Complex and real hypersurfaces of locally conformal Kähler manifolds

Yevhen CHEREVKO and Olena CHEPURNA

Odessa National Economic University

Varna 2016

Topics

- **2** Complex surfaces of LCK-manifolds
- **3** Real surfaces of LCK-manifolds

1. Preliminaries

Let M^n be a n = 2m-dimensional differentiable manifold covered with local coordinate systems (x^i) .

Definition 1.

An almost complex structure on a manifold M^n is a (1,1)-tensor field $J = (J_j^k)$ satisfying the equation

$$J^2 = -E: \quad J_i^k J_j^i = -\delta_j^k$$

where $E = (\delta_j^k)$ is the unit tensor field on M^n . A manifold M^n with such a structure J is called an *almost complex manifold*.

If it is possible to find coordinates so that J takes the canonical form

$$(J_j^i) = \begin{pmatrix} \sqrt{-1}\delta^{\alpha}_{\beta} & 0\\ 0 & -\sqrt{-1}\delta^{\hat{\alpha}}_{\hat{\beta}} \end{pmatrix} \quad \alpha, \beta = \overline{1, m}$$

on an entire neighborhood of any given point p, then J is said to be *integrable*.

A manifold M^n with an integrable structure J is called a *complex manifold*.

A *Hermitian metric* on a manifold M^n is a Riemannian metric g such that

$$g(JX, JY) = g(X, Y): \quad J_i^k g_{kl} J_j^l = g_{ij}$$

for any vector fields X and Y on M^{2m} .

An almost complex manifold with a Hermitian metric is called an *almost Hermitian manifold* and a complex manifold with a Hermitian metric is called a *Hermitian manifold*. We put $\Omega(X, Y) = g(X, JY)$ and call it a *fundamental 2-form* of an almost complex manifold. A Hermitian metric g on an almost complex manifold M^{2m} is called a *Kähler metric* if the fundamental 2-form Ω is closed:

$$d\Omega = 0.$$

An almost complex manifold M^n with a Kähler metric is called an *almost Kähler manifold*. A complex manifold M^{2m} with a Kähler metric is called a *Kähler manifold*.

Let (M^{2m}, J, g) be a Hermitian manifold of complex dimension m, where J denotes its complex structure, and g its Hermitian metric.

Definition 2.

A Hermitian manifold (M^{2m}, J, g) is called a *locally conformal Kähler manifold (LCK - manifold)* if there is an open cover $\mathfrak{U} = \{U_{\alpha}\}_{\alpha \in A}$ of M^{2m} and a family $\{\sigma_{\alpha}\}_{\alpha \in A}$ of C^{∞} functions $\sigma_{\alpha} : U_{\alpha} \to \mathbb{R}$ so that each local metric

$$\hat{g}_{\alpha} = e^{-2\sigma_{\alpha}}g|_{U_{\alpha}}$$

is Kählerian.

An LCK - manifold is endowed with some closed form ω , so called a *Lee form* which can be calculated as

$$\omega = \frac{1}{m-1} \delta \Omega \circ J : \quad \omega_i = -\frac{2}{n-2} J^{\alpha}_{\beta,\alpha} J^{\beta}_i.$$

Let \overline{M}^k be an k-dimensional manifold immersed in an 2m-dimensional Riemannian manifold M^{2m} . Let ∇ and $\overline{\nabla}$ be operators of covariant differentiations on M^{2m} and \overline{M}^k , respectively. Then the Gauss and Weingarten formulas are given by [Chen B.Y., p. 2] :

$$\nabla_X Y = \overline{\nabla}_X Y + h(X, Y),$$

$$\nabla_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi,$$

respectively, where X and Y are vector fields tangent to \overline{M}^k and ξ normal to \overline{M}^k . h(X,Y) is the second fundamental form, ∇^{\perp} the linear connection induced in the normal bundle $E(\Psi)$, called the normal connection, and A_{ξ} the second fundamental tensor at ξ . We call $\overline{M}^k CR$ - submanifold of (M^{2m}, J, g) if \overline{M}^k carries a C^{∞} distribution \mathcal{D} so that

• \mathcal{D} is *holomorphic* (i.e. $J_x(\mathcal{D}_x) = \mathcal{D}_x$) for any $x \in \overline{M}^k$,

