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Abstract

• The so-called Willmore functional assigns to each surface in the three dimen-
sional Euclidean space its total squared mean curvature. The surfaces providing
local extrema to this functional are referred to as the Willmore surfaces. The
mean and Gaussian curvatures of these surfaces obey the corresponding Euler-
Lagrange equation, which is usually called the Willmore equation.

• The present work is concerned with a particular class of axially symmetric
solutions to the Willmore equation. Not long ago, it was established that there
is a special class of axially symmetric Willmore surfaces, regarded in Monge
representation, whose profile curve height functions satisfy a one-parameter
family of second-order nonlinear ordinary differential equations.

• In this work we give explicit expressions for the foregoing profile curves in
terms of Jacobi elliptic functions and integrals and show that the corresponding
Willmore surfaces are nodoid-like.

• In this talk, we discuss five different types of differential equations, which
describe axially symmetric Willmore surfaces. All of them are determined as
the Euler-Lagrange equations of the Willmore energy expressed in terms of
different independent and dependent variables. Several types of exact analytic
solutions will be presented.
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Willmore Surfaces
Willmore Functional

• The so-called Willmore functional (energy)

W =

∫
S
H2dA (1)

assigns to each surface S in the three-dimensional Euclidean space R3 its total
squared mean curvature W. Here, H is the local mean curvature the surface S,
dA is the area element on the surface S.

• This functional has drawn much attention after [Willmore, 1965] where T. J.
Willmore proposed to study the surfaces providing extremum to the functional
(1), which are usually referred to as the Willmore surfaces.

• This interest is related to the so-called Willmore conjecture [Willmore, 1965]
concerning the global problem of minimizing of (1) among the class of immersed
tori: the integral of the square of the mean curvature of a torus immersed in R3

is at least 2π2, which have been proved recently [Marques & Neves, 2012].

• The Willmore surfaces are of great importance for the conformal geometry be-
cause of the invariance of Willmore functional (energy) under the 10-parameter
group of special conformal transformations in R3.
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Willmore Surfaces
Willmore Equation

• The Euler-Lagrange equation associated with the Willmore functional, which
is further referred to as the Willmore equation, has the form

∆H + 2(H2 −K)H = 0 (2)

∆ is the Laplace-Beltrami operator on S and K is its Gaussian curvature.

• According to [Thomsen, 1923], Schadow was the first who derived Eq. (2) in
1922 as the Euler-Lagrange equation for the variational problem∫

S
(1/R1 − 1/R2)

2
dA (3)

where 1/R1 and 1/R2 are the two principal curvatures of the surface S, which
was studied by Thomsen in connection with the conformal geometry.

• Actually, according to [Nitsche: 1989, 1993] the history of this variational
problem can be traced about two centuries back to the memoir by Siméon Denis
[Poisson, 1812] and that by Marie-Sophie [Germain, 1821] where the functional
(1) was proposed as the bending energy of elastic shells.
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Willmore Surfaces
Related Functionals and Equations

• In 2D string theory and 2D gravity based on the [Polyakov, 1981] integral
over surfaces, the functional (1) is known as the Polyakov’s extrinsic action.

• In mathematical biology it appears in the [Helfrich,1973] model as one of the
terms that contribute to the energy of cell membranes

Fb =

∫
S

[
1

2
kc(2H + c0)2 + kGK

]
dA+ λ

∫
S

dA+ p

∫
dV. (4)

Here kc and kG are real constants representing the bending and Gaussian rigidity
of the membrane, c0 is the spontaneous curvature, λ is the tensile stress, p is the
pressure, V is the enclosed volume. The corresponding Euler-Lagrange equation
derived by [Ou-Yang and Helfrich, 1989] reads

∆H + (2H + c0)
(
H2 − (c0/2)H −K

)
− (λ/kc)H = −p/(2kc). (5)

