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1. Geodesics

A geodesic
is an object analogous to straight lines in Euclidean space,
is a curve whose tangent vectors in all of its points are parallel

Definition
A curve ` in An is a geodesic when its tangent vector field remains
in the tangent distribution of ` during parallel transport along the
curve.

A curve `(t) ⊂ An is a geodesic iff the covariant derivative of its
tangent vector λ(t) = ˙̀(t) is proportional to the tangent vector

∇λλ = ρ(t)λ,

where ρ is some function of the parameter t of the curve `.
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When the parameter t of the geodesic is chosen so that ρ(t) ≡ 0,
then this parameter is called natural or affine.
A natural parameter is usually denoted by s.

d2xh(s)

ds2 + Γh
ij(x(s))

dx i (s)

ds
dx j(s)

ds
= 0,

where in (pseudo-) Riemannian spaces

Γh
ij ≡

1
2

(
∂gik(x)

∂x j +
∂gjk(x)

∂x i −
∂gij(x)

∂xk

)
gkh(x), h, i , j , k = 1, 2, . . . , n.

` : xh = xh(t) for any parameter t:

d2xh

dt2
+ Γh

ij(x(t))
dx i

dt
dx j

dt
= ρ(t)

dxh

dt
,

where ρ(t) is some function of the parameter t.

Irena Hinterleitner, Josef Mikeš On Special Coordinate Systems



Examples: some properties of geodesic lines in mechanics

a point mass on a plane without external influences moves on
a geodesic line,

an ideal elastic ribbon without friction between two points on
a curved surface lies along a geodesic.
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2. Geodesic coordinates

A coordinate system will be called geodesic in the point x0 if

Γh
ij |x0 = 0.

A coordinate system will be called geodesic along a curve `
(Fermi coordinates )

if for the prescribed curve `

Γh
ij |` = 0

is satisfied.
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3. Semigeodesic coordinates

For any Riemannian manifold Vn
let us introduce semigeodesic coordinates,
which can be considered as a particular
case of orthogonal coordinates based
on a system of hypersurfaces. (C , x2, . . . , xn)

(x1+C , x2,..., xn)
γ̇

γ

Definition

Let us consider a non-isotropic coordinate hypersurface Σ: x1 = C.
Let us fix some point (C , x2, . . . , xn) on Σ and construct the
geodesic γ passing through the point and tangent to the unit
normal of Σ; γ is an x1-curve, it is parametrized by

γ(x1) = (x1 + C , x2, . . . , xn)

and x1 is the arc length on the geodesic.
Coordinates introduced in this way are called

semigeodesic coordinates in Vn.
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It is well known that the metric form of Vn in semigeodesic
coordinate has the following form:

(1) ds2 = e (dx1)2 + gab(x) dxa dxb, a, b > 1, e = ±1.

In this case for the Christoffel symbols of the second type follows

(2) Γh
11 = 0, h = 1, . . . , n.

On the other hand the coordinate form (1) of the metric is a
sufficient condition for the coordinate system to be semigeodesic.
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Advantages of such coordinates are known since C.F. Gauss:
Geodätische Parallelkoordinaten, [Kreyzig, Diff. Geom. p. 201].

Geodesic polar coordinates:
can be also interpreted as a “limit case”
of semigeodesic coordinates:

all geodesic coordinate lines ϕ = x2 = const pass through one
point called the pole, corresponding to r = x1 = 0,
and lines r = x1 = const are geodesic circles.
Geodätische Polarkoordinaten, [Kreyzig, Diff. Geom. pp. 197-204].
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4. Pre-semigeodesic coordinates

Let An = (M,∇) be an n-dimensional manifold M with
the affine connection ∇, dimension n ≥ 2, and
let U ⊂ M be a coordinate neighbourhood at the point x0 ∈ U.
A couple (U, x) is a coordinate map on An.

It is well known that semigeodesic coordinate systems on surfaces
and (pseudo-) Riemannian manifolds are generalized in the
following way (Mikeš, Vanžurová, Hinterleitner, Geodesic mappings
and some generalizations, Olomouc Univ. Press 2009, see p. 43):

Definition
Coordinates in An are called

pre-semigeodesic coordinates
if one system of coordinate lines is consists of geodesics and their
natural parameter is just the first coordinate.
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The criterium of Pre-semigeodesic coordinates

Theorem (1)

The conditions

(3) Γh
11(x) = 0, h = 1, . . . , n,

are satisfied in (U, x) if and only if the parametrized curves
`: I → U, `(s) = (s, a2, . . . , an), s ∈ I , ai ∈ R, i = 2, . . . , n,

are canonically parametrized geodesics of ∇|U ,
I is some interval, ak are suitaible constants chosen so that `(I ) ⊂ U,
Γh

ij are components of the connection ∇.

Theorem (2)

The conditions (3) are satisfied in (U, x) if and only if the
coordinate system (U, x) is pre-semigeodesic.
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The existence of Pre-semigeodesic coordinates

We thought that the existence of this chart is trivial. This problem
is obviously more difficult than we supposed.

This was observed by Z. Dušek and O. Kowalski [3] who precisely
proved the existence of pre-semigeodesic charts in the case when
the components of the affine connection are real analytic functions.
We proved the following

Theorem (3)

For any affine connection determined by Γh
ij(x) ∈ C r , r ≥ 2, there

exists a local transformation of coordinates determined by
x ′ = f (x) ∈ C r such that the connection in the new coordinates
satisfies Γ′h11(x ′) = 0, for h = 1, . . . , n,
i.e. x ′ is pre-semigeodesic.

The existence of this chart is not excluded in the case when the
components are only continuous.
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Because the transformation of the components of affine connection
has the following form

Γh
ij(x) =

(
Γ′γαβ(x ′(x))∂ix ′α∂jx ′β + ∂ijx ′γ

) ∂xh

∂x ′γ
.

If Γ′hij (x ′) ∈ C r then in the pre-semigeodesic coordinates x in
general Γh

ij(x
′) ∈ C r−2 hold.

If Γ′hij (x ′) ∈ C∞ then Γh
ij(x
′) ∈ C∞, too.
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Thank you for your attention!
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