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1. Preliminaries

Let M™ be a n = 2m-dimensional differentiable manifold
covered with local coordinate systems (z").

Definition 1.

An almost complex structure on a manifold M™ is a
(1,1)—tensor field J = (ij) satisfying the equation

2 __ 5 ki _ k
JB=—By JJ=-0

where F = (5;“) is the unit tensor field on M™. A manifold M"
with such a structure J is called an almost complex manifold.

If it is possible to find coordinates so that J takes the canonical

form
. v —16% 0 _
B

on an entire neighborhood of any given point p, then J is said to
be integrable.
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A manifold M™ with an integrable structure J is called a
complex manifold.

A Hermitian metric on a manifold M™ is a Riemannian metric g
such that

g(JX,JY) =g(X,Y): JFgulJ:= g

for any vector fields X and Y on M?™,

An almost complex manifold with a Hermitian metric is called
an almost Hermitian manifold and a complex manifold with a
Hermitian metric is called a Hermitian manifold.

We put Q(X,Y) = ¢g(X,JY) and call it a fundamental 2-form of
an almost complex manifold. A Hermitian metric g on an
almost complex manifold M?™ is called a Kdhler metric if the
fundamental 2-form €2 is closed:

dQ2 = 0.

An almost complex manifold M™ with a Kahler metric is called
an almost Kihler manifold. A complex manifold M?™ with a
Kahler metric is called a Kdhler manifold.
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Let (M?™,J, g) be a Hermitian manifold of complex dimension
m, where J denotes its complex structure, and ¢ its Hermitian
metric.

Definition 2.

A Hermitian manifold (M?™, J, g) is called

a locally conformal Kdhler manifold (LCK - manifold)
if there is an open cover i = {Ua}a cA of M?™ and a family
{0a}aca of C* functions o, : U, — R so that each local metric

—20q

Ga =€ 7%glu,

is K&hlerian.

An LCK - manifold is endowed with some closed form w, so
called a Lee form which can be calculated as

1
= 0Q0J: w=-———J3.J’.
v m—1 °J w n—QJB’O‘Jl
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Let Mk be an k-dimensional manifold immersed in an
2m-dimensional Riemannian manifold M?2™. Let V ankd V be
operators of covariant differentiations on M?™ and M,

respectively. Then the Gauss and Weingarten formulas are given
by [Chen B.Y., p. 2] :

VxY V)(Y—i-h(X,Y),
Vx€ =—AX + V%€,

respectively, where X and Y are vector fields tangent to M
and £ normal to M.

h(X,Y) is the second fundamental form, V+ the linear
connection induced in the normal bundle E(V), called the
normal connection, and A¢ the second fundamental tensor at §.
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We call " CR— submanifold of (M?™,J, g) if " carries a
C®° distribution D so that

@ D is holomorphic (i.e. Jy(Dy) = D) for any x € Mk,

@ the orthogonal complement D+ with respect to g = ¥*g of
D in T(Mk) is anti-invariant (i.e. J,(Dt,) C E(¥),) for
any r € M )|Dragomir S., Ornea L., p. 153|

Yevhen CHEREVKO and Olena CHEPURNA Complex and real surfaces of LCK-manifolds



Let (Mk, D) be a C R—submanifold of the Hermitian manifold
MZ™. Set p = dimc D, and p = dimg D: for any x € M so
that 2p+ g =k. If ¢ = 0 then M is a complex submanifold, i.e.
it is a complex manifold and V¥ is a holomorphic immersion. If
p = 0 then M is an anti-invariant submanifold (i.e.
Jx(Tx(Mk)) C E(¥), for any = € Mk) A CR—submanifold
(Mk,D) is proper if p # 0 and ¢ # 0. Also (Mk,D) is generic if
q=2m—k (Le. Jo(T,(M")) = E(V), for any = € M"). A
submanifold 37" of the complex manifold (M2™,.J) is totally
real if

T,(M") N J, (T (M")) = {0}

for any = € M
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. Complex surfaces of LCK-manifolds

Let submanifold 7" is immersed in LCK-manifold M2™
WM M,
so that k = 2p and for any x € P
Jo(To (M) = T, (M),
Let 37 be represented by
% = 2%y, .. y?P),

where o = 1,...,2m and 3%, i = 1, ..., 2p are local coordinate
systems respectively on M?™ and on M. Then the tangent
subspace of M at each point x = z(y) is spanned by vectors:

B = 8i$a.

)
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If a tensor g,g is a Riemannian metric of M 2m then induced

metric of sz take the form:

9ij = Bz'agaﬁBjB-
We can define tensors

ny = B}‘Bgijgoﬁ;

and A '
T =J3B.B).

. . =2
The late is an almost complex structure induced on M by the
immersion.
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We obtained the following Theorem:

Theorem 1.

If a complex submanifold M is immersed in a LCK-manifold
M?™ then immersed M is a LCK-manifold. Moreover if Lee

field B = w# defined in M?™ is normal to M2p, then immersed
M is a Kihler one.

Similar results were published in [lanus S. Matsumoto K.
Ornea L.
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But it is important to explore the immersions also with regard
to the position of \II(MZP ) with respect to the Lee field of M?™.
There are limitations. For instance, we have [Papaghiuc N.|:

Theorem 2.

