
Introduction

 Einstein-Weyl causality, that is, relativistic causality, has 
consequences for the topology of space-time.  This was 
studied by Borchers and Sen. In the 1990’s they rigorously 
investigated the mathematical implications of causality and 
proved that a denumerable space-time would be admitted.  
They showed subsequently that the notion of causality could 
effectively be extended to discontinuua but they were left with 
important questions regarding the nature of the physical line 
as opposed to the mathematical real line. In this talk, we 
return to their initial result and ask whether space-time could, 
in fact, be denumerable but also continuous.  We find, if so, 
there are fundamental implications for quantum mechanics.   
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To fulfill the topological properties of space-time 
required by Einstein-Weyl causality, we employ a 
constructible foundation.   



ZF – Axiom Schema of Subsets  – Power Set + ω*-Constructibility 

Extensionality Two sets with just the same members are equal.

Pairs For every two sets, there is a set that contains just them.

Union For every set of sets, there is a set with just all their members. 

Infinity There is at least one set ω* which contains the null set and for every 
member there is a next member that contains just all its predecessors

Regularity Every non-empty set has a minimal member (i.e. “weak” regularity).

Replacement Replacing members of a set one-for-one creates a set. (i.e. bijective
replacement)

ω*-Constructibility    The subsets of ω* are constructible   



The ω*-constructibility axiom well-orders the set of 

constructible subsets of ω*, giving a metric space R*. 

Its members mirror “binimals” (e.g., .0110011…).

.



Q* is an enlargement of the usual set of rational numbers Q.

Def: Two members of Q* are “identical” if their ratio is 1.  We 

can now employ the symbol “≡” for “is identical to”. 

Def: Letting y be the member Q* and employing the symbol 

“=” to signify “equals”,  y = 0 ↔∀n[y < 1/n] where n is a finite 

natural number. Note:  x ≡ y →  x = y but not the converse.



An equality-preserving bijective map Ф(x,u) between  

intervals X and U of R* in which x∈X and u∈U

creates pieces biunique and homeomorphic with R*. 

The range vanishes if and only if the domain vanishes. 
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Uniformly continuous functions that have no finite 
derivative that is constant can still be approached as 
closely as necessary by polynomials of sufficiently 
high degree obtained by iteratively minimizing λ
using the following algorithm in which integration is 
defined as the inverse of differentiation:
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The polynomials so obtained by this algorithm are 
effectively Sturm-Liouville eigenfunctions. They are of 
bounded variation and locally homeomorphic with R*. 
The amount of iterations can be arbitrarily large but finite.  

This has both physical and philosophical implications.



Consider a string of finite length:

The ux and ut can be obtained subject to 
boundary conditions and to the constraint 

λx− λt ≡ 0
This can be generalized to more complex 

fields and to finitely many dimensions of a 
compactified space-time. 
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( )xiu mi )x(u jmjLet and                        be eigenfunctions with 

positive eigenvalues            and            respectively.  

We now define a “field” as a sum of eigenstates

with the novel physical postulate that the Lagrange integral over a 

compactified space-time is identical to 0 for every eigenstate. Let 
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Assume Plmj, Qlmj ≥ 0 and that domainΨ ≠ 0.  α(Ψ) is non-negative and 
closed to addition.

I.   Recall that if ¬rangeΨ ≡ 0, then rangeΨ ≠ 0 ↔ domainΨ ≠ 0.
II. rangeΨ ≡ 0 → α(Ψ) ≡ 0;¬rangeΨ ≡ 0 → rangeΨ ≠ 0 → α(Ψ) ≠ 0.  

Thus α(Ψ) ≡ 0 or α(Ψ) ≠ 0; ∴ α(Ψ) is not continuous.
III.  α(Ψ) has only discrete values: α(Ψ) ≡ nκ , where n is any integer      

and κ is some finite unit which must be determined empirically.

Moreover, κ has indeed been determined empirically (next slide).  

Let both

be represented by α(Ψ)





Assume ∃Ψ ¬rangeΨ ≡ 0 and domainΨ is all of space-time.  With this we 
have:   all of space-time ≠ 0 → ∃Ψ domainΨ ≠ 0. 