• The Helfrich functional (4) and the corresponding Euler-Lagrange equation
(5) play an important role in the continuum theory of carbon nano structures,
see [Ou-Yang et al.: 1997, 2002, 2008 ], [Mladenov et al., 2013].
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Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• Let (x1, x2, x3) be a fixed right-handed rectangular Cartesian coordinate sys-
tem in the 3-dimensional Euclidean space R3 in which a surface S is immersed,
and let this surface be given in Monge representations, i.e. by the equation

S : x3 = w(x1, x2), (x1, x2) ∈ Ω ⊂ R2 (6)

where w : R2 → R is a single-valued and smooth function possessing as many
derivatives as may be required on the domain Ω. Let us take x1, x2 to serve as
Gaussian coordinates on the surface S.

• Then the components of the first gαβ , second bαβ fundamental tensor, and
the alternating tensor εαβ of S are given by the expressions

gαβ = δαβ + wαwβ , bαβ = g−1/2wαβ , εαβ = g−1/2eαβ (7)

g = det(gαβ) = 1 + (w1)2 + (w2)2 (8)

δαβ is the Kronecker delta symbol, eαβ is the alternating symbol and wα1...αk

(k = 1, 2, ...) denote the k-th order partial derivatives of the function w with
respect to the variables x1 and x2.
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Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• The mean H and Gaussian K curvatures of the surface S are given as follows

H =
1

2
gαβbαβ =

1

2
g−3/2

(
δαβwαβ + eαµeβνwαβwµwν

)
(9)

K =
1

2
εαµεβνbαβbµν =

1

2
g−2eαµeβνwαβwµν (10)

where
gαβ = g−1

(
δαβ + eαµeβνwµwν

)
(11)

are the contravariant components of the first fundamental tensor.

• The Willmore functional (1) reads

W =

∫ ∫
Ω

Ldx1dx2, L =
1

4
g−5/2

(
δαβwαβ + eαµeβνwαβwµwν

)2
(12)

• Here and in what follows, Greek indices have the range 1, 2, and the usual
summation convention over a repeated index is employed.

Mariana, Vassil, Peter and Iväılo (BAS) Axially Symmetric Willmore Surfaces GIQ2015, Varna 8 / 43



Symmetry Groups of the Willmore Equation
Willmore Equation in Monge Representations

• The application of the Euler operator

E =
∂

∂ w
−Dµ

∂

∂ wµ
+DµDν

∂

∂ wµν
− · · · (13)

Dα =
∂

∂ xα
+ wα

∂

∂ w
+ wαµ

∂

∂ wµ
+ wαµν

∂

∂ wµν
+ wαµνσ

∂

∂ wµνσ
+ · · ·

on the Lagrangian density L of the Willmore functional leads, after taking into
account

∆ = gαβ
∂2

∂xα∂xβ
+ g−1/2 ∂

∂xα

(
g1/2gαβ

) ∂

∂xβ

to the Willmore equation (2), which takes the form

E ≡ (1/2)g−1/2gαβgµνwαβµν + Φ (x1, x2, w, w1, . . . , w222) = 0 (14)

where Φ (x1, x2, w, w1, . . . , w222) is a differential function of the independent and
dependent variables and the derivatives of the dependent variable up to third
order.
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Symmetry Groups of the Willmore Equation
The Group of Special Conformal Transformations in R3

translations
v1 =

∂

∂x1
, v2 =

∂

∂x2
, v3 =

∂

∂w

rotations

v4 = x1 ∂

∂x2
− x2 ∂

∂x1
, v5 = x1 ∂

∂w
− w ∂

∂x1
, v6 = x2 ∂

∂w
− w ∂

∂x2

dilatation
v7 = x1 ∂

∂x1
+ x2 ∂

∂x2
+ w

∂

∂w

inversions

v8 =
[
(x1)2 − (x2)2 − w2

] ∂

∂x1
+ 2x1x2 ∂

∂x2
+ 2x1w

∂

∂w

v9 = 2x2x1 ∂

∂x1
+
[
(x2)2 − (x1)2 − w2

] ∂

∂x2
+ 2x2w

∂

∂w

v10 = 2x1w
∂

∂x1
+ 2x2w

∂

∂x2
+
[
w2 − (x2)2 − (x1)2

] ∂

∂w
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Symmetry Groups of the Willmore Equation
The Group of Special Conformal Transformations in R3

