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Origins
of the Heisenberg(–Weyl) group

Roger Howe said:

An investigator might be able to get what he wanted out of a
situation while overlooking the extra structure imposed by the
Heisenberg group, structure which might enable him to get much
more.

The basic operators of differentiation d
dx and multiplication by x in

satisfy to the same Heisenberg commutation relations [Q,P] = I as
observables of momentum and coordinate in quantum mechanics.
We shall start from the general properties the Heisenberg group and its
representations. Many important applications will follow.



The Symplectic Form
Let n > 1 be an integer. For complex vectors z, w ∈ Cn, we define:

zw̄ = z1w̄1 + z2w̄2 + · · ·+ znw̄n, (1)

where z = (z1, z2, . . . , zn), w = (w1,w2, . . . ,wn).
The following notion is central for Hamiltonian mechanics.

Definition
The symplectic form ω on R2n is a function of two vectors such that:

ω(x,y; x ′,y ′) = xy ′ − x ′y, where (x,y), (x ′,y ′) ∈ R2n, (2)

Check the following properties:

1 ω is anti-symmetric ω(x,y; x ′,y ′) = −ω(x ′,y ′; x,y).
2 ω is bilinear:

ω(x,y;αx ′,αy ′) = αω(x,y; x ′,y ′),

ω(x,y; x ′ + x ′′,y ′ + y ′′) = ω(x,y; x ′,y ′) +ω(x,y; x ′′,y ′′).



The Symplectic Form
Further properties

Exercise

1 Let z = x+ iy and w = x ′ + iy ′ then ω can be expressed through the
complex inner product (1) as ω(x,y; x ′,y ′) = −=(zw̄).

2 The symplectic form on R2 is equal to det

Ç
x x ′

y y ′

å
. Consequently it

vanishes if and only if (x,y) and (x ′,y ′) are collinear.

3 Let A ∈ SL2(R) be a real 2× 2 matrix with the unit determinant.
Define: Ç

x̃

ỹ

å
= A

Ç
x

y

å
and

Ç
x̃ ′

ỹ ′

å
= A

Ç
x ′

y ′

å
. (3)

Then, ω(x̃, ỹ; x̃ ′, ỹ ′) = ω(x,y; x ′,y ′). Moreover, the symplectic
group Sp(2)—the set of all linear transformations of R2 preserving
ω—coincides with SL2(R).



The Heisenberg group
Definition

Now we define the main object of our consideration.

Definition
An element of the n-dimensional Heisenberg group Hn is
(s, x,y) ∈ R2n+1, where s ∈ R and x, y ∈ Rn. The group law on Hn is
given as follows:

(s, x,y) · (s ′, x ′,y ′) = (s+ s ′ + 1
2ω(x,y; x ′,y ′), x+ x ′,y+ y ′), (4)

where ω the symplectic form.

For the Heisenberg group Hn, check that:

1 The unit is (0, 0, 0) and the inverse (s, x,y)−1 = (−s,−x,−y).

2 It is a non-commutative, the centre of Hn is:

Z = {(s, 0, 0) ∈ Hn, s ∈ R}. (5)

3 The group law is continuous, so we have a Lie group.



Alternative group laws I
for the Heisenberg group

1 Introduce complexified coordinates (s, z) on H1 with z = x+ iy.
Then the group law can be written as:

(s, z) · (s ′, z ′) = (s+ s ′ + 1
2=(z

′z̄), z+ z ′).

2 Show that the set R3 with the group law

(s, x,y) ∗ (s ′, x ′,y ′) = (s+ s ′ + xy ′, x+ x ′,y+ y ′) (6)

is isomorphic to the Heisenberg group H1. It is called the polarised
Heisenberg group. Hint: Use the explicit form of the homomorphism

(s, x,y) 7→ (s+ 1
2xy, x,y).�



Alternative group laws II
for the Heisenberg group

3 Define the map φ : H1 →M3(R) by

φ(s, x,y) =

Ö
1 x s+ 1

2xy

0 1 y

0 0 1

è
. (7)

This is a group homomorphism from H1 to the group of 3× 3
matrices with the unit determinant and the matrix multiplication as
the group operation. Write also a group homomorphism from the
polarised Heisenberg group to M3(R).

