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Two-Axes Decompositions

Given two non-parallel unit vectors ĉ1,2 ∈ S2 the NSC for decomposing

R(n, φ) = R(ĉ2, φ2)R(ĉ1, φ1)

is the coincidence of the matrix entries

r21 = g21

and the solution has the form

φ1 = 2 arctan
(n, ĉ1× ĉ2)

(n, ĉ[1)g2]1
, φ2 = 2 arctan

(n, ĉ1× ĉ2)

(n, ĉ[2)g1]2

where we denote

rij = (ĉi , R(n, φ) ĉj), gij = (ĉi , ĉj), a[ibj] = aibj − ajbi .
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Euler Angles and Conjugation

Consider the Euler decomposition of a rotation R ∈ SO(3)

R(n, φ) = R(ĉ1, ψ)R(ĉ2, ϑ)R(ĉ1, ϕ)

where φ, ϕ, ϑ and ψ denote the angles and n, ĉ1,2 - the invariant axes
(with the Davenport condition ĉ1⊥ ĉ2). A simple conjugation yields

R1(ψ)R2(ϑ)R1(ϕ) = R1(ψ)R2(ϑ)R−11 (ψ)R1(ϕ+ ψ)

so we have an equivalent two-factor decomposition with respect to a
(shifted) pair of orthogonal axes

R(n, φ) = R (R(ĉ1, ψ) ĉ2, ϑ)R(ĉ1, ϕ+ ψ).
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One Particular Solution

It is not difficult to satisfy the condition r21 = g21 choosing arbitrary ĉ1

ĉ2 = λ ĉ1×R(c) ĉ1, λ = (1− r211)−1/2

and as for the solutions, we have (note that φ1 = ϑ and φ2 = ϕ+ ψ)

φ1 = 2 arctan ρ1, φ2 = arccos r11

with the notation ρi = tan φ
2 (n, ĉi ). One exception is the setting

R(n, π) = 2n⊗nt − I, n ⊥ ĉ1

that yields a one-parameter set of solutions. Choosing ĉ2 ⊥ ĉ1 one has

R(n, π) = R(ĉ2, π)R(ĉ1, φ1), φ1 = 2](c2,n).
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The Orthonormal Frame

One easily constructs a basis with a third vector

ĉ3 = ĉ1× ĉ2 = λ [r11 I −R] ĉ1.

In order to parameterize the SO(3) we choose the third coordinate κ as
the normal component of the rate, at which ĉ2 varies with R, i.e.,

ĉ′2 = κ′ ĉ1× ĉ2.

D. Brezov, C. Mladenova and I. Mladenov Alternative Description of Rigid Body Kinematics...



byul ogo

The Construction Applications in Mechanics The Hyperbolic Case Rational Coordinates

Kinematics

The {φ1, φ2, κ} coordinates provide the kinematic equations in the form

φ̇1 = Ω1 − Ω3 tan
φ2
2

φ̇2 = Ω2

κ̇ = Ω1 + Ω3 cotφ2

where Ωk denote the components of the angular velocity in the so chosen
basis. Inverting the matrix of the above system, one easily obtains

Ω1 = ẇ − cos v u̇

Ω2 = v̇

Ω3 = sin v u̇

where we make use of the notation u = κ− φ1, v = φ2 and w = κ.
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Dynamics

Consider the free Euler equations for a rotational inertial ellipsoid

ü = − cot v u̇ v̇

v̈ = µ(cos v u̇ − ẇ) sin v u̇

ẅ = (µ sin v − csc v) u̇ v̇

with I1 = I2 = I and µ = 1− I3/I . One has Ω3 = const. and

v = a cos(ωt + ϕ◦) + b, ω = µΩ3.

The kinematic equations then yield directly

Ω1(t) = aω cos(ωt + ϕ◦), Ω2(t) = −aω sin(ωt + ϕ◦)

while for the u and v variables one ends up with

u = ∓ 1

µ

∫
csc v dv√
a2−(v−b)2

, w = ∓ 1

µ

∫
cot v+µ(v−b)√

a2−(v−b)2
dv .
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Infinitesimal Variations

