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Eulerian Approach

A long time ago in a galaxy far, far

O. Rodrigues [1840] W. Hamilton [1843] A. Cayley [1846]
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Eulerian Approach
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Eulerian Approach

Rotation Vectors and Rodrigues’ Formula

The axis-angle representation of rotations in R3 yields the rotation vector
_ 2 gl
s=pn, (n,p) € S°xS
which the Hodge map * transforms into a s0(3) generator as

s &, o =en* € so0(3).

Now, one obtains the group element via the exponential map
SX

2P, R(n, @) = cospT + (1 — cos ) nnt + sin p n*

that is the famous Rodrigues’ rotation formula.
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Eulerian Approach

Pros and Cons

On he positive side:
@ one has a handy explicit formula for the matrix entries

@ the relation to mechanics is straightforward:

s§=90Q (fixed axis).

On the other hand:

@ composing spherical vectors is cumbersome, while working with
matrices is rather inefficient

@ this representation involves transcendent functions, so one needs to
work with approximations

@ the parametrization is topologically incorrect since

SO(3) = RP® # S%x St
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Eulerian Approach

Euler's Trigonometric Substitution

The famous Euler trigonometric substitution

Ss=pn — C=Tn, T:tan%

allows for writing

27 1—72

sincp:71+7_2, COSSO:71+T2

which yields rational expressions for the rotation matrix entries

(1-€)T+2cc' +2¢*

Rle) = 1+¢?

Danail S. Brezov Projective Bivector Parametrization of Isometries



Eulerian Approach

Dealing with Infinities

As 7 —— oo one applies |'Hopital’s rule to obtain
=T

(1-¢?)Z +2cct +2c*
1+¢2 c2—00

R(c) = 2nn* —Z = O(n).

Half-turns are mapped on the “plane at infinity” in RP®. Moreover

<C2,C1> 2—>

where ¢, denote the corresponding unit vectors.
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Eulerian Approach

The Vector-Parameter

Some major advantages of Rodrigues' construction:

compact expressions and no excessive parameters whatsoever

topologically correct parametrization of SO(3) = RP*, instead of
coordinates on T2 (e.g., Euler angles), which yield singularities

allows for rational expressions for the rotation’s matrix entries

(1—¢?)T+2cct +2¢>
1+c¢?

R(c) =

an efficient composition to replace the usual matrix multiplication

(c,01) = 2 41_21(1—:2:)( 2 e R(e)R(@)=R((cc1))

numerically fast and analytically convenient representation.
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The Decomposition Problem

Generalized Euler Decomposition

Consider the decomposition
R(c) = R(c3)R(c2)R(c1)
with ¢ = 7n and similarly ¢, = 74€, |€«x| = 1. Denoting
gi=(€,¢), rj=(€,R(c)¢), w=(€,E x&3)
the explicit form of some matrix entries r; yields a system of QE's
(32 + 832 — 2812r31) 71 — 2071 + 3 — g2 = 0
(r31+ 831 — 2812823) T3 +2wTa + 131 — g31 = 0
(ro1 + g1 — 2823r31) T3 — 2073 + 12 — g1 =0
where the two solutions for 7o determine the double-valued parameter

ot = (R(5&)é1,6,8), o +at =
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The Decomposition Problem

The Solutions

NSC for real solutions (Gram determinant for the moving frame):

1 g
A=|g1 1 g3 |>0.

rs1 g2 1
Moreover, with the notation
wy = (&1,8&,R(c) &), w2 = w, w3z = (R(c) €1, €2, €3)

the solutions for 7, can be given in a closed decoupled form as

k
+ g k ijk S
T, = — o =€ i — lij 1> J.
k o A s (gIJ U)v J
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The Decomposition Problem

Specific Cases

Similarly, we have NSC for decomposition in two factors
N1 = 821 = R(C) = R(Cz) R(Cl)

and the solution is given as

rp—1 rp—1
1 = ° ) T2 = ° :
w1 w2
where we have denoted
@1 = (&1,8,R(c) &), @2 = (R(c) &1,&1,8).

