Surfaces from Deformation Parameters XVIIth International Conference Geometry, Integrability and Quantization Varna, Bulgaria

Süleyman Tek University of the Incarnate Word, San Antonio, TX, USA

Metin Gürses Bilkent University, Ankara, Turkey

June 5-10, 2015

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10 -201

Surface theory in \mathbb{R}^3 plays a crucial role in differential geometry, partial differential equations (PDEs), string theory, general theory of relativity, and biology [Parthasarthy and Viswanathan, 2001] - [Ou-Yang et. al., 1999].

Soliton equations play a crucial role for the construction of surfaces.

The theory of nonlinear soliton equations was developed in 1960s.

For details of integrable equations one may look [Drazin, 1989], [Ablowitz and Segur, 1991], and the references therein.

Lax representation of nonlinear PDEs consists of two linear equations which are called Lax equations

$$\Phi_x = U \Phi, \quad \Phi_t = V \Phi, \tag{1}$$

and their compatibility condition

$$U_t - V_x + [U, V] = 0, (2)$$

where x and t are independent variables. Here U and V are called Lax pairs.

Introduction

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10, 201

・ロト ・四ト ・ヨト ・ヨト

4 / 49

- 12

Using this relation, soliton surface theory was first developed by Sym [Sym, 1982]-[Sym, 1985]. He obtained the immersion function by using the deformation of Lax equations for integrable equations.

Using this relation, soliton surface theory was first developed by Sym [Sym, 1982]-[Sym, 1985]. He obtained the immersion function by using the deformation of Lax equations for integrable equations.

Fokas and Gel'fand [Fokas and Gelfand, 1996] generalized Sym's result and find more general immersion function.

Using this relation, soliton surface theory was first developed by Sym [Sym, 1982]-[Sym, 1985]. He obtained the immersion function by using the deformation of Lax equations for integrable equations.

Fokas and Gel'fand [Fokas and Gelfand, 1996] generalized Sym's result and find more general immersion function.

Soliton surface technique is an effective method to develop surfaces in \mathbb{R}^3 and in M_3 .

In this method, one mainly uses the deformations of the Lax equations of the integrable equations [Sym, 1982]-[Gürses and Tek, 2014],

- Sine Gordon (SG) equation
- Korteweg de Vries (KdV) equation
- Modified Korteweg de Vries (mKdV) equation
- Nonlinear Schrödinger (NLS) equation

There are many attempts to find new examples of two surfaces.

Lax equation

$$\Phi_x = U \Phi \quad , \quad \Phi_t = V \Phi.$$

(3

Lax equation

$$\Phi_x = U \Phi \quad , \quad \Phi_t = V \Phi.$$

Compatibility condition

$$U_t - V_x + [U, V] = 0, (4)$$

(3

Lax equation

$$\Phi_x = U \Phi \quad , \quad \Phi_t = V \Phi.$$

Compatibility condition

$$U_t - V_x + [U, V] = 0,$$

Deformation matrices A and B

Let $\delta U = A$, $\delta V = B$, where A and B satisfy

$$A_t - B_x + [A, V] + [U, B] = 0.$$
 (5)

(3

(4)

Lax equation

$$\Phi_x = U \Phi \quad , \quad \Phi_t = V \Phi.$$

Compatibility condition

$$U_t - V_x + [U, V] = 0,$$

Deformation matrices A and B

Let $\delta U = A$, $\delta V = B$, where A and B satisfy

$$A_t - B_x + [A, V] + [U, B] = 0.$$
 (5)

Soliton Surface: Let \langle, \rangle defines an inner product in \mathfrak{g} .

S.Tek and M.Gürses

Surfaces from Defor. Parameters

<ロ> (四) (四) (三) (三) (三)

2

First fundamental form

$$(ds_I)^2 \equiv g_{ij} \, dx^i \, dx^j = \langle A, A \rangle \, dx^2 + 2 \langle A, B \rangle \, dx \, dt + \langle B, B \rangle \, dt^2,$$

First fundamental form

$$(ds_I)^2 \equiv g_{ij} \, dx^i \, dx^j = \langle A, A \rangle \, dx^2 + 2 \langle A, B \rangle \, dx \, dt + \langle B, B \rangle \, dt^2,$$

Second fundamental form

$$(ds_{II})^2 \equiv h_{ij} dx^i dx^j = \langle A_x + [A, U], C \rangle dx^2 + 2\langle A_t + [A, V], C \rangle dx dt + \langle B_t + [B, V], C \rangle dt^2,$$
$$[A, B] = AB - BA, \ ||A|| = \sqrt{|\langle A, A \rangle|}, \ \text{and} \ C = \frac{[A, B]}{||[A, B]||}.$$

S.Tek and M.Gürses

First fundamental form

$$(ds_I)^2 \equiv g_{ij} \, dx^i \, dx^j = \langle A, A \rangle \, dx^2 + 2 \langle A, B \rangle \, dx \, dt + \langle B, B \rangle \, dt^2,$$

Second fundamental form

$$(ds_{II})^2 \equiv h_{ij} \, dx^i \, dx^j = \langle A_x + [A, U], C \rangle \, dx^2 + 2 \langle A_t + [A, V], C \rangle \, dx \, dt + \langle B_t + [B, V], C \rangle \, dt^2,$$

$$[A, B] = AB - BA, \ ||A|| = \sqrt{|\langle A, A \rangle|}, \ \text{and} \ C = \frac{[A, B]}{||[A, B]||}.$$

Gaussian and mean curvatures

$$K = \det(g^{-1}h)$$
, $H = \frac{1}{2}\operatorname{trace}(g^{-1}h)$, $g = (g_{ij})$, $h = (h_{ij})$.