• The following Propositions [Vassilev & Mladenov, 2004] clarify the invariance
properties of the Willmore equation relative to one-parameter Lie groups of
point transformations of R3. The coordinates (x1, x2, w) on R3 represent the
involved independent and dependent variables x1, x2 and w, respectively. The
results are obtained using Lie infinitesimal technique.

Proposition 1. The 10-parameter Lie group GSCT of special conformal trans-
formations in R3 (whose basic generators are vj , j = 1 . . . 10) is the largest
group of point (geometric) transformations of the involved independent and
dependent variables that a generic equation of form (14) could admit.

Proposition 2. In Monge representation, the Willmore equation admits all
the transformations of the group GSCT .

Remark. All vector fields vj , j = 1, . . . , 10 are variational symmetries of the
Willmore equation, i.e., infinitesimal divergence symmetries of the Willmore
functional. Hence, Noether’s theorem implies the existence of ten linearly inde-
pendent conservation laws that hold on the smooth solutions of the Willmore
equation.
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Symmetry Groups of the Willmore Equation
Group-Invariant Solutions

• Once a group G is found to be a symmetry group of a given differential
equation, it is possible to look for the so-called group-invariant (G-invariant)
solutions of this equation – the solutions, which are invariant under the trans-
formations of the symmetry group G.

• The main advantage that one can gain when looking for this kind of particular
solutions of the given differential equation consists in the fact that each group-
invariant solution is determined by a reduced equation obtained by a symmetry
reduction of the original one and involving less independent variables than the
latter.

• Let G (v) be a one parameter group generated by a vector field v belonging
to the Lie algebra LSCT , that is v is a linear combination of the vector fields
vj , j = 1 . . . 10,

v =

10∑
j=1

cjvj (15)

where cj , j = 1 . . . 10, are real numbers – the components of the vector field v
with respect to the basic vector fields vj .
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Symmetry Groups of the Willmore Equation
Group-Invariant Solutions

• Then, G (v) is a symmetry group of the Willmore equation and so one can
look for the G (v)-invariant solutions of this equation. For that purpose, first
one should find a complete set of functionally independent invariants of the
group G (v). In the present case this is a set of two functionally independent
functions Iα

(
x1, x2, w

)
such that

vIα = 0

the vector field v being regarded here as an operator acting on the functions
ζ : R3 → R. Then, if the necessary condition for the existence of group invariant
solutions is satisfied, which in the present case reads

rank

(
∂Iα
∂w

)
= 1 (16)

assuming that ∂I1/∂w 6= 0, one can seek the G (v)-invariant solutions in the
form

U = U (s) , U = I1, s = I2. (17)
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Axially Symmetric Willmore Surfaces
Axially Symmetric Surfaces

Let the components X,Y, Z of the position vvector R of an axially symmet-
ric surface S in R3 be given with respect to a fixed right-handed rectangular
Cartesian coordinate system as

R =

 X
Y
Z

 =

 r(t) cos θ
r(t) sin θ
z(t)

 (18)

where t is an arbitrary parameter along the contour of the surface S at fixed
θ ∈ [0, 2π]. Then, the first and second fundamental tensors of S read

gαβ =

(
r2
t + z2

t 0
0 r2

)
, bαβ =

1√
r2
t + z2

t

(
rtztt − ztrtt 0

0 rzt

)
(19)

respectively, and
g = det(gαβ) = r2

(
r2
t + z2

t

)
. (20)

