Alternative Description of Rigid Body Kinematics and Quantum Mechanical Angular Momenta

Danail Brezov1, Clementina Mladenova2 and Ivailo Mladenov3

1University of Architecture, Civil Engineering and Geodesy
2Institute of Mechanics, Bulgarian Academy of Sciences
3Institute of Biophysics, Bulgarian Academy of Sciences

Geometry, Integrability and Quantization
June 03-08, 2016, Varna, Bulgaria
Two-Axes Decompositions

Given two non-parallel unit vectors $\hat{c}_{1,2} \in S^2$ the NSC for decomposing

$$\mathcal{R}(n, \phi) = \mathcal{R}(\hat{c}_2, \phi_2)\mathcal{R}(\hat{c}_1, \phi_1)$$

is the coincidence of the matrix entries

$$r_{21} = g_{21}$$

and the solution has the form

$$\phi_1 = 2 \arctan \left(\frac{n, \hat{c}_1 \times \hat{c}_2}{(n, \hat{c}_1)g_{21}} \right), \quad \phi_2 = 2 \arctan \left(\frac{n, \hat{c}_1 \times \hat{c}_2}{(n, \hat{c}_2)g_{12}} \right)$$

where we denote

$$r_{ij} = (\hat{c}_i, \mathcal{R}(n, \phi)\hat{c}_j), \quad g_{ij} = (\hat{c}_i, \hat{c}_j), \quad a[i;b_j] = a_i b_j - a_j b_i.$$
Euler Angles and Conjugation

Consider the Euler decomposition of a rotation $\mathcal{R} \in SO(3)$

$$\mathcal{R}(n, \phi) = \mathcal{R}(\hat{c}_1, \psi)\mathcal{R}(\hat{c}_2, \vartheta)\mathcal{R}(\hat{c}_1, \varphi)$$

where ϕ, φ, ϑ and ψ denote the angles and $n, \hat{c}_{1,2}$ - the invariant axes (with the Davenport condition $\hat{c}_1 \perp \hat{c}_2$). A simple conjugation yields

$$\mathcal{R}_1(\psi)\mathcal{R}_2(\vartheta)\mathcal{R}_1(\phi) = \mathcal{R}_1(\psi)\mathcal{R}_2(\vartheta)\mathcal{R}_1^{-1}(\psi)\mathcal{R}_1(\varphi + \psi)$$

so we have an equivalent two-factor decomposition with respect to a (shifted) pair of orthogonal axes

$$\mathcal{R}(n, \phi) = \mathcal{R}(\mathcal{R}(\hat{c}_1, \psi) \hat{c}_2, \vartheta)\mathcal{R}(\hat{c}_1, \varphi + \psi).$$
One Particular Solution

It is not difficult to satisfy the condition $r_{21} = g_{21}$ choosing arbitrary \hat{c}_1

$$\hat{c}_2 = \lambda \hat{c}_1 \times \mathcal{R}(c) \hat{c}_1, \quad \lambda = (1 - r_{11}^2)^{-1/2}$$

and as for the solutions, we have (note that $\phi_1 = \psi$ and $\phi_2 = \varphi + \psi$)

$$\phi_1 = 2 \arctan \rho_1, \quad \phi_2 = \arccos r_{11}$$

with the notation $\rho_i = \tan \frac{\phi}{2}(n, \hat{c}_i)$. One exception is the setting

$$\mathcal{R}(n, \pi) = 2 n \otimes n^t - \mathcal{I}, \quad n \perp \hat{c}_1$$

that yields a one-parameter set of solutions. Choosing $\hat{c}_2 \perp \hat{c}_1$ one has

$$\mathcal{R}(n, \pi) = \mathcal{R}(\hat{c}_2, \pi) \mathcal{R}(\hat{c}_1, \phi_1), \quad \phi_1 = 2 \angle(c_2, n).$$
The Orthonormal Frame

One easily constructs a basis with a third vector

\[\hat{c}_3 = \hat{c}_1 \times \hat{c}_2 = \lambda [r_{11} I - \mathcal{R}] \hat{c}_1. \]

In order to parameterize the SO(3) we choose the third coordinate \(\kappa \) as the normal component of the rate, at which \(\hat{c}_2 \) varies with \(\mathcal{R} \), i.e.,

\[\hat{c}'_2 = \kappa' \hat{c}_1 \times \hat{c}_2. \]
Kinematics

The \(\{\phi_1, \phi_2, \kappa\} \) coordinates provide the kinematic equations in the form

\[
\begin{align*}
\dot{\phi}_1 &= \Omega_1 - \Omega_3 \tan \frac{\phi_2}{2} \\
\dot{\phi}_2 &= \Omega_2 \\
\dot{\kappa} &= \Omega_1 + \Omega_3 \cot \phi_2
\end{align*}
\]

where \(\Omega_k \) denote the components of the angular velocity in the so chosen basis. Inverting the matrix of the above system, one easily obtains

\[
\begin{align*}
\Omega_1 &= \dot{w} - \cos v \, \dot{u} \\
\Omega_2 &= \dot{v} \\
\Omega_3 &= \sin v \, \dot{u}
\end{align*}
\]

where we make use of the notation \(u = \kappa - \phi_1 \), \(v = \phi_2 \) and \(w = \kappa \).
Dynamics