In the critical points of the map RP® = S3/Z, — T3 = (RP')? given as
63 = ZER(C) 61
the rank drops (gimbal lock) and ¢; 3 become dependent, namely

n—1 - 1
(o = 2arctan 11° , (1 £ 3 = 2arctan ——— f22
%)) w1
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The Decomposition Problem

Linear-Fractional Relations

The composition law yields a linear-fractional dependance between
each pair of parameters in the decomposition, namely

M 7
Ti(Tj): 2 . 3"
l',-jTj + I_,-j

With the notation cx = (c, &) and x;; = gj + r;, the matrices I'* are
given in the generic case as

1 82— I I — g3
rt= — 1 — = (¥t
= 831 — 31 831 — 31 = ( )
&1 —r1 81—l 1
0 K32C1 — K31C2  K21C3 — K32C1
2
M=\ K3c — kKo 0 K21€3 — K31C2
K21C3 — K32C1  K21C3 — K31C2 0
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The Decomposition Problem

Coordinate Changes in SO(3)

Euler to Bryan angles:

ot cos ¢sin ¢ ot sin ¢ sin ¢
7= , Ty =—
cos¥ £ /1 — sin’¢sin®0 v 1+ /1 —sin¢sin®d

ot Cos ¢ sin 1 + sin ¢ cos ¥ cos 1

T, = :
v cos ¢ cos 1) — sin ¢ cos I sinth + /1 — sin®¢ sin®V

Bryan to Euler angles:
sin¢cosﬁi\/m 1 4 cos ¢ cos ¥

cos ¢ sin 1) cos 1) + sin ¢ sin ¢

sin g cosy) — cos sinUsing) + /1 — cos? ¢ cos? J

+ _
Ty =
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The Decomposition Problem

Weakening Davenport's Condition

In order to ensure the NSC A > 0 for all group elements, one needs
& Légs (Davenport's condition).
It is possible, however, to use weaker restrictions if we:
@ parameterize only regions of SO(3)
@ decompose into more factors.
For example, in the case €3 = €; one may decompose into three factors if
@ for the rotation angle and the one between the axes one has
| < 27, v = min [£(&, &)
@ the invariant axis satisfies 5 = min |£(n,&;12)| < 7.
Similarly, one may always decompose into N factors with

+
N<1+ [W} (Lowenthal’s formula).
v
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Quantum Mechanics

Variations and Lie Derivatives

We consider both left and right shifts of a given rotation
ug (t)e = (té,c), u (t)e = (c,t&)
Direct differentiation yields
8kufc = (T +cct +c*)e

and respectively
2
142
Since we also have

VA = A ARy, A = gger —
the variations of the decomposition parameters are given as

9 Ti 8;(0',' — T,'(akw,' + A—%A316kr31)
k . = .

' w,-i\/z

K R(ufc) (T £ ™) excly, + (€x — prc £ ex &)™ — 2pZ] .

sym
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Quantum Mechanics

The Angular Momentum in Bryan Angles

In a decomposition with respect to the coordinate axes, one has

—r2 13 0 Rz 0 —r
8kwj =2 0 0 0 s 8/(0'_]' =2 0 33 —I32
0 —n3 o 0 —r3 m

which yields the QM angular momentum in these coordinates

0
L = —
1 90
0
L, = tanﬁsimp% —i—cosapa%—l—secﬁsimp%
Ly = tanﬁcoscp% fsingo%Jrsecﬂcoscp%
and we easily obtain the hamiltonian (Laplace operator) as
- 0 0> 9\* &
— 2 _ 2 -~ 2si _ .
A = L% =sec 19<3<P2+ s'”ﬁa@aw+<c°5‘ﬁaﬁ)+a¢2
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Classical Mechanics

Decomposition in a Precessing Frame

For any €1, such that ri; # +1, we may decompose R = RoR; choosing
& =(1—ry) & xR(c) &
and with the notation p, = (€, c) the decomposition angles are given as
1 = 2arctan ps, (2 = arccos 3.

Denoting « the precession rate of the coordinate frame {K}, we have

9 [ 52 0 9 0 , . 07
A—sec[a2 a19(cos 2819)}+csc 19@~
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Classical Mechanics

Rigid Body Mechanics

Using the kinematical expressions

_ 2
T 142

(Z+cYe, c=-(ZT+cc'—c")Q

N -

one easily obtains the system of ODE’s
o1 = 3 —Qstan %
P2 = (D
k= Qi+ Qzcotps

and in the case of rotational inertial ellipsoid the Euler equations yield

Qi(t) = dw cos(wt + ¢o), Qo(t) = —dwsin(wt + ¢o), Q3 =

Danail S. Brezov Projective Bivector Parametrization of Isometries



Classical Mechanics

Possible Generalizations

What else do we want?

@ Higher-dimensional generalizations;
@ Pseudo-Euclidean groups;

@ Non-homogeneous isometries.

To do all this, however, we need a shift in our perspective...
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Classical Mechanics
Thank You!

N

THANKS FOR YOUR PATIENCE!
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