So the orthogonal complement \mathcal{D}^{\perp} with respect to $\overline{g} = \Psi^* g$ of \mathcal{D} in $T(\overline{M}^k)$ is *anti-invariant* (i.e. $J_x(\mathcal{D}^{\perp}_x) \subseteq E(\Psi)_x$) for any $x \in \overline{M}^k$)[Dragomir S., Ornea L., p. 153]

Let $(\overline{M}^k, \mathcal{D})$ be a CR-submanifold of the Hermitian manifold M_0^{2m} . Set $p = \dim_{\mathbb{C}} \mathcal{D}_x$ and $p = \dim_{\mathbb{R}} \mathcal{D}_x^{\perp}$; for any $x \in \overline{M}^k$ so that 2p + q = k. If q = 0 then \overline{M}^k is a *complex submanifold*, i.e. it is a complex manifold and Ψ is a holomorphic immersion. If p = 0 then \overline{M}^k is an *anti-invariant submanifold* (i.e. $J_x(T_x(\overline{M}^k)) \subseteq E(\Psi)_x$ for any $x \in \overline{M}^k$). A *CR*-submanifold $(\overline{M}^k, \mathcal{D})$ is proper if $p \neq 0$ and $q \neq 0$. Also $(\overline{M}^k, \mathcal{D})$ is generic if q = 2m - k (i.e. $J_r(\overline{M}^k)) = E(\Psi)_r$ for any $x \in \overline{M}^k$). A submanifold \overline{M}^k of the complex manifold (M^{2m}, J) is *totally real* if

$$T_x(\overline{M}^k) \cap J_x(T_x(\overline{M}^k)) = \{0\}$$

for any $x \in \overline{M}^k$

2. Complex surfaces of LCK-manifolds

Let submanifold \overline{M}^k is immersed in LCK-manifold M^{2m}

$$\Psi:\overline{M}^k\longrightarrow M^{2m},$$

so that k = 2p and for any $x \in \overline{M}^{2p}$

$$J_x(T_x(\overline{M}^{2p})) = T_x(\overline{M}^{2p}).$$

Let \overline{M}^{2p} be represented by

$$x^{\alpha} = x^{\alpha}(y^1, \dots, y^{2p}),$$

where $\alpha = 1, ..., 2m$ and y^i , i = 1, ..., 2p are local coordinate systems respectively on M^{2m} and on \overline{M}^{2p} . Then the tangent subspace of \overline{M}^{2p} at each point x = x(y) is spanned by vectors:

$$B_i^{\alpha} = \partial_i x^{\alpha}.$$

If a tensor $g_{\alpha\beta}$ is a Riemannian metric of M^{2m} then induced metric of \overline{M}^{2p} take the form:

$$\overline{g}_{ij} = B_i^{\alpha} g_{\alpha\beta} B_j^{\beta}.$$

We can define tensors

$$B^i_{\alpha} = B^{\beta}_j \overline{g}^{ij} g_{\alpha\beta};$$

and

$$\overline{J}_i^j = J_\beta^\alpha B_\alpha^j B_i^\beta.$$

The late is an almost complex structure induced on \overline{M}^{2p} by the immersion.

We obtained the following Theorem:

Theorem 1.

If a complex submanifold \overline{M}^{2p} is immersed in a LCK-manifold M^{2m} then immersed \overline{M}^{2p} is a LCK-manifold. Moreover if Lee field $B = \omega^{\#}$ defined in M^{2m} is normal to \overline{M}^{2p} , then immersed \overline{M}^{2p} is a Kähler one.

Similar results were published in [Ianuş S. Matsumoto K. Ornea L.]

But it is important to explore the immersions also with regard to the position of $\Psi(\overline{M}^{2p})$ with respect to the Lee field of M^{2m} . There are limitations. For instance, we have [Papaghiuc N.]:

Theorem 2.

Let M^k be k-dimensional $(k \ge 2)$ CR-submanifold of a Vaisman manifold M^{2m} . If the anti-Lee field $A = -JB = -J\omega^{\#}$ is normal to M^k then M^k is an anti-invariant submanifold of M^{2m} $(k \le m)$. Consequently, a Vaisman manifold admits no proper CR-submanifolds so that $\overline{A} = \Psi_*A = 0$. In particular, there are no proper CR-submanifolds of a Vaisman manifold with $B \in \mathcal{D}^{\perp}$. Also, there are no complex submanifolds of a Vaisman manifold normal to the Lee field $B = \omega^{\#}$.

