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1. Preliminaries

Let Mn be a n = 2m-dimensional differentiable manifold
covered with local coordinate systems (xi).

Definition 1.
An almost complex structure on a manifold Mn is a
(1, 1)−tensor field J = (Jkj ) satisfying the equation

J2 = −E : Jki J
i
j = −δkj

where E = (δkj ) is the unit tensor field on Mn. A manifold Mn

with such a structure J is called an almost complex manifold .

If it is possible to find coordinates so that J takes the canonical
form

(J ij) =

(√
−1δαβ 0

0 −
√
−1δα̂

β̂

)
α, β = 1,m

on an entire neighborhood of any given point p, then J is said to
be integrable.

Yevhen CHEREVKO and Olena CHEPURNA Complex and real surfaces of LCK-manifolds



A manifold Mn with an integrable structure J is called a
complex manifold .
A Hermitian metric on a manifold Mn is a Riemannian metric g
such that

g(JX, JY ) = g(X,Y ) : Jki gklJ
l
j = gij

for any vector fields X and Y on M2m.
An almost complex manifold with a Hermitian metric is called
an almost Hermitian manifold and a complex manifold with a
Hermitian metric is called a Hermitian manifold .
We put Ω(X,Y ) = g(X, JY ) and call it a fundamental 2-form of
an almost complex manifold. A Hermitian metric g on an
almost complex manifold M2m is called a Kähler metric if the
fundamental 2-form Ω is closed:

dΩ = 0.

An almost complex manifold Mn with a Kähler metric is called
an almost Kähler manifold . A complex manifold M2m with a
Kähler metric is called a Kähler manifold .
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Let (M2m, J, g) be a Hermitian manifold of complex dimension
m, where J denotes its complex structure, and g its Hermitian
metric.

Definition 2.
A Hermitian manifold (M2m, J, g) is called

a locally conformal Kähler manifold (LCK - manifold)
if there is an open cover U =

{
Uα
}
α∈A of M2m and a family

{σα}α∈A of C∞ functions σα : Uα → R so that each local metric

ĝα = e−2σαg|Uα

is Kählerian.

An LCK - manifold is endowed with some closed form ω, so
called a Lee form which can be calculated as

ω =
1

m− 1
δΩ ◦ J : ωi = − 2

n− 2
Jαβ,αJ

β
i .
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Let Mk be an k-dimensional manifold immersed in an
2m-dimensional Riemannian manifold M2m. Let ∇ and ∇ be
operators of covariant differentiations on M2m and Mk,
respectively. Then the Gauss and Weingarten formulas are given
by [Chen B.Y., p. 2] :

∇XY = ∇XY + h(X,Y ),

∇Xξ = −AξX +∇⊥Xξ,

respectively, where X and Y are vector fields tangent to Mk

and ξ normal to Mk.
h(X,Y ) is the second fundamental form, ∇⊥ the linear
connection induced in the normal bundle E(Ψ), called the
normal connection, and Aξ the second fundamental tensor at ξ.
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We call Mk
CR− submanifold of (M2m, J, g) if Mk carries a

C∞ distribution D so that
1 D is holomorphic (i.e. Jx(Dx) = Dx) for any x ∈M

k,
2 the orthogonal complement D⊥ with respect to g = Ψ∗g of
D in T (M

k
) is anti-invariant (i.e. Jx(D⊥x) ⊆ E(Ψ)x) for

any x ∈Mk )[Dragomir S., Ornea L., p. 153]
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Let (M
k
,D) be a CR−submanifold of the Hermitian manifold

