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Introduction and Preliminaries

Let (M, g) and (N, h) be Riemannian manifolds. A map
v :(M,g) — (N, h) is called a harmonic map if it is a critical
point of the energy functional

1
E(p) = 2/ ||d90H2dVg'
M
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Introduction and Preliminaries

Let (M, g) and (N, h) be Riemannian manifolds. A map
v :(M,g) — (N, h) is called a harmonic map if it is a critical
point of the energy functional

1
E(p) = 2/ ||d90H2dVg'
M

The map ¢ is said to be biharmonic if it is a critical point of the
bienergy functional

Eae) = 5 | I dv.

where 7(p) = tr(Vdy) is the tension field. If 7(¢) = 0 then ¢ is
called harmonic [Eells-Sampson].
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The Euler-Lagrange equation for the bienergy functional were
obtained by Jiang in [Jiang-86] by m(¢) = 0, where

() = tr(VVVN — V) r(0) — tr(RN(de, 7())dp), (1)

is the bitension field of ¢ and RN is the curvature tensor of N.
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Introduction and Preliminaries

The Euler-Lagrange equation for the bienergy functional were
obtained by Jiang in [Jiang-86] by m(¢) = 0, where

() = tr(VIVN = V)r(0) — tr(R"(do, 7(0))dw), (1)
is the bitension field of ¢ and RN is the curvature tensor of N.

An f-harmonic map with a positive function f : M “TRisa

critical point of f-energy function

1
Er(e) =5 | Flldel dv.
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Introduction and Preliminaries

The Euler-Lagrange equation for the bienergy functional were
obtained by Jiang in [Jiang-86] by m(¢) = 0, where

() = tr(VIVN = V)r(0) — tr(R"(do, 7(0))dw), (1)
is the bitension field of ¢ and RN is the curvature tensor of N.

An f-harmonic map with a positive function f : M “TRisa

critical point of f-energy function

1
Er(e) =5 | Flldel dv.

Using the Euler-Lagrange equation for the f-energy functional, in
[OND] and [Course] the f-tension field T¢(y) was obtained by

() = f1(p) + dp(gradf). (2)
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If 7¢(¢) = 0 then the map is called f-harmonic [Course]. The map
@ is said to be f-biharmonic (see [Lu]) if and only if it is a critical
point of the f-bienergy functional

1
Barle) = 5 | (o) do
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If 7¢(¢) = 0 then the map is called f-harmonic [Course]. The map
@ is said to be f-biharmonic (see [Lu]) if and only if it is a critical
point of the f-bienergy functional

1
Barle) = 5 | (o) do

The Euler-Lagrange equation for the f-bienergy functional is given
by 72 ¢(¢) = 0, where 75 ¢(¢) is the f-bitension field and is defined
by

72,¢() = Fra(p) + AFT(0) + 2V gragr (), (3)
(see [Lu]). It can be easily seen that any f-harmonic map is

f-biharmonic. If the map is non-f-harmonic f-biharmonic then we
call it by proper f-biharmonic [Lul].
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In [Loubeau-Montaldo], Loubeau and Montaldo considered
biminimal immersions. They studied biminimal curves in a
Riemannian manifold, curves in a space form, and isometric
immersions of codimension 1 in a Riemannian manifold.
They investigated biminimal surfaces using Riemannian and
horizontally homothetic submersions.
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In [Loubeau-Montaldo], Loubeau and Montaldo considered
biminimal immersions. They studied biminimal curves in a
Riemannian manifold, curves in a space form, and isometric
immersions of codimension 1 in a Riemannian manifold.
They investigated biminimal surfaces using Riemannian and
horizontally homothetic submersions.
An immersion ¢, is called biminimal (see [Loubeau-Montaldo]) if it
is a critical point of the bienergy functional Ex(¢) for variations
normal to the image ¢(M) C N, with fixed energy. Equivalently,
there exists a constant A € R such that ¢ is a critical point of the
A-bienergy

Ex () = Ex() + AE() (4)

for any smooth variation of the map ¢: :| — €, +¢€[, o = ¢, such
that V = 92t |, _o= 0 is normal to ¢(M).
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The Euler-Lagrange equation for A\-biminimal immersion is,

[2a(0)]F = [r2(2)]F = Al ()] = 0. (5)

for some value of A € R, where []* denotes the normal
component of [-]. An immersion is called free biminimal if it is
biminimal for A = 0 [Loubeau-Montaldo].
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The Euler-Lagrange equation for A\-biminimal immersion is,

[2a(0)]F = [r2(2)]F = Al ()] = 0. (5)

for some value of A € R, where []* denotes the normal
component of [-]. An immersion is called free biminimal if it is
biminimal for A = 0 [Loubeau-Montaldo].