Here, the subindexes indicate derivatives with respect to the variable t.
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Axially Symmetric Willmore Surfaces
Axially Symmetric Surfaces

Consequently, the mean H and Gaussian K curvatures of the surface S read

H =
1

2

r (rtztt − ztrtt) + zt
(
r2
t + z2

t

)
r (r2

t + z2
t )

3/2
(21)

K =
zt (rtztt − ztrtt)
r (r2

t + z2
t )

2 (22)

The volume V enclosed by the surface S can be written as follows

V =
1

3

∫
S
n ·RdA (23)

where

n =
1√

r2
t + z2

t

 zt cos θ
zt sin θ
−rt

 (24)

is the unit outward normal vector and dA = 2π
√
gdt = 2πr

√
r2
t + z2

t dt is the
infinitesimal area element on the surface.
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Axially Symmetric Willmore Surfaces
Willmore Energy of Axially Symmetric Surfaces

• The Willmore energy of an axially symmetric surface S reads

W =

∫
S
H2dA =

∫
Ldt (25)

where

L = 2π

[
r (rtztt − ztrtt) + zt

(
r2
t + z2

t

)
2r (r2

t + z2
t )

3/2

]2

r
√
r2
t + z2

t (26)

• In mathematical biology the Willmore energy appears in the [Helfrich,1973]
model as one of the terms that contribute to the energy of cell membranes

Fb =

∫
S

[
1

2
kc(2H + c0)2 + kGK

]
dA+ λ

∫
S

dA+ p

∫
dV. (27)

Here kc and kG are real constants representing the bending and Gaussian rigidity
of the membrane, c0 is the spontaneous curvature, λ is the tensile stress, p is
the pressure, V is the enclosed volume.
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Axially Symmetric Willmore Surfaces
Euler-Lagrange Equations

• The application of the Euler operators

Er =
∂

∂ r
−Dt

∂

∂ rt
+DtDt

∂

∂ rtt
− · · · (28)

Ez =
∂

∂ z
−Dt

∂

∂ zt
+DtDt

∂

∂ ztt
− · · · (29)

where
Dt =

∂

∂ t
+ rt

∂

∂ r
+ zt

∂

∂ z
+ rtt

∂

∂ rt
+ ztt

∂

∂ zt
+ · · · (30)

on the Lagrangian density L of the Willmore functional W leads to

rtErL ≡ −ztEzL (31)

• Thus, we have a single equation determining the extremals of W, say

ErL = 0 (32)

instead of a system of two Euler-Lagrange equations for two dependent variables.

• The same holds true for the critical points of the Helfrich energy Fb.
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Axially Symmetric Willmore Surfaces
Euler-Lagrange Equation assuming r2t + z2t = 1

• Assume r2
t + z2

t = 1 meaning that t is the arc length s along the contour.
Then, in terms of the tangent angle ϕ we have

rt = cosϕ, zt = sinϕ (33)

and can rewrite equation ErLH = 0 in the form

...
ϕ = −2 cosϕ

r
ϕ̈− 1

2
ϕ̇3 +

sinϕ

r
ϕ̇2 +

sinϕ

2r
(ϕ̇− c0)

2

+

[
1

2

(
sinϕ

2
− c0

)2

+
1− 2 sin2 ϕ

r2
+
λ

kc

]
ϕ̇ (34)

−cos2 ϕ+ 1

2r3
sinϕ+

λ

kc

sinϕ

r
+

p

kc

where the dots indicate derivatives with respect to the arc length s.
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Axially Symmetric Willmore Surfaces
Euler-Lagrange Equation assuming z = t, r = u(z)