M2m
0 . Set p = dimCDx and p = dimRD⊥x ; for any x ∈M

k so
that 2p+ q = k. If q = 0 then Mk is a complex submanifold , i.e.
it is a complex manifold and Ψ is a holomorphic immersion. If
p = 0 then Mk is an anti-invariant submanifold (i.e.
Jx(Tx(M

k
)) ⊆ E(Ψ)x for any x ∈Mk). A CR−submanifold

(M
k
,D) is proper if p 6= 0 and q 6= 0. Also (M

k
,D) is generic if

q = 2m− k (i.e. Jx(Tx(M
k
)) = E(Ψ)x for any x ∈Mk). A

submanifold Mk of the complex manifold (M2m, J) is totally
real if

Tx(M
k
) ∩ Jx(Tx(M

k
)) = {0}

for any x ∈Mk
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2. Complex surfaces of LCK-manifolds

Let submanifold Mk is immersed in LCK-manifold M2m

Ψ : M
k −→M2m,

so that k = 2p and for any x ∈M2p

Jx(Tx(M
2p

)) = Tx(M
2p

).

Let M2p be represented by

xα = xα(y1, ..., y2p),

where α = 1, ..., 2m and yi, i = 1, ..., 2p are local coordinate
systems respectively on M2m and on M2p. Then the tangent
subspace of M2p at each point x = x(y) is spanned by vectors:

Bα
i = ∂ix

α.
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If a tensor gαβ is a Riemannian metric of M2m then induced
metric of M2p take the form:

gij = Bα
i gαβB

β
j .

We can define tensors

Bi
α = Bβ

j g
ijgαβ;

and
J
j
i = JαβB

j
αB

β
i .

The late is an almost complex structure induced on M2p by the
immersion.
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We obtained the following Theorem:

Theorem 1.

If a complex submanifold M2p is immersed in a LCK-manifold
M2m then immersed M2p is a LCK-manifold. Moreover if Lee
field B = ω# defined in M2m is normal to M2p, then immersed
M

2p is a Kähler one.

Similar results were published in [Ianuş S. Matsumoto K.
Ornea L.]
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But it is important to explore the immersions also with regard
to the position of Ψ(M

2p
) with respect to the Lee field of M2m.

There are limitations. For instance, we have [Papaghiuc N.]:

Theorem 2.

Let Mk be k-dimensional (k ≥ 2) CR-submanifold of a Vaisman
manifold M2m. If the anti-Lee field A = −JB = −Jω# is
normal to Mk then Mk is an anti-invariant submanifold of M2m

(k ≤ m). Consequently, a Vaisman manifold admits no proper
CR-submanifolds so that A = Ψ∗A = 0. In particular, there are
no proper CR-submanifolds of a Vaisman manifold with
B ∈ D⊥. Also, there are no complex submanifolds of a Vaisman
manifold normal to the Lee field B = ω#.
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Theorem 3.
LCK-manifold M2m admit immersion of complex hypersurface
M

2m−2 so that the Lee field B = ω# and the anti-Lee field
A = −JB = −Jω# are normal to the hypersurface M2m−2 if
and only if the Lee form of M2m satisfies the condition

∇Xω(Y ) =
||ω||2

2
g(X,Y ).
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3. Real surfaces of LCK-manifolds

Let M2m−1 be a 2m− 1-dimensional manifold and f , ξ, η be a
tensor field of type (1, 1), a vector field, a 1-form on M2m−1

respectively. If f , ξ and η satisfy the conditions{
η(ξ) = 1; fξ = 0;
f2X = −X + η(X); η(fX) = 0,

for any vector field X ∈ X(M2m−1), then M2m−1 is said to have
an almost contact structure (f, ξ, η) and is called an almost
contact manifold [Yano, p. 252]. If an almost contact manifold
M2m−1 admits a Riemannian metric tensor field g such that

1) η(X) = g(ξ,X);
2) g(fX, fY ) = g(X,Y )− η(X)η(Y ),

then M2m−1 is said to have an almost contact metric structure
(f, ξ, η, g) and is called an almost contact metric manifold .
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An almost contact structure is called integrable if Nk
ij = 0 and

normal if Nk
ij + ξk(ηj,i − ηi,j) = 0. Here

Nk
ij = fkj,tf

t
i − f tj,ifkt − fki,tf tj + f ti,jf

k
t

is so called Nijenhuis tensor of the almost contact structure.
There are very important theorem [Tashiro Y.]:

Theorem 4.