S.Tek and M.Gürses

Surfaces from Defor. Parameters

/ 49

Since our aim is finding a class of surfaces which correspond to integrable equations, we need to find A and B that satisfy the following equation

$$A_t - B_x + [A, V] + [U, B] = 0.$$
(6)

Since our aim is finding a class of surfaces which correspond to integrable equations, we need to find A and B that satisfy the following equation

$$A_t - B_x + [A, V] + [U, B] = 0.$$
 (6)

But in general, solving that equation is not simple. However there are some deformations which provide A and B directly.

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10, 2015

<ロ> (四) (四) (三) (三) (三)

9 / 49

æ

Spectral parameter λ invariance of the equation

$$A = \mu_1 \frac{\partial U}{\partial \lambda}, \ B = \mu_1 \frac{\partial V}{\partial \lambda}, \ F = \mu_1 \Phi^{-1} \frac{\partial \Phi}{\partial \lambda}, \tag{7}$$

That kind of deformation was first used by Sym [Sym, 1982]-[Sym, 1985].

Spectral parameter λ invariance of the equation

$$A = \mu_1 \frac{\partial U}{\partial \lambda}, \ B = \mu_1 \frac{\partial V}{\partial \lambda}, \ F = \mu_1 \Phi^{-1} \frac{\partial \Phi}{\partial \lambda}, \tag{7}$$

That kind of deformation was first used by Sym [Sym, 1982]-[Sym, 1985].

Gauge symmetries of the Lax equation

$$A = M_x + [M, U], \ B = M_t + [M, V], \ F = \Phi^{-1}M\Phi,$$
(8)

where M is any traceless 2×2 matrix. [Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10, 20

・ロト ・個ト ・ヨト ・ヨト

Symmetries of the (integrable) differential equations

$$A = \delta U, \ B = \delta V, \ F = \Phi^{-1} \delta \Phi, \tag{9}$$

where δ represents the classical Lie symmetries and (if integrable) the generalized symmetries of the nonlinear PDE's [Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Symmetries of the (integrable) differential equations

$$A = \delta U, \ B = \delta V, \ F = \Phi^{-1} \delta \Phi, \tag{9}$$

where δ represents the classical Lie symmetries and (if integrable) the generalized symmetries of the nonlinear PDE's [Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Deformation of parameters of solution of integrable equation

$$A = \mu_2 \left(\frac{\partial U}{\partial k_i} \right), \ B = \mu_2 \left(\frac{\partial V}{\partial k_i} \right), \ F = \mu_2 \Phi^{-1} \left(\frac{\partial \Phi}{\partial k_i} \right), \quad (10)$$

where i = 1, 2 and k_i are parameters of the solution $u(x, t, k_1, k_2)$ of the PDEs, μ_2 is constant. [Gürses and Tek, 2015]

In this section, we obtain the immersions of 2-surfaces in \mathbb{R}^3 .

For this purpose, we use Lie group SU(2) and its Lie algebra $\mathfrak{su}(2)$ with basis $e_j = -i \sigma_j$, j = 1, 2, 3, where σ_j denote the usual Pauli sigma matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(11)

In this section, we obtain the immersions of 2-surfaces in \mathbb{R}^3 .

For this purpose, we use Lie group SU(2) and its Lie algebra $\mathfrak{su}(2)$ with basis $e_j = -i \sigma_j$, j = 1, 2, 3, where σ_j denote the usual Pauli sigma matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(11)

Define an inner product on $\mathfrak{su}(2)$ as

$$\langle X, Y \rangle = -\frac{1}{2} \operatorname{trace}(XY),$$
 (12)

where $X, Y \in \mathfrak{su}(2)$ valued vectors.

In [Tek, 2007], we considered spectral parameter deformation and combination of spectral and Gauge deformations of mKdV equation.

In [Tek, 2007], we considered spectral parameter deformation and combination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising from deformations of parameters of the it's soliton solution. Let u(x, t) satisfy the mKdV equation

$$u_t = u_{xxx} + \frac{3}{2}u^2 u_x.$$
 (13)

In [Tek, 2007], we considered spectral parameter deformation and combination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising from deformations of parameters of the it's soliton solution. Let u(x,t) satisfy the mKdV equation

$$u_t = u_{xxx} + \frac{3}{2}u^2 u_x.$$
 (13)

Substituting the travelling wave ansatz $u_t - \alpha u_x = 0$ in Eq. (13), we get

$$u_{xx} = \alpha u - \frac{u^3}{2}.\tag{14}$$

Lax pairs U and V are given as

$$U = \frac{i}{2} \begin{pmatrix} \lambda & -u \\ -u & -\lambda \end{pmatrix}, \tag{15}$$

$$V = -\frac{i}{2} \begin{pmatrix} \frac{1}{2}u^2 - (\alpha + \alpha\lambda + \lambda^2) & (\alpha + \lambda)u - iu_x \\ (\alpha + \lambda)u + iu_x & -\frac{1}{2}u^2 + (\alpha + \alpha\lambda + \lambda^2) \end{pmatrix}, (16)$$

and λ is a spectral parameter.