4 Expand the above items from this Exercise to Hn.



The Weyl algebra
The key idea of analysis is a linearization of complicated object in small
neighbourhoods. Applied to Lie groups it leads to the Lie algebras.
The Lie algebra of the Heisenberg group h1 is also called Weyl algebra.
From the general theory we know, that h1 is a three-dimensional real
vector space, thus, it can be identified as a set with the group H1 ∼ R3

itself.
There are several standard possibilities to realise h1:

1 Generators X of one-parameter subgroups: x(t) = exp(Xt), t ∈ R.
2 Tangent vectors to the group at the group unit.
3 Invariant first-order vector fields (differential operators) on the

group.

There is the important exponential map between a Lie algebra and
respective Lie group. The exponent function can be defined in any
topological algebra as the sum of the following series:

exp(tX) =
∞∑
n=0

(tX)n

n!
.



Generators of subgroups
and the exponential map

1 Matrices from (7) are created by the following exponential map:

exp

Ö
0 x s

0 0 y

0 0 0

è
=

Ö
1 x s+ 1

2xy

0 1 y

0 0 1

è
. (8)

Thus h1 isomorphic to the vector space of matrices in the left-hand
side. We can define the explicit identification exp : h1 → H1 by (8),
which is also known as the exponential coordinates on H1.

2 Define the basis of h1:

S =

Ö
0 0 1
0 0 0
0 0 0

è
, X =

Ö
0 1 0
0 0 0
0 0 0

è
, Y =

Ö
0 0 0
0 0 1
0 0 0

è
. (9)

Write the one-parameter subgroups of H1 generated by S, X and Y.



Invariant vector fields
A (continuous) one-parameter subgroup is a continuous group
homomorphism F from (R,+) to Hn:

F(t+ t ′) = F(t) · F(t ′).

We can calculate the left and right derived action at any point g ∈ Hn:

d(F(t) · g)
dt

∣∣∣∣∣
t=0

and
d(g · F(t))

dt

∣∣∣∣∣
t=0

. (10)

1 Check that the following vector fields on H1 are left (right) invariant:

Sl(r) = ±∂s, Xl(r) = ±∂x − 1
2y∂s, Yl(r) = ±∂y + 1

2x∂s. (11)

Show, that they are linearly independent and, thus, are bases of the
Lie algebra h1 (in two different realizations).

2 Find one-parameter groups of right (left) shifts on H1 generated by
these vector fields.



Commutator I
The principal operation on a Lie algebra, besides the linear structure, is
the Lie bracket—a bi-linear, anti-symmetric form with the Jacoby
identity:

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0.

In the above exercises, as in any algebra, we can define the Lie bracket as
the commutator [A,B] = AB− BA: for matrices and vector fields through
the corresponding algebraic operations in these algebras.

1 Check that bases from (9) and (11) satisfy the Heisenberg
commutator relation

[Xl(r), Yl(r)] = Sl(r) (12)

and all other commutators vanishing. More generally:

[A,A ′] = ω(x,y; x ′,y ′)S, where A(′) = s(′)S+ x(′)X+ y(′)Y, (13)

and ω is the symplectic form.



Commutator II

2 Show that any second (and, thus, any higher) commutator [[A,B],C]
on h1 vanishes. This property can be stated as “the Heisenberg
group is a step 2 nilpotent Lie group”.

3 Check the formula

exp(A) exp(B) = exp(A+ B+ 1
2 [A,B]), where A,B ∈ h1. (14)

The formula is also true for any step 2 nilpotent Lie group and is a
particular case of the Baker–Campbell–Hausdorff formula. Hint: In

the case of H1 you can use the explicit form of the exponential map (8).�
4 Define the vector space decomposition

h1 = V0 ⊕ V1, such that V0 = [V1,V1]. (15)



Automorphisms
of the Heisenberg group

Erlangen programme suggest investigate invariants under group action.
This recipe can be applied recursively to groups themselves.
Transformations of a group which preserve its structure are called group
automorphisms. The following are automorphisms of H1:

1 Inner automorphisms or conjugation with (s, x,y) ∈ H1:

(s ′, x ′,y ′) 7→ (s, x,y) · (s ′, x ′,y ′) · (s, x,y)−1 (16)

= (s ′ +ω(x,y; x ′,y ′), x ′,y ′) = (s ′ + xy ′ − x ′y, x ′,y ′).