A hypersurface M2m−1 in an almost complex manifold M2m has
an almost contact structure.

We explore the case when a hypersurface M2m−1 is the maximal
integral submanifold of the distribution defined by the equation

ω = 0,

where ω is the Lee form of the LCK-manifold M2m.
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As above M2m−1 be represented by

xα = xα(y1, ..., y2m−1),

where α = 1, ..., 2m and yi, i = 1, ..., 2m− 1 are local coordinate
systems respectively on M2m and on M2m−1. Then the tangent
subspace of M2m−1 at each point x = x(y) is spanned by
vectors:

Bα
i = ∂ix

α.

If a tensor gαβ is a Riemannian metric of M2m then induced
metric of M2m−1 take the form:

gij = Bα
i gαβB

β
j .

We can define tensors

Bi
α = Bβ

j g
ijgαβ;

and
f ji = JαβB

j
αB

β
i .

The late is an almost contact structure induced in M2p by the
immersion.
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Theorem 5.

If a hypersurface M2m−1 of a LCK-manifold M2m is integral
manifold of the distribution defined by the equation

ω = 0,

where ω is Lee form of the LCK-manifold M2m then induced by
the immersion the almost contact structure

1) f ji = JαβB
j
αB

β
i ;

2) ηk = 1
||ω||B

β
kJ

α
β ωα;

3) ξk = − 1
||ω||B

k
βJ

β
αωα.

is a normal one.
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To formulate the next two theorems we should recall:
The cosymplectic structure is characterized by [Dragomir S.,
Ornea L., p. 232]

1)dη = 0, 2)dΩ = 0, 3)Nk
ij = 0.

The form Ω is defined as

Ω(X,Y ) = g(X, fY ).

The c-Sasakian structure is a normal almost contact metric
structure such that [Dragomir S., Ornea L., p. 41-42]

dη = cΩ.
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Theorem 6.

If a hypersurface M2m−1 of a LCK-manifold M2m is integral
manifold of the distribution defined by the equation

ω = 0

where ω is Lee form of the LCK-manifold M2m that satisfies the
condition

∇Xω(Y ) =
||ω||2

2
g(X,Y )

then induced by the immersion the almost contact structure

1) f ji = JαβB
j
αB

β
i ;

2) ηk = 1
||ω||B

β
kJ

α
β ωα;

3) ξk = − 1
||ω||B

k
βJ

β
αωα.

is a cosymplectic structure. Moreover M2m−1 is totally umbilical
hypersurface of M2m
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Theorem 7.

If a hypersurface M2m−1 of a LCK-manifold M2m is integral
manifold of the distribution defined by the equation

ω = 0

where ω is Lee form of the LCK-manifold M2m that satisfies the
condition

∇Xω(Y ) = 0

then induced by the immersion the almost contact structure

1) f ji = JαβB
j
αB

β
i ;

2) ηk = 1
||ω||B

β
kJ

α
β ωα;

3) ξk = − 1
||ω||B

k
βJ

β
αωα.

is a c-Sasakian structure, c = ||ω||. Moreover M2m−1 is totally
geodesic hypersurface in M2m
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Similar results are obtained by [Vaisman I.] and [Kirichenko V.F.].
Moreover Vaisman I. proved that if M2m is conformally flat
manifold then M2m−1 is a constant curvature manifold.
But we have proved normality of almost contact metric
structure in M2m−1 which satisfies the condition ω = 0 in
LCK-manifold M2m, for common case.
Taking into account that LCK-manifolds with Lee form which
satisfies the condition

∇Xω(Y ) =
||ω||2

2
g(X,Y )

have very particular properties, we propose call such
LCK-manifolds as the Pseudo-Vaisman manifolds.
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Thank you for your attention!
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