• Assume z = t and r = u(z). Then, equation ErLH = 0 takes the form

2u3
(
u2
z + 1

)2
uzzzz

+4u2uz
(
u2
z + 1

) [(
u2
z + 1

)
− 5uuzz

]
uzzz

+5u3
(
6u2

z − 1
)
u3
zz − 3u2

(
u2
z + 1

) (
4u2

z − 1
)
u2
zz

−u
(
u2
z + 1

)2{
4u

[
u
(
u2
z + 1

)(
c20 +

λ

kc

)
− 2c0

√
u2
z + 1

]
+ 2u2

z − 1

}
uzz

+
(
u2
z + 1

)3 [
4u2

(
u2
z + 1

)(
c20 +

λ

kc
+

p

kc
u
√
u2
z + 1

)
− 2u2

z − 1

]
= 0 (35)

Here, the subindexes indicate derivatives with respect to the variable z.
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Axially Symmetric Willmore Surfaces
Euler-Lagrange Equation assuming r = t, z = w(r)

• Assume r = t and z = w(r). Then, equation ErLH = 0 takes the form

R ≡ (2 r3 + 4 r3 w2
r + 2 r3 w4

r)wrrrr

+(4 r2 + 8 r2 w2
r + 4 r2 w4

r − 20 r3 wrwrr − 20 r3 w3
rwrr)wrrr

−5r2 (3wr + 3w3
r + r wrr − 6 r w2

rwrr)w
2
rr (36)

+(r w6
r − 2 r − 3 r w2

r)wrr + 2wr + 7w3
r + 9w5

r + 5w7
r + w9

r = 0

where

wr =
dw

dr
, wrr =

d2w

dr2
, wrrr =

d3w

dr3
, wrrrr =

d4w

dr4
·

• Simultaneously, the mean and Gaussian curvatures take the forms

H =
1

2r

rwrr + w3
r + wr

(1 + w2
r)

3/2
, K =

1

r

wrrwr

(1 + w2
r)

2 · (37)
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Axisymmetric Solutions of the Willmore Equation
An Intermediate Integral of the Reduced Equation

• Consider the following normal system of two ordinary differential equations

dw

dr
= v,

dv

dr
= ±1

r

(
v2 + 1

)√
v2 + 2ω

√
v2 + 1 (38)

which is equivalent to the single second-order equation

d2w

dr2
= ±1

r

[(
dw

dr

)2

+ 1

]√√√√(dw

dr

)2

+ 2ω

√(
dw

dr

)2

+ 1 . (39)

• Each solution of system (38) or equation (39) is a solution of the reduced
Willmore equation R = 0, see [Vassilev & Mladenov, 2004]. In this way, we
have determined a special class of axially symmetric Willmore surfaces.

• It is worth nothing that system (38) and equation (39) turn out to be invariant
under the translations of the variable w and the scaling transformations

w → wη, r → rη, η ∈ R.
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Axisymmetric Solutions of the Willmore Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

• The substitutions u =
√
v2 + 1, ρ = ln r transform system (38) as follows

dw

dρ
= eρ

√
u2 − 1 (40)(

du

dρ

)2

= u2
(
u2 − 1

) (
u2 + 2au− 1

)
. (41)

• In terms of a new variable t such that
dρ

dt
=

1

u
(42)

Eq. (41) may be written in the form(
du

dt

)2

= P (u) , P (u) =
(
u2 − 1

) (
u2 + 2au− 1

)
(43)

and Eq. (40) becomes
dw

dt
= eρ

1

u

√
u2 − 1. (44)
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Axisymmetric Solutions of the Willmore Equation
Analytic Representation of a Class of Axiaxymmetric Willmore Surfaces

Using the standard approach [Whittaker & Watson] [Abramowitz & Stegun]),
we can express a class of solutions of Eq. (43) corresponding to the root u = 1
of the polynomial P (u) as follows

u (t) =
2
√
a2 + 1−

(√
a2 + 1− a+ 1

)
sn2 (λt, k)

2
√
a2 + 1−

(√
a2 + 1 + a+ 1

)
sn2 (λt, k)

(45)

where λ =
4
√
a2 + 1, k =

1√
2

√
1 +

1√
a2 + 1

Then, using Eq. (45), one can write down the solution ρ (t) of Eq. (42)