2 Symplectic maps (s, x,y) 7→ (s, x̃, ỹ), where

Ç
x̃

ỹ

å
= A

Ç
x

y

å
with A

from the symplectic group Sp(2) ∼ SL2(R), see Exercise 3.

3 Dilations: (s, x,y) 7→ (r2s, rx, ry) for a positive real r.

4 Inversion: (s, x,y) 7→ (−s,y, x).

The last three types of transformations are outer automorphisms.



The group of all automorphisms
of the Heisenberg group

Show that

1 Automorphism groups of H1 and h1 coincide as groups of maps of R3

onto itself. Hint: Use the exponent map and the relation (14). The

crucial step is a demonstration that any automorphism of H1 is a linear

map of R3.�
2 All transforms from the previous slide, viewed as automorphisms of

h1, preserve the decomposition (15).

3 Every automorphism of H1 can be written uniquely as composition
of a symplectic map, an inner automorphism, a dilation and a power
( mod 2) of the inversion from the previous slide. Hint: Any

automorphism is a linear map (by the previous item) of R3 which maps the

centre Z to itself. Thus it shall have the form

(s, x,y) 7→ (cs+ ax+ by, T(x,y)), where a, b and c are real and T is a

linear map of R2.�



The Scrödinger group

For future use we will need S̃p(2) which is the double cover of Sp(2).
We can build the semidirect product G = H1 o S̃p(2) with the standard
group law for semidirect products:

(h,g) ∗ (h ′,g ′) = (h ∗ g(h ′),g ∗ g ′), (17)

where h, h ′ ∈ H1, g,g ′ ∈ S̃p(2). Here the stars denote the respective
group operations while the action g(h ′) is defined as the composition of
the projection map S̃p(2)→ Sp(2) and the action (3).
This group is sometimes called the Schrödinger group and it is known as
the maximal kinematical invariance group of both the free Schrödinger
equation and the quantum harmonic oscillator. This group is of interest
not only in quantum mechanics but also in optics.



Subgroups
and Homogeneous Spaces

Let G be a group and H be its closed subgroup.
The homogeneous space G/H from the equivalence relation: g ′ ∼ g iff
g ′ = gh, h ∈ H. The natural projection p : G→ G/H puts g ∈ G into its
equivalence class.
A continuous section s : G/H→ G is a right inverse of p, i.e. p ◦ s is an
identity map on G/H. Then the left action of G on itself
Λ(g) : g ′ 7→ g−1 ∗ g ′ generates the action on G/H:

g : x 7→ p(g−1 ∗ s(x)), or graphically

G

p

��

g−1∗ // G

p

��
G/H

s

OO

g· // G/H

s

OO

We want to classify up to certain equivalences all possible
H1–homogeneous spaces. According to the diagram we will look for
continuous subgroups of H1.



1D Subgroups of H1

and 2D homogeneous spaces

One-dimensional continuous subgroups of H1 can be classified up to
group automorphism. Two one-dimensional subgroups of H1 are the
centre Z (5) and

Hx = {(0, t, 0) ∈ H1, t ∈ R}. (18)

Show that:

1 There is no an automorphism which maps Z to Hx.

2 For any one-parameter continuous subgroup of H1 there is an
automorphism which maps it either to Z or Hx.

3 The classification of one-parameter subgroups can be based on their
infinitesimal generators from the Weyl algebra.



1D Subgroups of H1

and 2D homogeneous spaces

Next, we wish to describe the respective homogeneous spaces and actions
of H1 on them. Check that:

1 The H1-action on H1/Z is:

(s, x,y) : (x ′,y ′) 7→ (x+ x ′,y+ y ′). (19)

Hint: Use the following maps: p : (s ′, x ′,y ′) 7→ (x ′,y ′),
s : (x ′,y ′) 7→ (0, x ′,y ′).�

2 The H1-action on H1/Hx is:

(s, x,y) : (s ′,y ′) 7→ (s+ s ′ + xy ′ + 1
2xy,y+ y ′). (20)

Hint: Use the following maps: p : (s ′, x ′,y ′) 7→ (s ′ + 1
2x
′y ′,y ′),

s : (s ′,y ′) 7→ (s ′, 0,y ′).�
3 Calculate the derived action similar to (10).



