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Preliminaries

The Cross Product

Consider the Hodge star operator defined in Clifford basis as
*: e ANeyA...ex — exr1NexaN...e,
and use it to construct the Cross product in R3:
uxv=x(uAv)

that clearly yields a map o : R® — End(R3) in the form

0 —u3 ur
a: u— o= u3 0  —u | € End(R%).
— Uy uy 0
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Preliminaries

Kinematical Context

In rigid body one has the constraint %rz = 0 and thus
F=or,  O=RR' € s0(3)
In the simple case w = const., the solution has the form

r(t) = i &kro, ro = r(0)

k=0

Similarly, one has Euler’s dynamical equations

L=—-&L+M, L=1Iw.
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Preliminaries

Iterations

Homogeneity allows for a restriction to the unit sphere
R3>x=X¢,  €c§° A= ||x|| € RT
and thus expressing (for n > 0)
g2 — _gn -7
where we use the standard notation for the projectors
Pl=¢et, PLH=T-7P).
It is not hard to show by induction that
&os - 2b1 = (—1)* o1k - - - 3. ]

where we denote gj; = & ~£'j and ajibj = a;jb; — ajb;.
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Algebrization

Algebraic Construction

Consider the hypercomplex number system
Q: {part = {PLPEE
defined by the multiplications
pPP=p, pq=pr=0, qr=r, qG=-r"=gq
that clearly indicate the isomorphism Q = R @ C. Hence, one has
o=wop+p1q+typr — {po, p1t+ip} €EROC

and Q inherits its properties from the real and complex algebra.
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Algebrization

Cylindrical Representation

Consider the projections

(Po=pe, (pPrL=qy
allowing us to consider separate norms in o and Q. Then

o1+ ips = pe’, =lell, U =arg(p)s :atam%

and hence, the famous Moivre's formula
" = @4 p+ p" [cos (nd)q + sin (M9)r] = g p + p"("") 1
as well as the formula for the n-th root

942k . U+2km )
q r.
n

-+ sin

(92 = (70), -+ 7 co
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Algebrization

Analyticity and Invertibility

The expansion End(Q2) > f(¢) = fo p+ fi g + f2 r can be written also as

{po. 2} 5 {folpo), h(z)},  h(z) = fi(2) + if(2)

Then, f is analytic in Q iff fy, h are analytic respectively in R and C.

w 0 0
v = p= 0 o1 —p
0 w2 ¢

in a suitable basis and
|l = | det o] = [lellollll = lwol (T + #3)

so 3o~ & ||p|| # 0 and similarly, if f is analytic 3 f~1 < ||f’|| £ 0.
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Algebrization

Some Useful Formulas

Consider the geometric series

i‘p": P (1—¢1) g+ or

’ ’ <1
=o'+ 2 [lello, el

as well as the Cayley transform

1+ | (1=]lellD) g+ 2¢pr

) =1, (1—p1)*+ 3

and in particular

1-\2 2\
CaY(/\r)_p+1+A2q+1+A2

The exponent is a typical example of globally analytic map

expp = e?p+ e (cospr g+singyr), exp pexp ) = exp(p+ 1)
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Complexification

The Proper Lorentz Group

Similarly, we consider C3 — End(C3) and use the isomorphism
SO(3,C) = S0*(3,1)
to construct the Lorentz equivalent. Note also that

2

2 =x®x—x*T

and as long as x2 # 0, one can normalize as
x = A\

with €2 =1 and ) € C that yields a complexification of Q.
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Complexification

Duplex Numbers

For non-isotropic vectors x? # 0 it is straightforward to show that
QC=CobD, D= (C)

where the bicomplex (duplex) numbers D are generated by {1,7,/, k}
with i? = j2 = —1, ij = k is shown to be D = C? via the idempotents

1
Tizi(lik), T3 =714, T47- =0

that yields the decomposition

YL =T+ Ty, Yy =1 F iy € C.

Bicomplex holomorphic functions satisfy
oY =0"p=0"p=0

that may also be written as D®*)¢) = 0, D@, , = 0.
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Complexification

The Isotropic Case

In the isotropic case x> = 0 one has %2 = xx! and thus
Q¢ {1, 0, ¢}, FP=¢ =0

null -

is isomorphic to the matrix algebra

Yo Y1 P2
QS 2 v=tho+il+ype < Y= 0 o 1
0 0 4o

For example, one has the multiplication rule
e = wotho + (Vo1 + Lo1)l + (L1901 + Yow2 + wot2)e
and Taylor expansion of functions over this algebra yields
f() = f(vo) + f'(vho) [Vl + Y2 ] + 5 f"(wo)i/fl

for example

exp ) = e¥° {1+1/11€+ (wer 7/11) ]
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Complexification

Real Forms

@ Dual complex numbers are embedded in the even subalgebra

Cl=ER2) c {1, €}, e =0.

null *
@ The hyperbolic real form Q 2R ¢ C’, where
C = Cho=R?: {1, k}, =1
The Cauchy-Riemann analyticity conditions in this case are

of  of of  of oh _,

-1 -2 =2 &
dp1  Op2 Opa 01 oz*

One example is the exponential map

exp(p1 + kpa) = e?* (cosh pp + ksinhpy) = e¥1 #2714 e?1 %21,

where 7. = 1(1 £ k) yield the retarded and accelerated wave.

@ The Euclidean real form Q = R @ C has already been discussed.
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Complexification
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Parallel Transport and Holonomy

Deformations

Consider a smooth flow t — g(t) on the Q-bundle over R® and

© = pop + 19 + Gar + (o — 1) (ir + ri) 4+ @af
using the correspondence

P & p=—ge=irdri o G4 EE
One may consider the non-commutative term wyr in df « {dfy, dh, wr}
wr = fordq + fodr, foo="F—"fo

from the perspective of bundle holonomy and study the geometric phase

j{df = ]{w,c, f . analytic
¥ ¥
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Parallel Transport and Holonomy
Thank You!

N

THANKS FOR YOUR PATIENCE!
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