Consider the free Euler equations for a rotational inertial ellipsoid

\[
\ddot{u} = - \cot v \dot{u} \dot{v} \\
\ddot{v} = \mu (\cos v \dot{u} - \dot{w}) \sin v \dot{u} \\
\ddot{w} = (\mu \sin v - \csc v) \dot{u} \dot{v}
\]

with \(I_1 = I_2 = l \) and \(\mu = 1 - l_3/l \). One has \(\Omega_3 = \text{const.} \) and

\[
v = a \cos(\omega t + \varphi_0) + b, \quad \omega = \mu \Omega_3.
\]

The kinematic equations then yield directly

\[
\Omega_1(t) = a\omega \cos(\omega t + \varphi_0), \quad \Omega_2(t) = -a\omega \sin(\omega t + \varphi_0)
\]

while for the \(u \) and \(v \) variables one ends up with

\[
u = \mp \frac{1}{\mu} \int \frac{\csc v \, dv}{\sqrt{a^2 - (v - b)^2}}, \quad w = \mp \frac{1}{\mu} \int \frac{\cot v + \mu(v - b)}{\sqrt{a^2 - (v - b)^2}} \, dv.
\]
Infinitesimal Variations

Infinitesimal left and right deck transformations yield the differential

\[d\phi = \sin \phi \left(\csc \phi_1 \, d\phi_1 + \frac{1 - \cos \phi_2}{\cos \phi_1 - \cos \phi} \, \csc \phi_2 \, d\phi_2 + \csc \phi_1 \, \csc \phi_2 \, d\kappa \right) \]

as well as the components of the angular momentum operator

\[L_1 = \frac{\partial}{\partial \phi_1} \]
\[L_2 = \sin \phi_1 \tan \frac{\phi_2}{2} \frac{\partial}{\partial \phi_1} + \cos \phi_1 \frac{\partial}{\partial \phi_2} + \sin \phi_1 \csc \phi_2 \frac{\partial}{\partial \kappa} \]
\[L_3 = \cos \phi_1 \tan \frac{\phi_2}{2} \frac{\partial}{\partial \phi_1} - \sin \phi_1 \frac{\partial}{\partial \phi_2} + \cos \phi_1 \csc \phi_2 \frac{\partial}{\partial \kappa} . \]
The associated Laplace operator (quantum Hamiltonian) has the form

\[\Delta = \sec^2 \frac{\phi_2}{2} \frac{\partial^2}{\partial \phi_1^2} + \frac{\partial^2}{\partial \phi_2^2} - \tan \frac{\phi_2}{2} \frac{\partial}{\partial \phi_2} + \csc^2 \frac{\phi_2}{2} \frac{\partial^2}{\partial \kappa^2} \]

Using the notation \((\phi_1, \phi_2) \rightarrow (\alpha, \vartheta)\) one may rewrite the above as

\[\Delta = \sec^2 \frac{\vartheta}{2} \left[\frac{\partial^2}{\partial \alpha^2} + \frac{\partial}{\partial \vartheta} \left(\cos^2 \frac{\vartheta}{2} \frac{\partial}{\partial \vartheta} \right) \right] + \csc^2 \frac{\vartheta}{2} \frac{\partial^2}{\partial \kappa^2}. \]

For \(\kappa = \text{const.}\) we obtain the restriction on the quadric \(r_{21} = g_{21}\)

\[\Delta_0 = \sec^2 \frac{\vartheta}{2} \frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \vartheta^2} - \tan \frac{\vartheta}{2} \frac{\partial}{\partial \vartheta}. \]
The factors $\epsilon_k = \hat{c}_k^2$ distinguish between space-like ($\epsilon_k = 1$), time-like ($\epsilon_k = -1$) and light-like ($\epsilon_k = 0$) vectors in $\mathbb{R}^{2,1}$. We may denote

$$\tau = \tanh \frac{\phi}{2} \ (\epsilon = 1), \quad \tau = \tan \frac{\phi}{2} \ (\epsilon = -1), \quad \tau = \frac{\phi}{2} \ (\epsilon = 0)$$

thus unifying angles and rapidities. Note also the isotropic singularity.