ρ (t) =
(
λ2 + a

)
t− λ2 + a− 1

λ
Π

(
λ2 − a+ 1

2λ2
, am (λt, k) , k

)
. (46)

Finally, using that ρ = ln r and Eq. (40) we arrive at the following analytic
representation of the parametric equations for the profile curves of the axially
symmetric Willmore surfaces determined by Eq. (39)

r(t) = eρ(t), w (t) =

∫
eρ(t)

1

u (t)

√
u (t)

2 − 1 dt+ b, b = const. (47)
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Nodoid-Like Willmore Surfaces
Numerical Calculations

• Unfortunately, the parametric equations (47) are too complicated to be used
for displaying the respective surfaces directly. This, however, can be done by
solving numerically system (38) taking as initial values at r = 1 an arbitrary real
number for w (because of the invariance of system (38) under the translation of
this variable) and v = 0. Indeed, for each surface of the considered class Eqs.
(45) and (46) imply u(0) = 1 and ρ(0) = 0 and hence v = 0 at r = 1.

• Two Willmore surfaces obtained in this way are depicted in Figure 1. First
of them (Figure 1, left) is constructed by joining two profile curves Γ− and Γ+

(see Figure 2, left), which are generated by solving numerically system (38),
choosing respectively sign ”-” and sign ”+” of the right-hand side of the second
equation in this system, setting a = 0.2 and taking v = 0 as initial condition at
r = 1. The second one is constructed by joining another couple of profile curves
Γ̂− and Γ̂+ (see Figure 2, right) obtained in the same manner, but now a = 1.
The Gaussian curvatures corresponding to both profile curves Γ− and Γ+ are
identical, while the respective mean curvatures are symmetric with respect to
the r-axis. The same holds true for the Gaussian and mean curvatures of the
curves Γ̂− and Γ̂+.

Mariana, Vassil, Peter and Iväılo (BAS) Axially Symmetric Willmore Surfaces GIQ2015, Varna 24 / 43



Nodoid-Like Willmore Surfaces
Numerical Calculations
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Nodoid-Like Willmore Surfaces
Numerical Calculations
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Unduloid-Like Willmore Surfaces
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Cup-Like Willmore Surfaces
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Axisymmetric Equilidrium Shapes
Sketch of a Surface of Revolution

Suppose that a part of an axisymmetrically deformed SWCNT admits graph
parametrization. This means that it may be thought of as a surface of revolution
obtained by revolving around the z-axis a plane curve Γ laying in the xOz-plane,
which is determined by the graph (x, z(x)) of a function z = z(x).
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Axisymmetric Equilidrium Shapes
Shape Equation

For each such surface the general shape equation (5) reduces to the following
nonlinear third-order ordinary differential equation
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(derived in [Hu & Ou-Yang, 1993]) where ϕ is the angle between the x-axis
and the tangent vector to the profile curve Γ, i.e., the tangent (slope) angel,
considered as a function of the variable x.
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Axisymmetric Equilidrium Shapes
Exact Solutions of the Shape Equation

[Naito et al., 1995] discovered that the shape equation (48) has the following
class of exact solutions

sinϕ = ax+ b+ dx−1, (49)

provided that a, b and d are real constants, which meet the conditions
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Exact Solutions of the Shape Equation

Six types of solutions of form (49) to Eq. (48) can be distinguished on the
ground of conditions (50) – (53) depending on the values of c0, λ and p.
Case A. If c0 = 0, λ = 0, p = 0, then the solutions to Eq. (48) of the form (49)
are sinϕ = ax, sinϕ = ax±