Lax pairs U and V are given as

$$U = \frac{i}{2} \begin{pmatrix} \lambda & -u \\ -u & -\lambda \end{pmatrix}, \tag{15}$$

$$V = -\frac{i}{2} \begin{pmatrix} \frac{1}{2}u^2 - (\alpha + \alpha\lambda + \lambda^2) & (\alpha + \lambda)u - iu_x \\ (\alpha + \lambda)u + iu_x & -\frac{1}{2}u^2 + (\alpha + \alpha\lambda + \lambda^2) \end{pmatrix}, (16)$$

and λ is a spectral parameter.

Consider the one soliton solution of mKdV equation [Eq. (14)] as

$$u = k_1 \operatorname{sech} \xi_1, \tag{17}$$

where $\alpha = k_1^2/4$, $\xi_1 = k_1(k_1^2t + 4x)/8 + k_0$, and k_0 and k_1 are arbitrary constants.

First we consider mKdV surfaces arising from deformation of parameter k_0 .

Proposition

Let u be a travelling wave solution of mKdV equation given by Eq. (17). The corresponding $\mathfrak{su}(2)$ valued Lax pairs U and V of the mKdV equation are given by Eqs. (15) and (16), respectively. $\mathfrak{su}(2)$ valued matrices A and B are

First we consider mKdV surfaces arising from deformation of parameter k_0 .

Proposition

Let u be a travelling wave solution of mKdV equation given by Eq. (17). The corresponding $\mathfrak{su}(2)$ valued Lax pairs U and V of the mKdV equation are given by Eqs. (15) and (16), respectively. $\mathfrak{su}(2)$ valued matrices A and B are

$$A = -\frac{i\mu}{2} \begin{pmatrix} 0 & \phi_0 \\ \phi_0 & 0 \end{pmatrix},$$

$$B = -\frac{i\mu}{2} \begin{pmatrix} u \phi_0 & (k_1^2/4 + \lambda)\phi_0 - i(\phi_0)_x \\ (k_1^2/4 + \lambda)\phi_0 + i(\phi_0)_x & -u \phi_0 \end{pmatrix} (19)$$

where $A = \mu (\partial U / \partial k_0)$, $B = \mu (\partial V / \partial k_0)$, $\phi_0 = \partial u / \partial k_0$; k_0 is a parameter of the one solution u, and μ is a constant.

Proposition

Then the surface S, generated by U, V, A and B, has the following first and second fundamental forms (j, k = 1, 2)

$$(ds_I)^2 \equiv g_{jk} \, dx^j \, dx^k, \tag{20}$$

$$(ds_{II})^2 \equiv h_{jk} \, dx^j \, dx^k, \tag{21}$$

where

$$g_{11} = \frac{1}{4}\mu^2 \phi_0^2, \ g_{12} = g_{21} = \frac{1}{16}\mu^2 \phi_0^2 (k_1^2 + 4\lambda),$$
 (22)

$$g_{22} = \frac{1}{64} \mu^2 \Big(16 \left(\phi_0\right)_x^2 + \phi_0^2 \left[16 \, u^2 + (k_1^2 + 4\lambda)^2 \right] \Big), \tag{23}$$

$$h_{11} = -16\,\Delta_1\,\lambda\,u\,\phi_0^2,\tag{24}$$

$$h_{12} = 4\Delta_1 \phi_0 \Big(4 \, (\phi_0)_x \, u_x + u \, \phi_0 \, \big[2 \, u^2 - k_1^2 (\lambda + 1) - 4 \, \lambda^2 \big] \, \Big), \, (25)$$

5 / 49
$$h_{22} = -\Delta_1 \left(u \,\phi_0^2 \,(k_1^2 + 4\lambda) \left[2u^2 + 4\lambda^2 + k_1^2 (\lambda + 1) \right]$$
(26)
+ $4\phi_0 \left[4u(\phi_0)_{xt} - (\phi_0)_x \left([k_1^2 + 4\lambda] u_x + 4u_t \right) \right]$ (27)
+ $4u(\phi_0)_x \left[(\phi_0)_x (k_1^2 + 4\lambda) - 4(\phi_0)_t \right] \right)$
$$\Delta_1 = \frac{\mu}{32 \left((\phi_0)_x^2 + u^2 \phi_0^2 \right)^{1/2}}$$
(28)

and the corresponding Gaussian and mean curvatures are

< ∃ >

3

$$h_{22} = -\Delta_1 \left(u \, \phi_0^2 \, (k_1^2 + 4\lambda) \left[2u^2 + 4\lambda^2 + k_1^2 (\lambda + 1) \right]$$
(26)
+ $4\phi_0 \left[4u(\phi_0)_{xt} - (\phi_0)_x \left([k_1^2 + 4\lambda] u_x + 4u_t \right) \right]$ (27)
+ $4u(\phi_0)_x \left[(\phi_0)_x (k_1^2 + 4\lambda) - 4(\phi_0)_t \right] \right)$
$$\Delta_1 = \frac{\mu}{32 \left((\phi_0)_x^2 + u^2 \phi_0^2 \right)^{1/2}}$$
(28)

and the corresponding Gaussian and mean curvatures are

$$K = \frac{16\lambda^2}{k_1^2\mu^2}, \quad H = -\frac{4\lambda}{k_1\mu},$$
 (29)

where $x^1 = x$, $x^2 = t$. S. Tek and M. Gürses Surfaces from Defor. Parameters June 5-10, 2015 16 / 49 Another parameter of the one soliton solution of mKdV equation is k_1 . Now we give mKdV surfaces arising from k_1 parameter deformation.