Theorem

If $\hat{c}_{1,2} \in c_\circ^\perp$ with $c_\circ^2 = 0$, we may decompose a pseudo-rotation

$$\Lambda(n, \tau) = \Lambda(\hat{c}_2, \tau_2) \Lambda(\hat{c}_1, \tau_1), \quad \Lambda \in SO(2,1)$$

if and only if $n \in c_\circ^\perp$ lies the same tangent plane to the null cone.
The Monodromy Matrix

The quantum mechanical monodromy matrix

\[\mathcal{M} = \begin{pmatrix} 1/\bar{t} & -\bar{r}/\bar{t} \\ -r/t & 1/t \end{pmatrix} \in SU(1, 1) \]

relates left and right free particle asymptotic solutions

\[\Psi(k,x) \sim e^{ikx} + r(k)e^{-ikx}, \quad x \to -\infty \]
\[\Psi(k,x) \sim t(k)e^{ikx}, \quad x \to \infty. \]

In a standard split-quaternion basis \(\mathcal{M} \) may be decomposed as

\[\mathcal{M} \to \zeta_{\mathcal{M}} = (\mathcal{R}(t), -\mathcal{R}(rt), \mathcal{I}(rt), \mathcal{I}(t))^t \]

associating \(t \in \mathbb{R} \) with pure boosts and \(r = 0 \) with pure rotations.
Choosing \(\hat{c}_1 \) to be aligned with the \(z \)-axis we find

\[
\phi_1 = 2\theta, \quad \theta = \arg(t)
\]

as well as

\[
\tau_2 = \sqrt{1 - |t|^2} \quad \Rightarrow \quad \phi_2 = 2 \arccosh |t|^{-1}
\]

which finally yields

\[
\mathcal{M} = \frac{1}{|t|} \begin{pmatrix}
1 & -re^{-2i\theta} \\
-re^{2i\theta} & 1
\end{pmatrix}
\begin{pmatrix}
e^{i\theta} & 0 \\
0 & e^{-i\theta}
\end{pmatrix}
\]

and we decompose the monodromy into a product of a pure phase shift and a phase preserving scattering.
Extension to SO(3, 1)

The local isomorphism

\[\text{SO}^+(3, 1) \cong \text{SO}(3, \mathbb{C}) \]

allows for extending via complexification e.g using biquaternions.

The existence of invariant axes is ensured by the Plücker relations

\[(\Re \tau n, \Im \tau n) = (\Re \tau_k \hat{c}_k, \Im \tau_k \hat{c}_k) = 0 \]

and decomposability with real scalar parameters demands

\[(\Re \tau n, \Im \tau_k \hat{c}_k) + (\Re \tau_k \hat{c}_k, \Im \tau n) = 0 \]

which projects the problem to a three-dimensional hyperplane.

Similar arguments (and Plücker relations) hold for the groups

\[\text{SO}(4), \quad \text{SO}(2, 2), \quad \text{SO}^*(4). \]
Consider the generalized Rodrigues’ vector for $\text{SO}(3,1)$

$$\mathbf{c} = \tau \mathbf{n} = \alpha + i \beta \in \mathbb{CP}^3.$$

In the Plücker setting $\alpha \perp \beta$ we may write

$$\Lambda(\alpha + i\beta) = \Lambda(i\tilde{\beta}_+)\Lambda(\alpha) = \Lambda(\alpha)\Lambda(i\tilde{\beta}_-), \quad \tilde{\beta}_\pm = \frac{I \pm \alpha \times}{1 + \alpha^2} \beta.$$

One example is the Thomas precession, in which

$$\alpha = \frac{\beta_1 \times \beta_2}{1 + \beta_1 \cdot \beta_2}, \quad \beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \cdot \beta_2}$$

where $i\beta_{1,2}$ are the Rodrigues’ vectors of the two consecutive boosts.
A Numerical Example

Consider a proper Lorentz transformation

\[
\Lambda = \frac{1}{5} \begin{pmatrix}
-6 & 2 & -1 & -4 \\
-4 & -3 & -6 & -6 \\
-3 & -4 & 2 & -2 \\
6 & 2 & 4 & 9
\end{pmatrix}
\]

and let us choose \(\hat{c}_1 = (1+i, 1-i, 1) \), so that \(\Lambda(\hat{c}_1, \tau_1) \) preserves

\[
\varsigma = (1, 1, 1, 0)^t.
\]

Then, we easily obtain \(\Lambda = \Lambda_2 \Lambda_1 \) with

\[
\Lambda_1 = \frac{1}{17} \begin{pmatrix}
-15 & 8 & 24 & 24 \\
-8 & -15 & 40 & 40 \\
40 & 24 & -47 & -64 \\
-40 & -24 & 64 & 81
\end{pmatrix}, \quad \Lambda_2 = \frac{1}{85} \begin{pmatrix}
178 & 138 & -401 & -452 \\
36 & 77 & -334 & -334 \\
109 & 224 & -438 & -506 \\
-194 & -278 & 676 & 761
\end{pmatrix}.
\]
Given a rotation matrix $\mathcal{R} \in \text{SO}(3)$ with rational coefficients and a rational unit vector $\hat{\mathbf{c}}_1$ we may construct $\hat{\mathbf{c}}_2 = \hat{\mathbf{c}}_1 \times \mathcal{R} \hat{\mathbf{c}}$, which yields

$$
\tau_1 = \rho_1, \quad \tau_2 = \frac{1}{1 + r_{11}}
$$

in the Euclidean case and

$$
\tau_1 = \epsilon_1^{-1} \rho_1, \quad \tau_2 = (\epsilon_1 + r_{11})^{-1}
$$

for $\text{SO}(3, 1)$, so the two factors are rational as well.
Recommended Readings

Thank You!

THANKS FOR YOUR PATIENCE!