2D Subgroups of H1

and 1D homogeneous spaces

The classification of two-dimensional subgroups is as follows:
Show that

1 For any two-dimensional continuous subgroup of H1 there is an
automorphism of H1 which maps the subgroup to

H ′x = {(s, 0,y) ∈ H1, s,y ∈ R}.

2 H1-action on H1/H ′x is

(s, x,y) : x ′ 7→ x+ x ′. (21)

Hint: Use the maps p : (s ′, x ′,y ′) 7→ x ′ and s : x ′ 7→ (0, x ′, 0).�
3 Calculate the derived action similar to (10).

Actions (19) and (21) are simple shifts. Nevertheless, the associated
representations of the Heisenberg group will be much more interesting.



Group Representations

Definition (traditional)

A (linear) representation ρ of a group G is a group homomorphism
ρ : G→ B(V) from G to (bounded) linear operators on a space V:

ρ(gg ′) = ρ(g)ρ(g ′).

Informally: A representation of G is an introduction of an operation of
addition on G, which is compatible with group multiplication.

Example

The following are group representations:

1 Let G = (R,+), V = C, ρ(x) = eiax, a ∈ R. It is a 1D-representation
called a character.

2 Let G = (R,+), V = L2(R), representation by shifts:
[ρ(x)f](t) = f(x+ t) is infinite-dimensional.

3 For any group G shifts f(g ′) 7→ f(g−1g ′) and f(g ′) 7→ f(g ′g) are the
left and right regular representations.



Continuous Representations of
Topological Groups

A representation is a map which respects the group structure. If we have
a topological group, it is natural to consider representations respecting
topology as well, that is representation which are continuous in some
topology. It is most common (and convenient!) to use the following type.

Definition
A representation ρ of G in a vector space V is strong continuous if for
any convergent sequence (gn)→ g ∈ G and for any x ∈ V we have
‖ρ(gn)x− ρ(g)x‖ → 0.

Exercise
Which representations from the previous Example 1 are strongly
continuous in a suitable topology?

From now, we consider strongly continuous representations only.



Decomposition of Representations

Definition
A subspace U ⊂ V is called invariant if ρ(g)U ⊂ U for all g ∈ G. We can
always consider a restriction of ρ to any its invariant subspace. Such a
restriction is called subrepresentation.

Definition
A representation is irreducible if the only closed invariant subspaces are
trivial (the whole V and {0}). Otherwise it is reducible.

The regular representation of (R,+) on V = L2(R) by shifts has closed
invariant subspaces, e.g. the Hardy space—space of all functions having
an analytic extension to the upper half-plane. So it is reducible. A
character (and any 1D-representation) is an irreducible representation.

Definition
A representation is decomposable if V = V1 ⊕ V2, where V1 and V2 are
invariant.



Unitary Representations

The representation theory is much simpler if representing operators
belong to a nice class.

Definition
A strongly continuous representation ρ of G in V is unitary if V is a
Hilbert space and all ρ(g), g ∈ G are unitary operators.

Exercise
Define Hilbert spaces such that representations from the previous
Example 1 becomes unitary.

One of the important properties of unitary representations is complete
reducibility. Namely, a representation can be reducible but
indecomposable. However, any reducible unitary representation is
decomposable: for any closed invariant subspace, the orthogonal
complement is again a closed invariant subspace.
We will consider unitary representations of Hn only.



Induced Representations

Let G be a group, H its closed subgroup, χ be a linear representation of
H in a space V. The set of V-valued functions with the property

F(gh) = χ(h)F(g),

is invariant under left shifts. The restriction of the left regular
representation to this space is called an induced representation.
Consider the lifting Lχ of f(x), x ∈ X = G/H to F(g):

F(g) = [Lχf](g) = χ(h)f(p(g)), p : G→ X, g = s(x)h, x = p(g),

The map transforms the left regular representation on G to the following
action:

[ρ(g)f](x) = χ(r(g−1 ∗ s(x)))f(g · x), from

G

p

��

g−1∗ // G

p

��
G/H

s

OO

g· // G/H

s

OO

,

where r : G→ H by r(g) = s(x)−1g for x = p(g).



Induced Representations
of the Heisenberg Group on R2

1 For H = Z the map r : H1 → Z is r(s, x,y) = (s, 0, 0). For the
character χ h(s, 0, 0) = e2πi hs, the representation of H1 on L2(R2) is,
cf. (19):

[ρ h(s, x,y)f](x
′,y ′) = e2πi h(−s−

1
2ω(x,y;x ′y ′))f(x ′ − x,y ′ − y). (22)

This is the Fock–Segal–Bargmann (FSB) representation.