Theorem 3.

LCK-manifold M^{2m} admit immersion of complex hypersurface \overline{M}^{2m-2} so that the Lee field $B = \omega^{\#}$ and the anti-Lee field $A = -JB = -J\omega^{\#}$ are normal to the hypersurface \overline{M}^{2m-2} if and only if the Lee form of M^{2m} satisfies the condition

$$\nabla_X \omega(Y) = \frac{||\omega||^2}{2} g(X, Y).$$

3. Real surfaces of LCK-manifolds

Let M^{2m-1} be a 2m-1-dimensional manifold and f, ξ, η be a tensor field of type (1,1), a vector field, a 1-form on M^{2m-1} respectively. If f, ξ and η satisfy the conditions

$$\begin{cases} \eta(\xi) = 1; & f\xi = 0; \\ f^2 X = -X + \eta(X); & \eta(fX) = 0, \end{cases}$$

for any vector field $X \in \mathfrak{X}(M^{2m-1})$, then M^{2m-1} is said to have an *almost contact structure* (f, ξ, η) and is called an *almost contact manifold* [Yano, p. 252]. If an almost contact manifold M^{2m-1} admits a Riemannian metric tensor field g such that

1)
$$\eta(X) = g(\xi, X);$$

2) $g(fX, fY) = g(X, Y) - \eta(X)\eta(Y),$

then M^{2m-1} is said to have an almost contact metric structure (f, ξ, η, g) and is called an almost contact metric manifold.

An almost contact structure is called *integrable* if $N_{ij}^k = 0$ and *normal* if $N_{ij}^k + \xi^k(\eta_{j,i} - \eta_{i,j}) = 0$. Here

$$N_{ij}^{k} = f_{j,t}^{k} f_{i}^{t} - f_{j,i}^{t} f_{t}^{k} - f_{i,t}^{k} f_{j}^{t} + f_{i,j}^{t} f_{t}^{k}$$

is so called *Nijenhuis tensor* of the almost contact structure. There are very important theorem [Tashiro Y.]:

Theorem 4.

A hypersurface \overline{M}^{2m-1} in an almost complex manifold M^{2m} has an almost contact structure.

We explore the case when a hypersurface \overline{M}^{2m-1} is the maximal integral submanifold of the distribution defined by the equation

$$\omega = 0,$$

where ω is the Lee form of the LCK-manifold M^{2m} .

As above \overline{M}^{2m-1} be represented by

$$x^{\alpha} = x^{\alpha}(y^1, ..., y^{2m-1}),$$

where $\alpha = 1, ..., 2m$ and y^i , i = 1, ..., 2m - 1 are local coordinate systems respectively on M^{2m} and on \overline{M}^{2m-1} . Then the tangent subspace of \overline{M}^{2m-1} at each point x = x(y) is spanned by vectors:

$$B_i^{\alpha} = \partial_i x^{\alpha}.$$

If a tensor $g_{\alpha\beta}$ is a Riemannian metric of M^{2m} then induced metric of \overline{M}^{2m-1} take the form:

$$\overline{g}_{ij} = B_i^{\alpha} g_{\alpha\beta} B_j^{\beta}.$$

We can define tensors

$$B^i_{\alpha} = B^{\beta}_j \overline{g}^{ij} g_{\alpha\beta};$$

and

$$f_i^j = J^{\alpha}_{\beta} B^j_{\alpha} B^{\beta}_i.$$

The late is an almost contact structure induced in \overline{M}^{2p} by the immersion.

Theorem 5.

If a hypersurface \overline{M}^{2m-1} of a LCK-manifold M^{2m} is integral manifold of the distribution defined by the equation

$$\omega = 0,$$

where ω is Lee form of the LCK-manifold M^{2m} then induced by the immersion the almost contact structure

1)
$$\begin{aligned} f_i^j &= J_\beta^\alpha B_\alpha^j B_i^\beta; \\ 2) \quad \eta_k &= \frac{1}{||\omega||} B_k^\beta J_\beta^\alpha \omega_\alpha; \\ 3) \quad \xi^k &= -\frac{1}{||\omega||} B_\beta^k J_\alpha^\beta \omega^\alpha. \end{aligned}$$

is a *normal* one.