In this study, we define f-biminimal immersions. We consider
f-biminimal curves in a Riemannian manifold. We also consider
f-biminimal submanifolds of codimension 1 in a Riemannian
manifold. We give a non-trivial example for an f-biminimal
Legendre curve in a Sasakian space form and we investigate the
Riemannian and horizontally homothetic submersions for proper
f-biminimal surface in a three dimension Riemannian manifold.
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Now, we give the following definition:
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Now, we give the following definition:

Definition 1

An immersion ¢, is called f-biminimal if it is a critical point of the
f-bienergy functional Ej ¢(¢) for variations normal to the image
©(M) C N, with fixed energy. Equivalently, there exists a constant
A € R such that ¢ is a critical point of the \-f-bienergy

Ex »¢(@) = Ex r() + MEf(¢)

for any smooth variation of the map ¢; which is defined above.
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Using the Euler-Lagrange equations for f-harmonic and
f-biharmonic maps, an immersion is f-biminimal if

[r20r(0)]F = 26 ()] = Alrr ()] =0 (6)

for some value of A € R.
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Introduction and Preliminaries

Using the Euler-Lagrange equations for f-harmonic and
f-biharmonic maps, an immersion is f-biminimal if

[r20r(0)]F = 26 ()] = Alrr ()] =0 (6)

for some value of A € R.

We call an immersion free f-biminimal if it is f-biminimal for
A =0. If ¢ is a f-biminimal but not biminimal immersion then it is
called as proper f-biminimal.
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f-Biminimal Curves

Let v:/ C R — (M™, g) be a curve parametrized by arc length
in a Riemannian manifold (M™, g). We recall the definition of
Frenet frames:

Definition 2 (Laugwitz)

The Frenet frame {E;},_;, , associated with a curve
v:l CR— (M™, g) is the orthonormalization of the

(m+ 1) —tuple
(k) 40 O
VY dy(% )}
{ ot" J ko1, .m

described by
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0

ot

VY Er = kB,
ot

E1 = dy(

V% Ei = —ki—1Eio1 + kiEip1, 2<i<m-—1,
ot

v?’@ Em=—km-1 Em—17

ot
where the function {ky = k > 0, ko = 7, k3, ..., km—1} are called
the curvatures of ~. In addition £ = T = 7/ is the unit tangent
vector field to the curve.
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f-Biminimal Curves

0

ot

VY Er = kB,
ot

E1 = dy(

V% Ei = —ki—1Eio1 + kiEip1, 2<i<m-—1,
ot

v?’@ Em=—km-1 Em—17

ot

where the function {ky = k > 0, ko = 7, k3, ..., km—1} are called
the curvatures of ~. In addition £ = T = 7/ is the unit tangent
vector field to the curve.

Firstly we have the following proposition for f-biminimal curve in
Riemannian manifold:
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Proposition 3

Let M™ be a Riemannian manifold and ~y: | C R — (M™, g) be
an isometric curve. Then ~y is f-biminimal if and only if there
exists a real number X\ such that

f{(k{ — ki — kik3) — kig(R(E1, B2)E1, B5)}

+ (f" = Af) ki + 2f'k" = 0, (7)

f{(kiko + (kik2)') — kig(R(Ex, E2)Ey, E3)} 4+ 2f kiko = 0, (8)
f {kikoks — kig(R(E1, E2)E1, E4)} = 0, (9)

tkig(R(E1, E2)E1, Ej) =0, 5<j<m, (10)

where R is the curvature tensor of (M™, g).
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Now we investigate f-biminimality conditions for a surface or a
three dimensional Riemannian manifold with a constant sectional
curvature. Then we have the following corollary:
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Now we investigate f-biminimality conditions for a surface or a
three dimensional Riemannian manifold with a constant sectional
curvature. Then we have the following corollary:

Corollary 4

1) A curve v on a surface of Gaussian curvature G is f-biminimal
if and only if its signed curvature k satisfies the ordinary
differential equation

f (K" — k3= KkG) + (f" = M) k+2f'K' =0 (11)

for some \ € R.
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2) A curve 7 on Riemannian 3-manifold of constant sectional

curvature c is f-biminimal if and only if its curvature k and torsion

T satisfy the system
f (K" — k> —kr? — k) + (f" = M) k+2f K =0

f (k/T + (k’]‘)/) +2f kT = 0.

for some \ € R.
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Codimension-1 f-Biminimal Submanifolds

Let ¢ : M™ —s N™*! be an isometric immersion. We shall denote
by B, , A, A and H; = Hr the second fundamental form, the
unit normal vector field, the shape operator, the Laplacian and the
mean curvature vector field of ¢ (H the mean curvature function),
respectively. Then we have the following proposition:

Proposition 5

Let o : M™ — N™*1 be an isometric immersion of codimension 1
and Hy = Hn its mean curvature vector. Then @ is f-biminimal if
and only if

Af
AH — H||B|]? + HRicci(N) + (f + 2grad|n f — )\> H=0.
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Corollary 6

Let o : M™ —s N™+1(c) be an isometric immersion of a
Riemannian manifold N™t1(c) of constant curvature c. Then ¢ is
f-biminimal if and only if there exists a real number \ such that

Af
AH — <m2H2—s+m(m—2)c——2grad|nf—i—)\>H:0

f
(13)
where H is the mean curvature and s the scalar curvature of M™.
In addition, let ¢ : M?> — N3(c) be an isometric immersion from
a surface to a three-dimension space form. Then y is f-biminimal
if and only if
1Af
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Examples of f-Biminimal Surfaces on 3-Dimensional
Riemannian Manifolds

Now,we find some examples of f-biminimal immersions similar to
the methods given in [Loubeau-Montaldo]. A submersion

v :(M,g) — (N, h) between two Riemannian manifolds in
horizontally homothetic if there exists a function A : M — R, the
dilation, such that
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Examples of f-Biminimal Surfaces on 3-Dimensional
Riemannian Manifolds

Now,we find some examples of f-biminimal immersions similar to
the methods given in [Loubeau-Montaldo]. A submersion

v :(M,g) — (N, h) between two Riemannian manifolds in
horizontally homothetic if there exists a function A : M — R, the
dilation, such that

i) at each point p € M the differential dy, : Hy, — T (,)N is a
conformal map with factor A(p), i.e.,

N2(p)g(X, Y)(p) = h(dwp(X), dp(Y))(2(p)) for all
X,Y,Z € Hp = kerp(dy)*,
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Examples of f-Biminimal Surfaces on 3-Dimensional
Riemannian Manifolds

Now,we find some examples of f-biminimal immersions similar to
the methods given in [Loubeau-Montaldo]. A submersion

v :(M,g) — (N, h) between two Riemannian manifolds in
horizontally homothetic if there exists a function A : M — R, the
dilation, such that

i) at each point p € M the differential dy, : Hy, — T (,)N is a
conformal map with factor A(p), i.e.,

N2(p)g(X, Y)(p) = h(dwp(X), dp(Y))(2(p)) for all
X,Y,Z € Hp = kerp(dy)*,

i) X(A2) = 0, for all horizontal vector fields [Loubeau-Montaldo].
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Lemma 7 (Loubeau-Montaldo)

Let o : (M", g) — (N2, h) be a horizontally homothetic
submersion with A\ and minimal fibres and let v : | C R — N? be
a curve parametrized by arc length, of signed curvature k. Then

the codimension-1 submanifold S = ¢=*(v(l)) C M has mean
Aky
n—1°

curvature Hs =
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Examples of f-Biminimal Surfaces

Lemma 7 (Loubeau-Montaldo)