2 For H = Hx the map r(s, x,y) = (0, x, 0). For the character
χ(0, x, 0) = e2πi hx, the representation H1 on L2(R2) is, cf. (20):

[ρ h(s, x,y)f](s
′,y ′) = e−2πi hxf(s ′ − s− xy ′ +

1

2
xy,y ′ − y). (23)



Induced Representations
of the Heisenberg Group on R1

For H = H ′x = {(s, 0,y) ∈ H1} the map r : H1 → H ′x is
r(s, x,y) = (s− 1

2xy, 0,y).

For the character χ h(s, 0,y) = e2πi( hs+qy), the representation of H1 on
L2(R1) is, cf. (21):

[ρ h(s, x,y)f](x
′) = exp(2πi( h(−s+ yx ′ − 1

2xy) − qy)) f(x
′ − x). (24)

For q = 0, this a key to the Schrödinger representation of the Heisenberg
group.
We built many representations of H1, are they essentially different?
We will show that any two above representations ρ h and ρ′ h with the
same value of the parameter  h are unitary equivalent, namely there is a
unitary operator U intertwining them:

ρ h(g)U = Uρ′ h(g), for all g ∈ G.



Adjoint Representation
for a Matrix Group

G—a matrix group, i.e. subgroup and a smooth submanifold of GL(n,R).

g = Lie(G)—the Lie algebra, the tangent space Te(G) to G at the unit e.

A(g) : x 7→ gxg−1—G-action on itself by inner automorphisms. It fixes
the group unit e and thus generates a linear transformation of the
tangent space at e, which is identified with g.

A∗(g) : g 7→ g—the above derived map which is usually denoted by
Ad(g).

g 7→ Ad(g)—is called the adjoint representation of G.

Luckily, this construction can greatly simplified for matrix groups: the
adjoint representation is matrix conjugation:

Ad(g)B = gBg−1, where B ∈ g, g ∈ G.



Co-Adjoint Representation
Dual to Adjoint One

g∗—dual space to the Lie algebra g.

〈A,B〉 = tr(AB)—a bilinear form on Matn(R) invariant under
conjugation.

g⊥—the orthogonal complement of g∗ in Matn(R) with respect to 〈·, ·〉.

Matn(R)/g⊥—model for g∗.

p— the projection of Matn(R) on g∗ parallel to g⊥.

Then the co-adjoint representation K, which is dual to the adjoint
representation defined above, can be written in the simple form

K(g) : F 7→ p(gFg−1), where F ∈ g∗.

Under the co-adjoint representation g∗ is split into a family of disjoint
orbits, giving the name orbit method by Kirillov.



Co-Adjoint Representation
For the Heisenberg group

Realising H1 as a matrix group, we calculate the matrix conjugation:

g =

Ö
1 x s+ 1

2xy

0 1 y

0 0 1

è
∈ H1, B =

Ö
0 x ′ s ′

0 0 y ′

0 0 0

è
∈ h1,

Ad(g)B =

Ö
0 x ′ −x ′y+ xy ′ + s ′

0 0 y ′

0 0 0

è
,

Ö
s ′′

x ′′

y ′′

è
=

Ö
1 −y x

0 1 0
0 0 1

èÖ
s ′

x ′

y ′

è
We introduce coordinates ( h,q,p) in h∗n ∼ R2n+1 in bi-orthonormal
coordinates to the exponential ones (s, x,y) on hn. Then the co-adjoint
representation Ad∗ : h∗n → h∗n becomes:

Ad∗(s, x,y) : ( h,q,p) 7→ ( h,q−  hy,p+  hx), where (s, x,y) ∈ Hn (25)

Note, that every (0,q,p) is fixed. Also all hyperplanes  h = const 6= 0 are
orbits and the action on them is similar to (19).



Orbit Space

h < 0

q

p

R 2nh = 0

h

The adjoint space h∗n of the algebra hn

h > 0

q

p

The unitary dual of Hn

Phase space (h = 0)

Parameter h 6= 0

R 2n

Figure: The structure of unitary dual to Hn from the method of orbits. The
space h∗n is sliced into “horizontal” hyperplanes. Planes with  h 6= 0 form single
orbits and correspond to different classes of UIR. The plane  h = 0 is a family of
one-point orbits (0,q,p), which produce one-dimensional representations. The
topology on the dual object is the factor topology inherited from the h∗n.



