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Part 1

Definition: [1] A space (X, 7) is
homogeneous if for any two points
x,y € X there exists a
homeomorphism f: (X,7) — (X, 1)

such that f(z) =y.



Part 11

Definition: [2] A space (X, 7) is
countable dense homogeneous
(abbreviated: CDH) if it is
separable space and for any two
countable dense subsets A, B of X,
there is a homeomorphism
f:(X,7) — (X, 7) such that

f(A) = B.



Part 111

Definition: [7] A function
f:(X,71) — (Y, 79) is slightly
continuous if the inverse image of
every clopen subset of (Y,79) is a

clopen subset of (X, 71).



Part 1V

Definition: [8] A function
f:(X,71) — (Y, 79) is slight
homeomorphism if f is a bijection
and f and f~! are slightly

continuous.



Part V



Definition. [8] A space (X, 7) is
said to be slightly homogeneous it
for any two points =,y € X, there

exists a slight homeomorphism

f:(X,7) — (X, 7) such that f(x)=y.
A subset of a space (X, 7), which
has the form SC, = {y € X : there is
a slight homeomorphism
f:(X,7) — (X, 7) such that
f(x) =y} is called the slightly

homogeneous component of X at .



Part VI

Definition. [8] A separable space
(X, 7) is said to be slightly
countable dense homogeneous
(abbreviated: SCDH) if given any
two countable dense subsets A, B of
X, there is a slight
homeomorphism f: (X,7) — (X, 7)

such that f(A) = B.



Part VII

Theorem (8] Let U be a non-empty
clopen subset of a space (X, 7). If
SC, is a slightly homogeneous
component of r € X and U C SC,

then SC, is open in X.



Theorem (a) (8] Every CDH space is SCDH
but not conversely.
(b) |4] Every zero dimensional SCDH space

1s CDH.

10



Part VIII

Definition Let (X,7) be a space. A
subset A C X is said to be slightly

dense if for every non-empty

clopen set U C X, UN A # 0.
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Part IX

Remark. Dense subsets of a space

(X, 7) are slightly dense.
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Part X

Example. Consider the space
((0,1)U(2,3),74) and D = {3 3}. D is
a slightly dense set that is not

dense.
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Part XI

Theorem. Let (X, 7) be a zero

dimensional space and let D C X.
Then D is dense in X iff it is

slightly dense in X.
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Part XII

Theorem. Let (X, 7) be a space
such that for some z € X, SC, is

not open. Then X — SC; is slightly

dense in (X, 7).
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Part XIII

Definition. For every finite non
zero cardinal number n, denote the
set {A C X : A is slightly dense and

Al =n} by C),, and denote the set

{A C X : A is slightly dense and

’A‘ — NO} by Cw.

16



Theorem. Let .- be a space. Then the
following are equivalent.

(i) ox.» is connected.

(i) 4 is slightly dense for all non-empty
set acx.

(iii) () is slightly dense for all .« x.

(iV) Cit 0.
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Part XIV

Theorem. Let (X, 7) be a
disconnected space. If for some
non-zero finite cardinal number n,
Chn={AC X :|A|l =n}, then

| X| < 2n —2.
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Part XV

Corollary. If X is a set with | X| > 2
and 7 is a topology on X, then

(X, 7) is connected iff

Cy={ACX:|A=2).
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Part XVI

Corollary. Let (X, 7) be a space
such that | X| > 2n — 2 where n is a
non-zero finite cardinal number. If
Ch={AC X :|A| =n}, then (X, 7) is

connected.
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Part XVII

Definition. A space (X, 7) is said to
be slightly separable if it contains

a countable slightly dense subset.
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Remarks. 1. A space .- is slightly sep-
arable iff .20 for some »ecnu (o).

2. Every connected space is slightly sep-
arable but not conversely.

3. Every separable space is slightly sepa-
rable but not conversely.

4. A zero dimensional space is separable
iff it is slightly separable space.

5. The slightly continuous image of a

slightly separable space is slightly separa-
ble.
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Part XVIII

Theorem. A clopen subspace of a
slightly separable space is slightly

separable.
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Part XIX

Definition. [12]| Let
{(Xa,Ta) : @« € A} be a collection of
spaces such that X, N Xz = () for all
a+# (3. Let X = |J X, be
ace
topologized by {U C X : UN X, € 7q
for all « € A}. Then (X, 7) is called

the disjoint sum of the spaces

(Xa, Ta), @ € A.
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Part XX

Theorem. Let {(X,,7q): @ € A} be
a family of spaces with X, N X3 = 0
for v # 5. If for all a € A, (Xq,7a)

contains a non-empty slightly

dense set D,, then |J D, is
a€EN

slightly dense in the disjoint sum

space ( U Xa,Tg)
ac
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Part XXI

Definition. A space (X, 7) is said to
be slightly countable dense
homogeneous of type (2)
(SCDH(2)) if (X, 7) is slightly
separable and for any two
countable slightly dense sets A and
B in X, there exists a slight
homeomorphism h : (X, 7) — (X, 7)

such that h(A) = B.
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Part XXII

Theorem. If (X, 7) is SCDH(2),
then every slightly dense subset of

X different from X is infinite.
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Part XXIII

Corollary. Let (X,7) be a
connected space. Then (X, 7) is

SCDH(2) iff | X| = 1.
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Part XXIV

Example. (R, 7,) is a CDH space

that is not SCDH(2).
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Part XXV

Theorem. A zero dimensional

space is CDH iff it is SCDH(2).
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Part XXVI

Example. The space (Q°, 7y,) is

SCDH(2).
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Part XXVII

Theorem. Let (X,7) be a SCDH(2)

space. Then X is countable iff

T = Tdisc*

36



Part XXVIII

Example. The space (Q,7,) is not

SCDH(2).
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Part XXIX

Theorem. A zero dimensional
space (X, 7) is SCDH(2) iff it is

SCDH.
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Part XXX

Theorem. Let {(X,,7,): n € N} be
a family of SCDH(2) spaces with
X, N Xy =0 for n # m. Then the
o
disjoint sum space (UXn,'rd) is

n=1

SCDH(2).
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Part XXXI

Definition. A space (X, 7) is said to
be slightly countable dense
homogeneous of type (3)
(SCDH(3)) if (X, 7) is slightly
separable and for each n € NU {oo}
and A, B € (), there exists a slight
homeomorphism f: (X,7) — (X, 1)

such that f(A) = B.
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Part XXXII

Theorem. Every connected space

is SCDH(3).
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Part XXXIII

Theorem. Every SCDH(2) space is

SCDH(3).
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Part XXXIV

Example. (R, 7,) is SCDH(3) but

not SCDH(2).
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Part XXXV

Theorem. Every zero dimensional

CDH space is SCDH(3).
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Part XXXVI

Theorem. Let (X, 7) be a space
such that all slightly dense sets in

X have the same cardinality, then

(X,7) is SCDH(2) iff it is SCDH(3).
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