Proposition

Let u be the soliton solution of mKdV equation and the Lax pairs U and V are given by Eqs. (15) and (16), respectively. $\mathfrak{su}(2)$ valued matrices A and B are

$$A = -\frac{i\mu}{2} \begin{pmatrix} 0 & \phi_1 \\ \phi_1 & 0 \end{pmatrix},$$

$$B = -\frac{i\mu}{8} \begin{pmatrix} 4u\phi_1 - 2k_1(\lambda+1) & \tau - 4i(\phi_1)_x \\ \tau + 4i(\phi_1)_x & -4u\phi_1 + 2k_1(\lambda+1) \end{pmatrix},$$
(30)

where $A = \mu (\partial U / \partial k_1)$, $B = \mu (\partial V / \partial k_1)$, $\tau = 2k_1u + (k_1^2 + 4\lambda)\phi_1$ and $\phi_1 = \partial u / \partial k_1$; k_1 is a parameter of the one soliton solution u, and μ is a constant.

Then the surface S, generated by U, V, A and B, has the following first and second fundamental forms (j, k = 1, 2)

$$(ds_I)^2 \equiv g_{jk} \, dx^j \, dx^k, \tag{32}$$

$$(ds_{II})^2 \equiv h_{jk} \, dx^j \, dx^k, \tag{33}$$

where

$$g_{11} = \frac{1}{4}\mu^2 \phi_1^2, \ g_{12} = g_{21} = \frac{1}{16}\mu^2 \phi_1 \left(2\,k_1\,u + \phi_1 [k_1^2 + 4\,\lambda] \right), \ (34)$$

$$g_{22} = \frac{1}{64}\mu^2 \left(4\left[k_1^2 + 4\,\phi_1^2\right] u^2 + 4\,k_1\,(k_1^2 - 4)u\,\phi_1 + 16(\phi_1)_x^2 \quad (35) + (k_1^2 + 4\,\lambda)^2 \phi_1^2 + 4\,k_1^2(\lambda + 1)^2 \right), \ (36)$$

$$h_{11} = \frac{1}{16}\Delta_2\,\mu^3\,\lambda\,\phi_1^2 \left(k_1[\lambda + 1] - 2\,u\,\phi_1 \right), \ (37)$$

$$h_{12} = h_{21} = \frac{1}{64} \Delta_2 \,\mu^3 \phi_1^2 \Big(8 \,(\phi_1)_x u_x \\ + \Big[k_1 (\lambda + 1) - 2u \phi_1 \Big] \Big[2(2\lambda^2 - u^2) + k_1^2 (\lambda + 1) \Big] \Big), \quad (38)$$

$$h_{22} = \frac{1}{256} \Delta_2 \,\mu^3 \,\phi_1 \Big(8 \,(\phi_1)_x \Big\{ 2 \,k_1 \,u \,u_x + (k_1^2 + 4 \,\lambda) \Big[\phi_1 \,u_x - u(\phi_1)_x \Big] \\ + 4(u\phi_1)_t \Big\} + \Big[k_1 (\lambda + 1) - 2 \,u \,\phi_1 \Big] \Big\{ 16 \,(\phi_1)_{xt} - 4 \,k_1 \,u(u^2 + 2 \,\lambda) \\ + \phi_1 (k_1^2 + 4 \,\lambda) \Big(2[u^2 + 2 \,\lambda^2] + k_1^2 [\lambda + 1] \Big) \Big\} \Big). \quad (39)$$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

ne 5-10, 2015 19

2

The Gaussian and mean curvatures are

$$K = \frac{1}{\mu^2 \eta_0 \left(4 \eta_4^2 + \eta_3^2\right)^2} \sum_{l=1}^7 Q_l \left(\operatorname{sech} \xi_1\right)^l,$$
(40)
$$H = \frac{1}{4 \mu \eta_0 \left(4 \eta_4^2 + \eta_3^2\right)^{3/2}} \sum_{m=0}^7 Z_m \left(\operatorname{sech} \xi_1\right)^m,$$
(41)

where $\eta_0, \ldots, \eta_4, Q_1, \ldots, Q_7, Z_1, \ldots, Z_6$ are functions of x and t.

S.Tek and M.Gürses

In this section, we explore the position vector

$$\overrightarrow{y} = (y_1(x,t), y_2(x,t), y_3(x,t)), \qquad (42)$$

of the mKdV surfaces that we obtain using deformation of parameters.

In this section, we explore the position vector

$$\overrightarrow{y} = (y_1(x,t), y_2(x,t), y_3(x,t)), \qquad (42)$$

of the mKdV surfaces that we obtain using deformation of parameters. Consider the one soliton solution of mKdV equation

$$u = k_1 \operatorname{sech} \xi_1, \tag{43}$$

where $\alpha = k_1^2/4$, $\xi_1 = k_1(k_1^2t + 4x)/8 + k_0$, and k_0 and k_1 are arbitrary constants.

In this section, we explore the position vector

$$\overrightarrow{y} = (y_1(x,t), y_2(x,t), y_3(x,t)), \qquad (42)$$

of the mKdV surfaces that we obtain using deformation of parameters. Consider the one soliton solution of mKdV equation

$$u = k_1 \operatorname{sech} \xi_1, \tag{43}$$

where $\alpha = k_1^2/4$, $\xi_1 = k_1(k_1^2t + 4x)/8 + k_0$, and k_0 and k_1 are arbitrary constants.