√
2 and sinϕ = dx−1, the respective surfaces

being spheres, Clifford tori and catenoids.
Case B. If c0 = 0, λ 6= 0, p = 0, then the solutions of the considered type
reduces to sinϕ = dx−1 (catenoids).
Case C. If c0 = 0, λ 6= 0, p 6= 0 and p = 2aλ, then only one branch of the
regarded solutions remains, namely sinϕ = ax (spheres).
Case D. If c0 6= 0, λ = 0, p = 0, then one arrives at the whole family of
Delaunay surfaces corresponding to the solutions of the form

sinϕ = −1

2
c0x+

d

x
· (54)

Case E. If c0 6= 0, λ 6= 0, p = 0 and

λ

kc
= −1

2
c0 (2a+ c0) ,

one gets only solutions of the form sinϕ = ax (spheres).
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Exact Solutions of the Shape Equation

Case F. If c0 6= 0, λ 6= 0, p 6= 0, then four different types of solutions of form
(49) to Eq. (48) are encountered: (a) sinϕ = ax (spheres) if

p
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(
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c20
2

)
; (55)

(b) sinϕ = ax±
√

2 (Clifford tori) if

p

kc
= −2a2c0,

λ

kc
= −1

2
c0 (4a+ c0) ; (56)

(c) solutions of the form (54) (Delaunay surfaces) if

p+ c0λ = 0; (57)

(d) solutions of the form
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, (58)

which take place provided that
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Parametric Equations of the Unduloid-Like Surfaces

Below, we derive the parametric equations of the surfaces corresponding to the
solutions of form (58) to Eq. (48).
First, it is clear that the variable x must be strictly positive or negative,
otherwise the right-hand side of Eq. (49) is both undefined and its absolute
value is greater than one, which is in contradiction with the sin-function
appearing in the left-hand side of this relation.
Next, according to the meaning of the tangent angle
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which for the foregoing class of solutions (58) implies
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Parametric Equations of the Unduloid-Like Surfaces

In terms of an appropriate new variable t, relation (61) may be written in the
form (

dx

dt
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Parametric Equations of the Unduloid-Like Surfaces

It should be noticed that the roots of the polynomial Q(x) = Q1(x)Q2(x) read

α =
2 sign (b)

c0
√
b2 + 2

h− 1

h+ 1
, β =

2 sign (b)

c0
√
b2 + 2

h+ 1

h− 1
(66)

γ =
4b

c0 (b2 + 2)
− α+ β

2
+ i

2
√

2|b|+ 1

c0 (b2 + 2)

δ =
4b

c0 (b2 + 2)
− α+ β

2
− i

2
√

2|b|+ 1

c0 (ε2 + 2)

where

h =

√
1 + |b|+

√
2 + b2
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Hence, Eq. (62) has real-valued solutions if and only if at least tow of these
roots are real and different. Evidently, the roots γ and δ can not be real, but
α and β are real provided that |b| > 1/2 as follows be relations (66) and (67).
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Parametric Equations of the Unduloid-Like Surfaces

Now, using the standard procedure for handling elliptic integrals (see [?,
22.7]), one can express the solution x(t) of equation (62) in the form

x(t) =
2 sign (b)
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√
b2 + 2
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1− 2h

h+ cn(t, k)

)
(68)

where

k =

√
1

2
− 3

4
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2 + b2
·

Consequently, using expressions (64) and (65), one can write down the
solution z(t) of equation (63) in the form

z (t) =
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dt. (69)
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Parametric Equations of the Unduloid-Like Surfaces

Finally, performing the integration in the right-hand-side of Eq. (69), one
obtains

z(t) = u

[
E(am(t, k), k)− sn(t, k) dn(t, k)

h+ cn(t, k)
− t

2

]
· (70)

Thus, for each couple of values of the parameters c0 and b, (68) and (70) are
the sought parametric equations of the contour of an axially symmetric
unduloid-like surface corresponding to the respective solution of the membrane
shape equation (48) of form (58).
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Examples
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11 (1965) 493–496.

Whittaker E. and Watson G.,
A Course of Modern Analysis, Cambridge University Press, Cambridge, 1922.
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