Since domainΨ ≠ 0 ↔ rangeΨ ≠ 0, we get ∃Ψ rangeΨ ≠ 0 → ∃Ψ α(Ψ) ≠ 0
as we got before, so that :   all of space-time ≠ 0 → ∃Ψ α(Ψ) ≠ 0

Also, if  all of space-time = 0, the upper and lower limits of all the 
integrals in the computation of α(Ψ) are equal so that:

all of space-time = 0 → ¬∃Ψ α(Ψ) ≠ 0. 

Therefore:  all of space-time ≠ 0 ↔ ∃Ψ α(Ψ) ≠ 0.
This is a definition of a relational space-time.

Furthermore, since we have shown before that α(Ψ) ≡ nh,
it follows that:   all of space-time ≠ 0 ↔ ∃Ψ α(Ψ) ≥ h.

α(Ψ) ≥ h is the Uncertainty Principle.



Dyson (using ZF) argued that if the QED perturbation series 
converges to a limit it will create a catastrophically unstable 
vacuum state; thus the series must be divergent. However, this 
theory has no induction theorem thus no mathematical limit can 
be reached and no unstable vacuum state will be created. This is 
a seminal example of this “new physics” removing infinities. 



Finally, it had been shown by Börchers/Sen that Q2 is an 
ordered space that fulfills the strict Hausdorff topology 

requirements for Einstein-Weyl causality.   

In this theory, by definition Q2 is embedded in R*2 and we 
have shown that all functions are locally homeomorphic 
with R*, thus R*2, or more generally R*n, exactly fulfills 

all the requirements for Einstein-Weyl causality in a 
space-time that is both denumerable and also continuous.



Principal Conclusions

In this theory, space-time is constructible and its 
topological properties fulfill the requirements for 
Einstein-Weyl causality. When field functions are 
included in the theory, the Schrödinger equation 
emerges. Thus quantum mechanics itself provides  
confirmation for the constructibility of space-time 
and the avoidance of infinities in this theory may 
give a “new physics” alternative to renormalization.



For Further Discussion 
 These results together infer that the Schrödinger equation 

is conceptually cumulative with prior physics.
 By relating Einstein-Weyl causality to the Schrödinger 

equation, we may have discovered a useful bridge between 
relativity and quantum theory.  

 Regarding Wigner’s meta-physical question on the 
unreasonable effectiveness of mathematics in physics:   
We have shown that the Schrödinger equation, relativistic 
causality, a relational space-time and regularization jointly 
emerge from a bottom-up mathematical approach.
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Extensionality- Two sets with just the same members are equal.

Pairs- For every two sets, there is a set that contains just them.

Union- For every set of sets, there is a set with just all their members.

Infinity-

Regularity- Every non-empty set has a minimal member (i.e. “weak” regularity).

Replacement-
Replacing members of a set one-for-one creates a set (i.e., “bijective” 
replacement). 
Let f(x,y) a formula in which x and y are free,

where my is the minimal member of y.



T = ZF – Power Set – Axiom Schema of Subsets + ω*-Constructibility is consistent relative to ZFC+

ZFC +  = ZF + “All sets are Constructible” has been shown to be consistent by Goedel.   We can obtain T 
as follows.  We remove from ZF the Axiom Schema of Subsets ( i.e., from the Axioms of Replacement 
and Regularity) and the Power Set axiom.  In ZF, ω* exists because of the Axiom of Infinity.  If we can 
show that the subsets of ω*are constructed exactly as required by Goedel’s axiom, the statement 
“The subsets of ω* are constructible”, as below, will not lead to a contradiction and thus can be 
adjoined as an axiom.  Indeed, the subsets are generated sequentially and hence are well-ordered so 
that, in any set S of at least one of those subsets, there is a member obtained before any other 
member of S; this is Goedel’s condition for the existence of constructible sets in ZFC+. Thus we can 
delete the axiom “All sets are Constructible”, leaving a sub-theory T consistent relative to ZFC +  since  
any inconsistency in T would lead to an inconsistency in ZFC +.   
Note that we have also shown that there are denumerably many constructible subsets of ω* in T.

ω*-Constructibility- The subsets of ω* are constructible
∀ω*∃S[(ω*,0) ∈ S ∧ ∀y≠0∀z[(y,z) ∈ S ↔ ([y – my]∪my, z∪{z}) ∈ S]]

where my is the minimal member of y.



Generalized ω*-constructibility:





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