We solve the Lax equations $\Phi_x = U \Phi$ and $\Phi_t = V \Phi$ using Lax pairs U and V, and a solution of the mKdV equation.

The components of the 2×2 matrix Φ are

$$\Phi_{11} = -\frac{\Delta_4}{k_1} \Big[A_1(2\lambda i - k_1 \tanh \xi_1) \cdot \exp\left(i(k_1^2 + 4\lambda^2)t/8\right) \cdot \Xi_1 -ik_1^2 B_1 \operatorname{sech} \xi_1 \cdot \exp\left(-i(k_1^2 + 4\lambda^2)t/8\right) \cdot \Xi_2 \Big],$$
(44)

$$\Phi_{12} = -\frac{\Delta_4}{k_1} \Big[A_2 (2\lambda i - k_1 \tanh \xi_1) \cdot \exp\left(i(k_1^2 + 4\lambda^2)t/8\right) \cdot \Xi_1 -i k_1^2 B_2 \operatorname{sech} \xi_1 \cdot \exp\left(-i(k_1^2 + 4\lambda^2)t/8\right) \cdot \Xi_2 \Big],$$
(45)

$$\Phi_{21} = \Delta_4 \Big[i A_1 \operatorname{sech} \xi_1 \cdot \exp(i(k_1^2 + 4\lambda^2)t/8) \cdot \Xi_1 \\ + B_1(2\lambda i + k_1 \tanh \xi_1) \cdot \exp(-i(k_1^2 + 4\lambda^2)t/8) \cdot \Xi_2 \Big], (46)$$

$$\Phi_{22} = \Delta_4 \Big[i A_2 \operatorname{sech} \xi_1 \cdot \exp(i(k_1^2 + 4\lambda^2)t/8) \cdot \Xi_1 \\ + B_2(2\lambda i + k_1 \tanh \xi_1) \cdot \exp(-i(k_1^2 + 4\lambda^2)t/8) \cdot \Xi_2 \Big], (47)$$

where

$$\Xi_{1} = (\tanh \xi_{1} + 1)^{i\lambda/2k_{1}} (\tanh \xi_{1} - 1)^{-i\lambda/2k_{1}}, \qquad (48)$$

$$\Xi_{-} = (\tanh \xi_{-} - 1)^{i\lambda/2k_{1}} (\tanh \xi_{-} - 1)^{-i\lambda/2k_{1}}, \qquad (49)$$

$$\Xi_2 = (\tanh \xi_1 - 1)^{i\lambda/2\kappa_1} (\tanh \xi_1 + 1)^{-i\lambda/2\kappa_1}, \tag{49}$$

$$\Delta_4 = \sqrt{k_1 / (k_1^2 + 4\lambda^2)}.$$
(50)

イロト イヨト イヨト

ъ.

where

$$\Xi_{1} = (\tanh \xi_{1} + 1)^{i\lambda/2k_{1}} (\tanh \xi_{1} - 1)^{-i\lambda/2k_{1}}, \qquad (48)$$

$$\Xi_{-} = (\tanh \xi_{-} + 1)^{i\lambda/2k_{1}} (\tanh \xi_{-} + 1)^{-i\lambda/2k_{1}}, \qquad (49)$$

$$\Xi_2 = (\tanh \xi_1 - 1)^{i\lambda/2k_1} (\tanh \xi_1 + 1)^{-i\lambda/2k_1}, \tag{49}$$

$$\Delta_4 = \sqrt{k_1 / (k_1^2 + 4\lambda^2)}.$$
 (50)

Here we find the determinant of the matrix Φ as

$$\det(\Phi) = (A_1 B_2 - A_2 B_1) \neq 0.$$
(51)

Immersion function of the mKdV surface obtained using k_0 deformation

We find the immersion function F of the mKdV surface obtained using k_0 deformation by using the following equation

$$F = \nu \Phi^{-1} \frac{\partial \Phi}{\partial k_0} + \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix},$$
(52)

from which we obtain the position vector.

Immersion function of the mKdV surface obtained using k_0 deformation

We find the immersion function F of the mKdV surface obtained using k_0 deformation by using the following equation

$$F = \nu \Phi^{-1} \frac{\partial \Phi}{\partial k_0} + \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix},$$
(52)

from which we obtain the position vector.

Using Φ given in the previous slides and choosing $A_1 = -k_1 B_2 \exp(-\lambda \pi/k_1), A_2 = k_1 B_1 \exp(-\lambda \pi/k_1), r_{11} = r_{22} = 0,$ $r_{12} = -r_{21}$ to write F in the form $F = -i(\sigma_1 y_1 + \sigma_2 y_2 + \sigma_3 y_3).$