Infinitesimal left and right deck transformations yield the differential

dφ = sinφ

(
cscφ1 dφ1 +

1−cosφ2
cosφ1−cosφ

cscφ2 dφ2 + cscφ1 cscφ2 dκ

)
as well as the components of the angular momentum operator

L1 =
∂

∂φ1

L2 = sinφ1 tan
φ2
2

∂

∂φ1
+ cosφ1

∂

∂φ2
+ sinφ1 cscφ2

∂

∂κ

L3 = cosφ1 tan
φ2
2

∂

∂φ1
− sinφ1

∂

∂φ2
+ cosφ1 cscφ2

∂

∂κ
·
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The Laplacian

The associated Laplace operator (quantum Hamiltonian) has the form

∆ = sec2
φ2
2

∂2

∂φ21
+

∂2

∂φ22
− tan

φ2
2

∂

∂φ2
+ csc2 φ2

∂2

∂κ2

Using the notation (φ1, φ2)→ (α, ϑ) one may rewrite the above as

∆ = sec2
ϑ

2

[
∂2

∂α2
+

∂

∂ϑ

(
cos2

ϑ

2

∂

∂ϑ

)]
+ csc2 ϑ

∂2

∂κ2
·

For κ = const. we obtain the restriction on the quadric r21 = g21

∆0 = sec2
ϑ

2

∂2

∂α2
+

∂2

∂ϑ2
− tan

ϑ

2

∂

∂ϑ
·
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The Hyperbolic Case

The factors εk = ĉ2k distinguish between space-like (εk = 1), time-like
(εk = −1) and light-like (εk = 0) vectors in R2,1. We may denote

τ = tanh
φ

2
(ε=1), τ = tan

φ

2
(ε=−1), τ =

φ

2
(ε=0)

thus unifying angles and rapidities. Note also the isotropic singularity

Theorem

If ĉ1,2 ∈ c⊥◦ with c2◦ = 0, we may decompose a pseudo-rotation

Λ(n, τ) = Λ(ĉ2, τ2)Λ(ĉ1, τ1), Λ ∈ SO(2, 1)

if and only if n ∈ c⊥◦ lies the same tangent plane to the null cone.
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The Monodromy Matrix

The quantum mechanical monodromy matrix

M =

(
1/t̄ −r̄/t̄

−r/t 1/t

)
∈ SU(1, 1)

relates left and right free particle asymptotic solutions

Ψ(k , x) ∼ eikx + r(k) e−ikx , x → −∞
Ψ(k , x) ∼ t(k) eikx , x →∞.

In a standard split-quaternion basis M may be decomposed as

M → ζM = (<(t), −<(r t̄), =(r t̄), =(t) )t

associating t ∈ R with pure boosts and r = 0 with pure rotations.
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Decomposition of Scattering Potentials

Choosing ĉ1 to be aligned with the z-axis we find

φ1 = 2θ, θ = arg (t)

as well as
τ2 =

√
1− |t |2 ⇒ φ2 = 2 arccosh |t |−1

which finally yields

M =
1

|t |

(
1 −r̄e 2iθ

−re−2iθ 1

)(
eiθ 0
0 e−iθ

)
and we decompose the monodromy into a product of a pure phase shift

and a phase preserving scattering.
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Extension to SO(3, 1)

The local isomorphism

SO+(3, 1) ∼= SO(3,C)

allows for extending via complexification e.g using biquaternions.

The existence of invariant axes is ensured by the Plücker relations

(< τn,= τn) = (< τk ĉk ,= τk ĉk) = 0

and decomposability with real scalar parameters demands

(< τn,= τk ĉk) + (< τk ĉk ,= τn) = 0

which projects the problem to a three-dimensional hyperplane.

Similar arguments (and Plücker relations) hold for the groups

SO(4), SO(2, 2), SO∗(4).
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Thomas Precession and Wigner Little Groups

Consider the generalized Rodrigues’ vector for SO(3, 1)

c = τn = α+ iβ ∈ CP3.

In the Plücker setting α⊥ β we may write

Λ(α+ iβ)=Λ(iβ̃+)Λ(α)=Λ(α)Λ(iβ̃−), β̃±=
I±α×

1 +α2
β.

One example is the Thomas precession, in which

α =
β1× β2

1 + β1 · β2
, β =

β1 + β2

1 + β1 · β2

where iβ1,2 are the Rodrigues’ vectors of the two consecutive boosts.
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A Numerical Example

Consider a proper Lorentz transformation

Λ =
1

5

(
−6 2 −1 −4
−4 −3 −6 −6
−3 −4 2 −2
6 2 4 9

)

and let us choose ĉ1 = (1+i, 1−i, 1), so that Λ(ĉ1, τ1) preserves

ς = (1, 1, 1, 0)t .

Then, we easily obtain Λ = Λ2Λ1 with

Λ1 =
1

17

(
−15 8 24 24
−8 −15 40 40
40 24 −47 −64

−40 −24 64 81

)
, Λ2 =

1

85

(
178 138 −401 −452
36 77 −334 −334

109 224 −438 −506
−194 −278 676 761

)
·
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Rational Coordinates

Given a rotation matrix R ∈ SO(3) with rational coefficients and a
rational unit vector ĉ1 we may construct ĉ2 = ĉ1 ×Rĉ, which yields

τ1 = ρ1, τ2 =
1

1 + r11

in the Euclidean case and

τ1 = ε−11 ρ1, τ2 = (ε1 + r11)−1

for SO(3, 1), so the two factors are rational as well.
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Thank You!

THANKS FOR YOUR PATIENCE!
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