Let o : (M", g) — (N2, h) be a horizontally homothetic
submersion with A\ and minimal fibres and let v : | C R — N? be
a curve parametrized by arc length, of signed curvature k. Then

the codimension-1 submanifold S = ¢=*(v(l)) C M has mean
Aky
n—1°

curvature Hs =

Using the above lemma, we have the following theorem:
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Theorem 8

Let o : M3(c) — (N?, h) be horizontally homothetic submersion
with dilation A, from a space form of constant sectional curvature
c to a surface. Let v: 1 C R — N? be a curve parametrized by
arc length such that the surface S = p~Y((I)) C M3 has constant
Gaussian curvature c. The S = = Y(v(I)) C M3 is a f-biminimal
surface (with respect to 2c) if and only if y is a free f-biminimal
curve with ky, = ¢ et where c; is a real constant.
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Theorem 9

Let o : M3(c) — N?(C) be a Riemannian submersion with
minimal fibres from a space of constant sectional curvature ¢ to
surface of constant Gaussian curvature €. Let v : | C R — N? be
a curve parametrized by arc length. Then S = ¢~ 1(y(1)) € M3 is
a f-biminimal surface if and only if vy is a f~-biminimal curve with
ky = ciret where c; is a real constant.
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We consider the Riemannian submersion with totally geodesic
fibres, given by the projection onto the first factor

m:N?>xR — N2and v:/ CR — N2 be a curve parametrized
by arc length. Then we can state the following proposition:
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Examples of f-Biminimal Surfaces

We consider the Riemannian submersion with totally geodesic
fibres, given by the projection onto the first factor

m:N?>xR — N2and v:/ CR — N2 be a curve parametrized
by arc length. Then we can state the following proposition:

Proposition 10

The cylinder S = w=1(~(1)) is a proper f-biminimal surface in
N2 x R if and only if vy is a proper f-biminimal curve on N? (S%or
H2) with curvature k = ciet, where ¢ is a real constant.
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The three-dimensional Heisenberg space I:I3 is the two-step
nilpotent Lie group standardly represented in GL3(R) by

1 x
01 with x,y,z € R.
0 0

=< N

It is endowed with the left-invariant metric

g = dx® + dy? + (dz — xdy)>. (15)
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Examples of f-Biminimal Surfaces

The three-dimensional Heisenberg space I:I3 is the two-step
nilpotent Lie group standardly represented in GL3(R) by

1 x
01 with x,y,z € R.
0 0

=< N

It is endowed with the left-invariant metric
g = dx® + dy? + (dz — xdy)>. (15)

Let 7 : H3 — R? be the projection (x,y,z) — (x,y). It is easy
to see that 7 is a Riemannian submersion (for more details see
[Loubeau-Montaldo]). Take a curve y(t) = (x(t),y(t)) in R?,
parametrized by arc length, with signed curvature k.
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Now we have the following proposition:

inimal Immersions



Examples of f-Biminimal Surfaces

Now we have the following proposition:

Proposition 11

The flat cylinder S = w=1(~y(1)) C Hs is a proper f-biminimal
surface (with respect to \) of Hs if and only if v is a proper
f-biminimal curve (with respect to A\ + 1) of R? with curvature
k = c1et, where ¢y is a real constant.
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f-Biminimal Legendre Curves in Sasakian Space
Forms

Let (M?™+1 o &, n,g) be a contact metric manifold. If the
Nijenhuis tensor of ¢ equals —2dn ® &, then (I\/l2m+1, v, &, n,g) is
called a Sasakian manifold [Blair]. If a Sasakian manifolds has
constant p—sectional curvature c, then it is called a Sasakian space
form. The curvature tensor of a Sasakian space form is given by

c+3

R(X,Y)Z = {g(Y,2)X —g(X,2)Y}

c—1
2 {g(X,0p2)pY —g(Y,0Z)pX

+2g(X, oY )oZ +n(Xn(Z2)Y
—n(Y)n(Z2)X +g(X, Z)n(Y)E — g(Y, Z)n(X)E} (16)

