \xi \},$$

and satisfies $p + q \leq n - 1$.

Makoto Kimura (Ibaraki University, Japan)

Gauss map of real hypersurfaces
The induced metric on $g(M)$ in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p, q), where

$$p = \sum_{|\lambda| > 1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \},$$

$$q = \sum_{|\lambda| < 1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \},$$

and

$$p + q \leq n - 1.$$
The induced metric on $g(M)$ in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p, q), where

$$p = \sum_{|\lambda| > 1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \},$$

$$q = \sum_{|\lambda| < 1} \dim \{ X \mid AX = \lambda X, \ X \perp \xi \},$$

and satisfies $p + q \leq n - 1$.