Let M* be k-dimensional (k > 2) C R-submanifold of a Vaisman
manifold M?™. If the anti-Lee field A = —JB = —Jw? is
normal to M* then MP* is an anti-invariant submanifold of M2?™
(k < m). Consequently, a Vaisman manifold admits no proper
C R-submanifolds so that A = U, A = 0. In particular, there are
no proper C R-submanifolds of a Vaisman manifold with

B € D+. Also, there are no complex submanifolds of a Vaisman
manifold normal to the Lee field B = w#.
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Theorem 3.

LCK-manifold M?™ admit immersion of complex hypersurface
M™% 50 that the Lee field B = w# and the anti—Lee2ﬁelc21
A = —JB = —Jw# are normal to the hypersurface M~ if

and only if the Lee form of M?™ satisfies the condition

w 2
Vxw(Y) = ”2”9()(,1/).
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3. Real surfaces of LCK-manifolds

Let M?™~1 be a 2m — 1-dimensional manifold and f, &, n be a
tensor field of type (1, 1), a vector field, a 1-form on M?™~!
respectively. If f, & and n satisfy the conditions

{ n(€) = 1; fE=0;
PX =—-X+n(X);  n(fX)=0,

for any vector field X € X(M?™~1), then M?™ ! is said to have
an almost contact structure (f,£,n) and is called an almost
contact manifold [Yano, p. 252]. If an almost contact manifold
M?™=1 admits a Riemannian metric tensor field ¢ such that

D n(X)=g(X);
2) g(fX, fY)=g(X,Y) —n(X)n(Y),

then M?m~1 is said to have an almost contact metric structure
(f,&,m,g) and is called an almost contact metric manifold.
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An almost contact structure is called integrable if NZ} =0 and
normal if N{; +&*(nji — mij) = 0. Here

t et gk gk gt gt gk
zg tf Galt — fiddj + il

is so called Nijenhuis tensor of the almost contact structure.
There are very important theorem [Tashiro Y.|:

Theorem 4

;
L
i
L

A hypersurface M in an almost complex manifold M?™ has
an almost contact structure.

We explore the case when a hypersurface ™! is the maximal
integral submanifold of the distribution defined by the equation

w =0,

where w is the Lee form of the LCK-manifold M?2™.
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As above M- be represented by

«

 =z%4yt .y

where a = 1,...,2m and 3%, i = 1, ...,2m — 1 are local coordinate

mel)

)

systems respectively on M?™ and on WM™, Then the tangent
subspace of M at each point = = z(y) is spanned by
vectors:
Bia = 8i$a.

If a tensor g,p is a Riemannian metric of M 2m then induced
metric of M- " take the form:

9ij = qugaﬁBf-
We can define tensors

Bl = BJg" gog;
and .

fl =J3B.B).

The late is an almost contact structure induced in 37" by the
immersion.
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If a hypersurface M of a LCK-manifold M?™ is integral
manifold of the distribution defined by the equation

w =0,

where w is Lee form of the LCK-manifold M?™ then induced by
the immersion the almost contact structure

1) fi= JgBj BP;

2) = I HB Jﬁwa,
3) & =—pl.BE JBwe.

is a normal one.
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To formulate the next two theorems we should recall:
The cosymplectic structure is characterized by [Dragomir S.,
Ornea L., p. 232]

1)dn =0, 2)d2=0, 3)N}=0.
The form Q is defined as

QX,Y)=9(X, fY).

The c-Sasakian structure is a normal almost contact metric
structure such that [Dragomir S., Ornea L., p. 41-42]

dn = Q.
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If a hypersurface ™! of a LCK-manifold M?™ is integral
manifold of the distribution defined by the equation

w=20

where w is Lee form of the LCK-manifold M?2™ that satisfies the

condition )
||w]]

2
then induced by the immersion the almost contact structure

VXw(Y) =

9(X,Y)

1) f/ =JgBLB/;
2) Nk = ||wHB'8Jng
3) & =—pL.BEiluwe.

Tlwll

is a cosymplectic structure. Moreover M s totally umbilical
hypersurface of M?™
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 Theorem 7.

If a hypersurface M " of a LCK-manifold M2™ is integral
manifold of the distribution defined by the equation

w=20

where w is Lee form of the LCK-manifold M?2™ that satisfies the
condition
Vxw(®¥)=0

then induced by the immersion the almost contact structure
1) f?' J$BLBY;
2) = HB J§as
3) 5k =~y B§ e,

: : ——2m—1 .
is a c-Sasakian structure, ¢ = ||w||. Moreover M~ is totally
geodesic hypersurface in M?™
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Similar results are obtained by [Vaisman I.| and [Kirichenko V.F.].
Moreover Vaisman I. proved that if M?™ is conformally flat
manifold then 37°"" is a constant curvature manifold.
But we have proved normality of almost contact metric
structure in M-" " which satisfies the condition w = 0 in
LCK-manifold M?™, for common case.
Taking into account that LCK-manifolds with Lee form which
satisfies the condition

ooy = e

we(v) = 2 g(x, v)

have very particular properties, we propose call such
LCK-manifolds as the Pseudo-Vaisman manifolds.
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Thank you for your attention!
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