 < □>
 < □>
 < □>
 □

 June 5-10
 2015

Hence we obtain a family of surfaces parameterized by

$$y_{1} = W_{6} \cdot \operatorname{sech}^{2}(\xi_{1}) \Big[W_{3} \cdot \cosh(\xi_{1}) \cos(\Omega_{1}) \\ + W_{4} \cdot \sinh(\xi_{1}) \sin(\Omega_{1}) + 4\lambda W_{8} \big(2W_{1} \cosh(2\xi_{1}) + W_{7} \big) \Big] (53)$$

$$y_{2} = \frac{1}{W_{5}} \operatorname{sech}^{2}(\xi_{1}) \Big[W_{10} \cdot \sinh(\xi_{1}) \cos(\Omega_{1}) \\ - W_{11} \cdot \cosh(\xi_{1}) \sin(\Omega_{1}) + W_{9} \cdot \cosh^{2}(\xi_{1}) \Big], \qquad (54)$$

$$y_{3} = W_{6} \cdot \operatorname{sech}^{2}(\xi_{1}) \Big[W_{13} \cdot \cosh(\xi_{1}) \cos(\Omega_{1}) \\ - W_{12} \cdot \sinh(\xi_{1}) \sin(\Omega_{1}) + 2\lambda W_{2} \big(2W_{1} \cosh(2\xi_{1}) + W_{7} \big) \Big] (55)$$

where $\Omega_1 = (k_1^2(\lambda + 1)/4 + \lambda^2)t + \lambda x + 2\lambda k_0/k_1,$ $\xi_1 = k_1(k_1^2t + 4x)/8 + k_0 \text{ and } W_1, \dots, W_{13} \text{ are constants.}$

Immersion function of the mKdV surface obtained using k_1 deformation

We find the immersion function F of the mKdV surface obtained using k_1 deformation by using the following equation

$$F = \nu \Phi^{-1} \frac{\partial \Phi}{\partial k_1} + \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix},$$
 (56)

from which we obtain the position vector.

Immersion function of the mKdV surface obtained using k_1 deformation

We find the immersion function F of the mKdV surface obtained using k_1 deformation by using the following equation

$$F = \nu \Phi^{-1} \frac{\partial \Phi}{\partial k_1} + \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix},$$
 (56)

from which we obtain the position vector.

Here we use the solution, Φ , of Lax equations and we choose the followings

$$A_1 = -k_1 B_2 \exp(-\lambda \pi/k_1), \ A_2 = k_1 B_1 \exp(-\lambda \pi/k_1), \quad (57)$$

$$r_{11} = -r_{22} = \frac{\nu \left(\pi \lambda + \kappa_1\right) \left(B_2 - B_1\right)}{k_1^2 (B_1^2 + B_2^2)},\tag{58}$$

$$r_{12} = -\frac{r_{21}k_1^2(B_1^2 + B_2^2) + 2\nu B_1 B_2(\pi\lambda + k_1)}{k_1^2(B_1^2 + B_2^2)},$$
(59)

in order to write F in the form $F = -i(\sigma_1 y_1 + \sigma_2 y_2 + \sigma_3 y_3)$.

3

in order to write F in the form $F = -i(\sigma_1 y_1 + \sigma_2 y_2 + \sigma_3 y_3)$.

Hence we obtain a family of surfaces parameterized by

$$y_{1} = W_{14} \cdot \operatorname{sech}^{2}(\xi_{1}) \Big[W_{15} \Big(2\Omega_{2} \cdot \sinh(\xi_{1}) - (16/3) \cosh(\xi_{1}) \Big) \sin(\Omega_{1}) \\ + W_{16} \cdot \Omega_{2} \cdot \cosh(\xi_{1}) \cos(\Omega_{1}) \\ + W_{8} \Big(2\Omega_{3} \cdot \cosh(2\xi_{1}) + 2k_{1}^{2}\lambda \sinh(2\xi_{1}) + \Omega_{4} \Big) \Big], \quad (60)$$

$$y_{2} = W_{14} \cdot \operatorname{sech}^{2}(\xi_{1}) \Big[W_{17} \Big(2\Omega_{2} \cdot \sinh(\xi_{1}) - (16/3) \cosh(\xi_{1}) \Big) \cos(\Omega_{1}) \\ - W_{18} \cdot \Omega_{2} \cdot \cosh(\xi_{1}) \sin(\Omega_{1}) + W_{19} \Big(\cosh(2\xi_{1}) + 1 \Big) \Big], \quad (61)$$

$$y_{3} = W_{14} \cdot \operatorname{sech}^{2}(\xi_{1}) \Big[W_{20} \Big(2\Omega_{2} \cdot \sinh(\xi_{1}) - (16/3) \cosh(\xi_{1}) \Big) \sin(\Omega_{1}) \\ - W_{21} \cdot \Omega_{2} \cdot \cosh(\xi_{1}) \cos(\Omega_{1}) \\ + (W_{2}/2) \Big(2\Omega_{3} \cdot \cosh(2\xi_{1}) + 2k_{1}^{2}\lambda \cdot \sinh(2\xi_{1}) + \Omega_{4} \Big) \Big], \quad (62)$$

where $\Omega_2 = t k_1^3 + 4 x k_1/3, \ \Omega_3 = \left(4 \lambda^2 + k_1^2\right) \left(k_1^3 [\lambda + 1]t - 4 \lambda k_0\right),$ $\Omega_4 = t k_1^3 \left(4 \lambda^2 [\lambda + 1] + k_1^2 [7 \lambda + 1]\right) / 4 + \lambda \left(k_1^2 [2 x k_1 - k_0] - 4 \lambda^2 k_0\right) \text{ and}$ W_{14}, \ldots, W_{21} are constants.

Graph of Some of the mKdV Surfaces

We obtained the position vector $\vec{y} = (y_1(x,t), y_2(x,t), y_3(x,t))$, of the mKdV surfaces arising from deformation of parameters.

We plot some of these mKdV surfaces for some special values of the constants.

Graph of Some of the mKdV Surfaces from k_0 deformation

Example: Taking $\lambda = 0.4$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 1.5$, $k_1 = 1.3$ and $r_{21} = 1$ in Eqs. (53)-(55), we get the surface given in Figure 1.