Physical Units
shall not be neglected

Let M be a unit of mass, L—of length, T—of time. We adopt the
following

Convention

1 Only physical quantities of the same dimension can be added or
subtracted. However, any quantities can be multiplied/divided.

2 Therefore, mathematical functions, e.g. exp(u) = 1 + u+ u2/2! + . . .
or sin(u), can be constructed out of a dimensionless number u only.
Thus, Fourier dual variables, say x and q, should posses reciprocal
dimensions to enter the expression eixq.

3 For physical reasons being seen later, we assign to x and y
components of (s, x,y) physical units 1/L and T/(LM) respectively.

Consequently, the parameter s should be measured in T/(L2M)—the
product of units of x and y. The coordinates  h, q, p should have units of
an action ML2/T , coordinates L, and momenta LM/T , respectively.



Induced Representation
and physical Units

We now build induced representations generated by the coadjoint orbits.
Starting from the action (25) on an orbit  h 6= 0 and the character e−2πi hs

of the centre we obtain the representation:

ρ h(s, x,y) : f(q,p) 7→ e−πi(2
 hs+qx+py)f (q−  hy,p+  hx) . (26)

The same formula is obtained if we use the Fourier transform
(x ′,y ′)→ (q,p) for the representation (22). Note that the representation
obeys our agreement on physical units, if (q,p) is treated as a point of
the phase space.
Similarly, we can apply the Fourier transform x ′ → q for the
representation (24) and obtain the Schrödinger representation :

[ρ h(s, x,y)f ](q) = e
−πi h(2s+xy)−2πixq f(q+  hy). (27)

The variable q is treated as the coordinate on the configurational space
of a particle.



Derivation of Representations
Let ρ be a representation of a Lie group G with the Lie algebra g. For
any X ∈ g and real t we have exp(tX) ∈ G.
For any representation ρ of G in a space V we obtain one-parameter
semigroup of operators ρ(exp(Xt)) on V. We can try to calculate its
generator:

dρX :=
dρ(exp(Xt))

dt

∣∣∣∣∣
t=0

. (28)

Even for a bounded representation ρ the above operator may be
unbounded and we need to define its domain as a proper subspace
U ⊂ V. In this way obtain the derived representation of the Lie algebra g.

Example

1 Let G = (R,+), V = C, ρ(x) = eiax, a ∈ R. The derived
representation is dρT = iaT for T ∈ r ∼ R.

2 Let G = (R,+), V = L2(R), [ρ(x)f](t) = f(x+ t) then dρT = T ddx .
As the domain we can take the Schwartz space S(R).



Invariant measure

Definition
Let G be a Lie group, a measure µ is left (right) invariant (aka the Haar
measure if µ(g ·A) = µ(A) for any A ⊂ G and g ∈ G.

If there is measure simultaneously left and right invariant then the group
is called unimodular.

Example

1 Any commutative or compact group is unimodular;

2 The Heisenberg group is unimodular with the Haar measure
dsdxdy coinciding with the Lebesgue measure R2n+1.

3 The ax+ b group (affine maps of the real line) is not unimodular.

For a left Haar measure µ, the left regular representation
[Λ(g)f](g ′) = f(g−1g ′) is an isometry on Lp(G,µ):∫

G

∣∣∣f(g−1g ′)
∣∣∣p dµ(g ′) = ∫

G

∣∣f(g ′)∣∣p dµ(g ′).



Convolutions
Let G be a Lie group with a left Haar measure µ, for a function
k ∈ L1(G,µ) we can define the operator K on bounded functions with
compact supports:

[Kf](g ′) = (k ∗ f)(g ′) =
∫
G
k(g)f(g−1 · g ′)dµ(g). (29)

It is called the convolution operator and k is called the kernel of the
convolution. For k ∈ L1(G,µ), K is a bounded operator on L2(G,µ).
The composition K1K2 of two such operators with kernels k1 and k2 is
again a convolution with the kernel k1 ∗ k2—L1(G,µ) is a convolution
algebra.
Similarly, let ρ be bounded representation of G in a normed space V and
k ∈ L1, define the operator

ρ(k) =

∫
G
k(g)ρ(g)dµ(g). (30)

This is a representation of the L1(G,µ) algebra:

ρ(k1 ∗ k2) = ρ(k1)ρ(k2).