To formulate the next two theorems we should recall: The *cosymplectic structure* is characterized by [Dragomir S., Ornea L., p. 232]

$$1)d\eta = 0, \quad 2)d\overline{\Omega} = 0, \quad 3)N_{ij}^k = 0.$$

The form $\overline{\Omega}$ is defined as

$$\overline{\Omega}(X,Y) = \overline{g}(X,fY).$$

The *c-Sasakian structure* is a normal almost contact metric structure such that [Dragomir S., Ornea L., p. 41-42]

$$d\eta = c\overline{\Omega}.$$

Theorem 6.

If a hypersurface \overline{M}^{2m-1} of a LCK-manifold M^{2m} is integral manifold of the distribution defined by the equation

 $\omega = 0$

where ω is Lee form of the LCK-manifold M^{2m} that satisfies the condition

$$\nabla_X \omega(Y) = \frac{||\omega||^2}{2} g(X, Y)$$

then induced by the immersion the almost contact structure

$$\begin{array}{ll} 1) & f_i^j = J_\beta^\alpha B_\alpha^j B_\beta^\beta; \\ 2) & \eta_k = \frac{1}{||\omega||} B_k^\beta J_\beta^\alpha \omega_\alpha; \\ 3) & \xi^k = -\frac{1}{||\omega||} B_\beta^k J_\alpha^\beta \omega^\alpha. \end{array}$$

is a cosymplectic structure. Moreover \overline{M}^{2m-1} is totally umbilical hypersurface of M^{2m}

Theorem 7.

If a hypersurface \overline{M}^{2m-1} of a LCK-manifold M^{2m} is integral manifold of the distribution defined by the equation

 $\omega = 0$

where ω is Lee form of the LCK-manifold M^{2m} that satisfies the condition

 $\nabla_X \omega(Y) = 0$

then induced by the immersion the almost contact structure

$$\begin{array}{ll} 1) & f_i^j = J_\beta^\alpha B_\alpha^j B_\beta^\beta; \\ 2) & \eta_k = \frac{1}{||\omega||} B_k^\beta J_\beta^\alpha \omega_\alpha; \\ 3) & \xi^k = -\frac{1}{||\omega||} B_\beta^k J_\alpha^\beta \omega^\alpha. \end{array}$$

is a *c-Sasakian structure*, $c = ||\omega||$. Moreover \overline{M}^{2m-1} is totally geodesic hypersurface in M^{2m}

Similar results are obtained by [Vaisman I.] and [Kirichenko V.F.]. Moreover Vaisman I. proved that if M^{2m} is conformally flat manifold then \overline{M}^{2m-1} is a constant curvature manifold. But we have proved normality of almost contact metric structure in \overline{M}^{2m-1} which satisfies the condition $\omega = 0$ in LCK-manifold M^{2m} , for common case. Taking into account that LCK-manifolds with Lee form which satisfies the condition

$$\nabla_X \omega(Y) = \frac{||\omega||^2}{2} g(X, Y)$$

have very particular properties, we propose call such LCK-manifolds as the *Pseudo-Vaisman manifolds*.

- Chen B.Y.: Geometry of submanifolds and its applications. Science Univ. Tokyo, 1981, 96p.
- Dragomir S., Ornea L.: Locally conformal Kähler geometry. Birkhäuser, 1998, 328p.
- Ianuş S., Matsumoto K., Ornea L.: Complex hypersurfaces of a generalized Hopf manifold. Publ. de l'Inst. Mathem., Beograd. 1987, 42, 123–129.
- Mikeš J. at al.: Differential geometry of special mappings. Olomouc: Palacky Univ. Press, 2015, 566p.
- Mikeš J., Vanžurová A., Hinterleitner I.: Geodesic mappings and some generalizations. Olomouc: Palacky Univ. Press, 2009, 304p.

- Papaghiuc N.: Some remarks on CR-submanifolds of a locally conformal Kähler manifold with parallel Lee form. Publ. Math. Debrecen, 1993, 43, 3–4, 337–341.
- Tashiro Y.: On contact structure of hypersurfaces in complex manifolds, I. Tohoku Math. J. (2) 1963, 15, 1, 62-78.
- Yano K., Kon M.: Structures on manifolds. World Sci. Pub., 1984, 508p.
- Vaisman I.: Locally conformal Kähler manifolds with parallel Lee form. Roma: Rend. Matem. 1979, 12, 263-284.

Thank you for your attention!