Figure : $(x,t) \in [-15,15] \times [-15,15]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10

Example: Taking $\lambda = 1.2$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0.5$, $k_1 = 1.4$ and $r_{21} = 1$ in Eqs. (53)-(55), we get the surface given in Figure 2.

Figure : $(x,t) \in [-5,5] \times [-5,5]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10 2

Example: Taking $\lambda = 0.6$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_2 = 0.2$, $k_3 = 0.4$ and $r_{21} = 1$ in Eqs. (53)-(55), we get the surface given in Figure 3.

Figure : (a), (b) $(x,t) \in [-10, 10] \times [-10, 10]$

Taking $\lambda = 2.7$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0.3$, $k_1 = 1.5$ and $r_{21} = 1$ in Eqs. (53)-(55), we get the surface given in Figure 4.

Figure : $(x,t) \in [-5,5] \times [-5,5]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5 10 - 2

Graph of Some of the mKdV Surfaces from k_1 deformation

Example: Taking $\lambda = 0.15$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0.1$, $k_1 = -0.5$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 5.

Figure : $(x, t) \in [-200, 200] \times [-200, 200]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10

Taking $\lambda = 0.03$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = -0.1$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 6.

Figure : $(x, t) \in [-3000, 3000] \times [-3000, 3000]$

Taking $\lambda = -0.2$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = 0.7$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 7.

Figure : $(x, t) \in [-100, 100] \times [-100, 100]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

Taking $\lambda = -1.3$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = 4$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 8.

Figure : $(x,t) \in [-5,5] \times [-5,5]$

S.Tek and M.Gürses

Taking $\lambda = 0.4$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0.6$, $k_1 = 0.7$ and $r_{21} = -2$ in Eqs. (60)-(62), we get the surface given in Figure 9.

Figure : $(x, t) \in [-50, 50] \times [-50, 50]$

Taking $\lambda = 0$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = 0.7$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 10.

Figure : $(x, t) \in [-100, 100] \times [-100, 100]$

Taking $\lambda = -0.8$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = -0.2$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 11.

Figure : $(x,t) \in [-20,20] \times [-20,20]$

S.Tek and M.Gürses

Taking $\lambda = -0.8$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 5$, $k_1 = -0.2$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 12.

Figure : $(x,t) \in [-20,20] \times [-20,20]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10, 2

Taking $\lambda = -0.1$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = -4$, $k_1 = -0.2$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 13.

Figure : $(x, t) \in [-500, 500] \times [-500, 500]$

S.Tek and M.Gürses

Surfaces from Defor. Parameters

June 5-10, 20

Taking $\lambda = 0.4$, $\nu = 1$, $B_1 = 1$, $B_2 = 1$, $k_0 = 0$, $k_1 = 0.2$ and $r_{21} = 1$ in Eqs. (60)-(62), we get the surface given in Figure 14.

Figure : $(x, t) \in [-80, 80] \times [-80, 80]$

• To develop surfaces from integrable equations we used deformation of parameters of solution of integrable equation

$$A = \mu \frac{\partial U}{\partial k_i}, \ B = \mu \frac{\partial V}{\partial k_i}.$$
• To develop surfaces from integrable equations we used deformation of parameters of solution of integrable equation

$$A = \mu \frac{\partial U}{\partial k_i}, \ B = \mu \frac{\partial V}{\partial k_i}.$$

• Using this method, we construct 2-surfaces from modified Korteweg-de Vries (mKdV) equation.

• To develop surfaces from integrable equations we used deformation of parameters of solution of integrable equation

$$A = \mu \frac{\partial U}{\partial k_i}, \ B = \mu \frac{\partial V}{\partial k_i}.$$

• Using this method, we construct 2-surfaces from modified Korteweg-de Vries (mKdV) equation.

• There are two types of deformations of parameters. The first one gives 2-surfaces on spheres and the second one gives highly complicated 2-surfaces in \mathbb{R}^3 .

• To develop surfaces from integrable equations we used deformation of parameters of solution of integrable equation

$$A = \mu \frac{\partial U}{\partial k_i}, \ B = \mu \frac{\partial V}{\partial k_i}.$$

• Using this method, we construct 2-surfaces from modified Korteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives 2-surfaces on spheres and the second one gives highly complicated 2-surfaces in \mathbb{R}^3 .

• We also give the graph of interesting mKdV surfaces arise from parametric deformations.

References I

- L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Pub., Inc., New York, (1909).
- L.P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, (1964).
- H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech. 51,477 (1972).
- U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Results Math. 27, 328-332 (1995).
- M. Gürses, Motion of Curves on two dimensional curves surfaces and soliton equations, Phys. Lett. 241 A, 329-332 (1998).
- G L Lamb, Solitons on moving space curves, J. Math. Phys., 18, 1654 (1977).
- M. P. Do Carmo, *Differential Geometry of Curves and Surfaces*, Prentice-Hall, Inc., Englewood Cliffs, NJ, (1976).
 - R. Parthasarthy and K. S. Viswanathan, Geometric properties of QCD string from Willmore functional, J. Geom. Phys. 38, 207-216 (2001).
- Z. C. Ou-Yang, J. Liu and Y. Xie, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, World Scientific, Singapore, (1999).
 - A. I. Bobenko, Integrable Surfaces, Funct. Anal. Prilozh. 24, 68-69 (1990).
 - T.J. Willmore, Total Curvature in Riemannian Geometry, John Willey and Sons, New York, (1982).