Origins of Quantum Mechanics
and the Heisenberg commutators

In 1926, Dirac discussed the idea that quantum mechanics can be
obtained from classical one through a change in the only rule:

. . . there is one basic assumption of the classical theory which is false,
and that if this assumption were removed and replaced by something
more general, the whole of atomic theory would follow quite naturally.
Until quite recently, however, one has had no idea of what this
assumption could be.

By Dirac, such a condition is provided by the Heisenberg commutation
relation of coordinate and momentum:

qrpr − prqr = i h, (31)

i.e. a representation (??) of the Heisenberg–Weyl algebra hn:

The new mechanics of the atom introduced by Heisenberg may be based
on the assumption that the variables that describe a dynamical system
do not obey the commutative law of multiplication, but satisfy instead
certain quantum conditions.



Non-Essential Noncommutativity
Noncommutativity of observables is not an essential prerequisite for
quantum mechanics: there are constructions of quantum theory which do
not relay on it, e.g. the Feynman path integral. In the popular
lectures [1] Feynman managed to tell the fundamental features of
quantum electrodynamics without any reference to (non-)commutativity.
But what is the mathematical source of quantum theory if
noncommutativity is not? The vivid presentation in [1] uses stopwatch
with a single hand to present the phase for a path x(t) between two
points in the configuration space. The mathematical expression for the
path’s phase is [2, (2-15)]:

φ[x(t)] = const · e(i/ h)S[x(t)], (32)

where S[x(t)] is the classic action along the path x(t). Summing up
contributions (32) along all paths between two points a and b we obtain
the amplitude K(a,b). This amplitude presents very accurate description
of many quantum phenomena. Therefore, expression (32) is also a strong
contestant for the rôle of the cornerstone of quantum theory.



Path Integral Illustration



The non-zero Planck constant and QM
Is there anything common in two “principal” identities (31) and (32)

qrpr − prqr = i h and φ[x(t)] = const · e(i/ h)S[x(t)] ?

The only two common elements are (in order of “significance”):

1 The non-zero Planck constant  h.

2 The imaginary unit i.

The Planck constant was the first manifestation of quantum (discrete)
behaviour and it is at the heart of the whole theory. In contrast, classical
mechanics is oftenly obtained as a semiclassical limit  h→ 0, see also
Fig. 1. Thus, the non-zero Planck constant looks like a clear marker of
quantum world in its opposition to the classical one.
The complex imaginary unit is also a mandatory element of quantum
mechanics in all its possible formulations. E.g. the popular lectures [1]
managed to avoid any noncommutativity issues but did mention complex
numbers both explicitly (see the Index there) and implicitly (as rotations
of the hand of a stopwatch). However, it is a common perception that
complex numbers are useful but manly technical tool in quantum theory.



Dynamics in QM
from the Heisenberg Equation

For a Hamiltonian H(q,p) we can integrate the representation ρ h with

the Fourier transform Ĥ(x,y) of H(q,p), see (30):

H̃ =

∫
R2
Ĥ(x,y) ρ h(0, x,y)dxdy

and obtain (possibly unbounded) PDO H̃ (??) on L2(R2). This
assignment of the operator H̃ (quantum observable) to a function H(q,p)
(classical observable) is known as the Weyl quantization or a Weyl
calculus of PDO. The Hamiltonian H̃ defines the dynamics of a quantum
observable k̃ by the Heisenberg equation:

ih
dk̃

dt
= H̃k̃− k̃H̃, (33)

where [H̃, k̃] = H̃k̃− k̃H̃ is the commutator of the observable k̃ and the
Hamilton H̃.



Dual Numbers
and representations of Hn

Instead of the imaginary unit with the property i2 = −1 we will use the
nilpotent unit ε such that ε2 = 0. The dual numbers generated by
nilpotent unit were already known for there connections with Galilean
relativity—the fundamental symmetry of classical mechanics—thus its
appearance in our discussion shall not be very surprising
Consider a four-dimensional algebra C spanned by 1, i, ε and iε. We can
define the following representation ρεh of the Heisenberg group in a space
of C-valued smooth functions [6–8]:

ρεh(s, x,y) : f(q,p) 7→ (34)

e−2πi(xq+yp)
Å
f(q,p) + εh

Å
sf(q,p) +

y

4πi
f ′q(q,p) −

x

4πi
f ′p(q,p)

ãã
.