_l’_
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A submanifold of a Sasakian manifold is called an integral
submanifold if n(X) = 0, for every tangent vector X. A
1-dimension integral submanifold of a Sasakian manifold is called a
Legendre curve of M. Hence a curve

yil— M= (M?™1 4 ¢ n,g) is called a Legendre curve if
n(T) =0, where T is the tangent vector field of v [Blair 2002].
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f-Biminimal Legendre Curves in Sasakian Space Forms

A submanifold of a Sasakian manifold is called an integral
submanifold if n(X) = 0, for every tangent vector X. A
1-dimension integral submanifold of a Sasakian manifold is called a
Legendre curve of M. Hence a curve

yil— M= (MzmH,cp,{,n,g) is called a Legendre curve if
n(T) =0, where T is the tangent vector field of v [Blair 2002].

Let v : (a,b) —> M be a non-geodesic Legendre Frenet curve of
osculating order r in a Sasakian space form

M = (M2m+1, go,{,n,g) . Then ~ is f-biminimal if and only if the
following three equations hold
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f‘/ 174
SR S k) PRSP YL i
4 f f
3(c—1 1
— kg + (4) [kig(eT, E2)?] " =0,
' 3(c—1
kiko + (kiko) + 2k1/<27 + (4) [kig(eT, E)g(pT, E3)]" =0
and 3( 1
C J—
kikoks + =" [kig( T, B2)g (T, Es)]" = 0.
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f-Biminimal Legendre Curves in Sasakian Space Forms

Let's recall some notions about the Sasakian space form
R2m+1(-3) [Blair 2002]:

Let us take M = R>™+1 with the standard coordinate functions
(X125 +eey Xms Y1, s ¥Ym, Z) , the contact structure

n = 3(dz— Y, yidx;), the characteristic vector field £ =22
and the tensor field ¢ given by

0 6 0
= |—0j 0
0 y O
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f-Biminimal Legendre Curves in Sasakian Space Forms

The Riemannian metricis g =n®@n+ 1, ((dx)? + (dyi)?) -
Then (M2m+1,<p,§,77,g) is a Sasakian space form with constant

—sectional curvature ¢ = —3 and it is denoted by R?™+1(-3).
The vector fields
0 3} 0 0
Xi =2~ Xiom=oXi =2(=— + yi—), 1<i< =2
i dy;’ i+m = PA; (aX,'_I—yIaZ)’ <i<m, ¢ 9z’

(17)

form a g-orthonormal basis and Levi-Civita connection is calculated
VxiXj = Vi mXjitm = 0, Vi Xjim = 05&; Vixi,, Xj = —05€,

Vx.& =VeXi = —Xnti, Vxi = VeXiom = X;
(see [Blair]).
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Now, let us produce example of proper f-biminimal Legendre
curves in R%(=3) :

inimal Immersions



f-Biminimal Legendre Curves in Sasakian Space Forms

Now, let us produce example of proper f-biminimal Legendre
curves in R%(=3) :

Example. Let v = (71,...,75) be a unit speed Legendre curve in
R3(—3). The tangent vector field of 7 is

1
T =5 {03X +93% + 91X + 72X + (v5 — 1173 —1278) £ -

Using the above equation, since « is a unit speed Legendre curve
we have n(T) =0and g(T, T) =1, that is,

Y5 = V13 — V278

and
(V) + .+ (1) =4
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f-Biminimal Legendre Curves in Sasakian Space Forms

For a Legendre curve, we can use the Levi-Civita connection and
equation (17) to write

1
VT = 2 (VX1 + 7 Xe + 1 Xz + 79 Xa) (18)
1
oT = 5 (—finl — 5 Xa + 5 X3 + 'Yzllx4) . (19)

From equations (18), (19) and T L E; if and only if

VY5 + Va4 = 1Y+ Yas-
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f-Biminimal Legendre Curves in Sasakian Space Forms

Finally, we can give the following explicit example:

Let us take y(t) = (sin2t, —cos2t,0,0,1) in R®(—3). Using the
above equations and Theorem 12, «v is a proper f-biminimal
Legendre curve with osculating order r =2, ky = 2, f = e,

T L E;. We can easily check that the conditions of Theorem 12
are verified.
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