1

References II

T.J. Willmore, *Surfaces in Conformal Geometry*, Annals of Global Analysis and Geometry **18**, 255-264 (2000).

P. G. Drazin, Solitons: An Introduction, Cambridge Univ. Press, New York (1989).

- M. J. Ablowitz and H. Segur, *Solitons, Nonlinear Evolution Equations and Inverse Scattering*, London Math. Soc. Lecture Notes Series **149** (1991).
- A. Sym, Soliton Surfaces, Lett. Nuovo Cimento 33, 394-400 (1982).

A. Sym, Soliton Surfaces II, Lett. Nuovo Cimento 36, 307-312 (1983).

Sym A, Soliton Surfaces and their Applications in Geometrical Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Physics Vol. **239**, ed. Martini R, Springer- Berlin, 154-231 (1985).

A.S. Fokas and I.M. Gelfand, Surfaces on Lie Groups, on Lie Algebras, and Their Integrability, Commun. Math. Phys. **177**, 203-220 (1996).

References III

- Ö. Ceyhan, A.S. Fokas, and M. Gürses, Deformations of Surfaces Associated with Integrable Gauss-Minardi-Codazzi Equations, J. Math. Phys. 41, 2251-2270 (2000).
- M. Gürses, Some Special Integrable Surfaces, J. Nonlinear Math. Phys. 9, 59-66 (2002).
- S. Tek, Modified Korteweg-de Vries surfaces, J. Math. Phys. 48, 013505 (2007).

- S. Tek, Soliton Surfaces and Surfaces from a Variational Principle, Ph.D. Thesis. Bilkent University, 2007.
- S. Tek, Some Classes of Surfaces in \mathbb{R}^3 and M_3 arising from Soliton Theory and a Variational Principle, Discrte and Continuous Dynamical System Supplement, 761-770, 2009.
- S. Tek, Using Nonlinear Schrödinger Equation to Obtain Some New Surfaces in \mathbb{R}^3 , submitted, 2015.

- M. Gürses and S. Tek, *Korteweg de Vries Surfaces*, Nonlinear Analaysis: Theory, Method and Applications, **95**, 11-22 (2014).
- M. Gürses and S. Tek, Surfaces from Departmation of Parameters, under preparation.
- B.G. Konopelchenko, Nets in \mathbb{R}^3 , their integrable evolutions and the DS hierarchy, Phys. Lett. A 183, 153-159 (1993).
- B.G. Konopelchenko and I. A. Taimanov, Generalized Weierstrass formulae, soliton equations and Willmore surfaces. I. Tori of revolution and the mKdV equation, Report No. dg-ga/9506011.

References IV

- B.G. Konopelchenko and G. Landolfi, Induced Surfaces and Their Integrable Dynamics II. Generalized Weierstrass Representation in 4-D Spaces and Deformations via DS Hierarchy, Studies in Applied Mathematics 104, 129-169 (2000).

B.G. Konopelchenko, Surfaces of revolution and their integrable dynamics via the Schrödinger and KdV equations, Inverse Problems **12**, L13?18 (1996).

1

A. I. Bobenko, Surfaces in Terms of 2 by 2 Matrices, Old and New Integrable Cases in Harmonic Maps and Intgerable Systems, eds. Fordy A P and Wood J C, Aspects of Mathematics, E23, Friedr. Vieweg & Sohn-Braunscweig, 83-127 (1994).

M. Melko and I. Sterling, *Integrable systems, harmonic maps and the classical theory of surfaces* in Harmonic maps and integrable systems, eds. A. P. Fordy and J. C. Wood, Aspects of Mathematics, E23, Friedr. Vieweg & Sohn-Braunscweig, 129-144 (1994).

M. Gürses and Y. Nutku, New Nonlinear Evolution Equations From Surface Theory , J. Math. Phys. **22**,1393 (1981).

J. Cieslinski, A Generalized Formula for Integrable Classes of Surfaces in Lie Algebraas, J. Math. Phys. 38, 4255-4272 (1997).

R. Osserman, A Survey of Minimal Surfaces, Dover Pub., Inc., New York, (1986).

Z.C. Tu and Z.C. Ou-Yang, A Geometric Theory on the Elasticity of Bio-membranes, J. Phys. A: Math. Gen. 37, 11407-11429 (2004).

References V

Ē.

Z.C. Tu and Z.C. Ou-Yang, Lipid Membranes with Free Edges, Phys. Rev. E 68, 061915 (2003).

Z. C. Ou-Yang and W. Helfrich, Instability and Deformation of a Spherical Vesicle by Pressure, Phys. Rev. Lett. 59, 2486-2488 (1987).

Z. C. Ou-Yang and W. Helfrich, Bending Energy of Vesicle Membranes: General Expansion for the First, Second, and Third Variation of the Shape Energy and Applications to Sphere and Cylinders, Phys. Rev. A **39**, 5280-5288 (1989).

W. Helfrich, Elastic Properties of Lipid Bilayers?heory and Possible Ex-periments, Z. Naturforsch. C 28 (1973) 693-703.

I. M. Mladenov, New Solutions of the Shape Equation, Eur. Phys. J. B 29, 327-330 (2002).

Z.C. Tu, *Elastic Theory of Biomembranes*, Thin Solid Films **393**, 19-23 (2001).

P. J. Olver, Applications of Lie Groups to differential Equations, Springer, Berlin, 1991.