A simple calculation shows the representation property
ρεh(s, x,y)ρεh(s

′, x ′,y ′) = ρεh((s, x,y) ∗ (s ′, x ′,y ′)) for the
multiplication (4) on H1. Since this is not a unitary representation in a
complex-valued Hilbert space its existence does not contradict the
Stone–von Neumann theorem ??.



Comparison of Two Representations
Recall the induced representation (26) obtained from the orbit method:

ρ h(s, x,y) : f(q,p) 7→ e−πi(2
 hs+qx+py)f (q−  hy,p+  hx) . (35)

To highlight the similarity, we re-write (34) as:

ρ h(s, x,y) : f(q,p) 7→ e−2π(ε hs+i(qx+py))f

Å
q−

i h

2
εy,p+

i h

2
εx

ã
. (36)

Here, for a differentiable function k of a real variable t, the expression
k(t+ εa) is understood as k(t) + εak ′(t), where a ∈ C is a constant. For
a real-analytic function k this follows from its Taylor’s expansion.
Both representations (35) and (36) are noncommutative and act on the
phase space. The important distinction is:
• The representation (35) is induced by the complex-valued unitary

character ρ h(s, 0, 0) = e2πi hs of the centre Z of H1.
• The representation (36) is similarly induced by the dual
number-valued character ρεh(s, 0, 0) = eεhs = 1 + εhs of the centre Z
of H1. Here dual numbers are the associative and commutative
two-dimensional algebra spanned by 1 and ε.



Dual Number Representations
Infinitesimal Form

The infinitesimal generators of one-parameter subgroups ρεh(0, x, 0) and
ρεh(0, 0,y) in (34) are

dρXεh = −2πiq−
εh

4πi
∂p and dρYεh = −2πip+

εh

4πi
∂q,

respectively. We calculate their commutator:

dρXεh · dρYεh − dρYεh · dρXεh = εh. (37)

It is similar to the Heisenberg relation (31): the commutator is non-zero
and is proportional to the Planck constant. The only difference is the
replacement of the imaginary unit by the nilpotent one. The radical
nature of this change becomes clear if we integrate this representation
with the Fourier transform Ĥ(x,y) of a Hamiltonian function H(q,p):

H̊ =

∫
R2n

Ĥ(x,y) ρεh(0, x,y)dxdy = H+
εh

2

Å
∂H

∂p

∂

∂q
−
∂H

∂q

∂

∂p

ã
. (38)

This is a first order differential operator on the phase space.



The Hamilton Equation

The differential operator H̊ (38) generates a dynamics of a classical
observable k—a smooth real-valued function on the phase
space—through the equation isomorphic to the Heisenberg equation (33):

εh
d̊k

dt
= H̊k̊− k̊H̊.

Making a substitution from (38) and using the identity ε2 = 0 we obtain:

dk

dt
=
∂H

∂p

∂k

∂q
−
∂H

∂q

∂k

∂p
. (39)

This is, of course, the Hamilton equation of classical mechanics based on
the Poisson bracket:

{H̊, k̊} =
∂H

∂p

∂k

∂q
−
∂H

∂q

∂k

∂p
.



Quantum/Classical Mechanics
=Complex/Dual representations Hn

1 Noncommutativity is not a crucial prerequisite for quantum theory, it
can be obtained as a consequence of other fundamental assumptions.

2 Noncommutativity is not a distinguished feature of quantum theory,
there are noncommutative formulations of classical mechanics as well.

3 The non-zero Planck constant is compatible with classical
mechanics. Thus, there is no a necessity to consider the semiclassical
limit  h→ 0, where the constant has to tend to zero.

4 There is no a necessity to request that physical observables form an
algebra. Quantization can be performed by the Weyl recipe, which
requires only a structure of a linear space in the collection of all
observables with the same physical dimensionality.

5 The imaginary unit in (31) is ultimately responsible for most of
quantum effects. Classical mechanics can be obtained from the
similar commutator relation (37) using the nilpotent unit ε2 = 0.
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