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Section 0

Talk plan



Talk plan

® [he deformation quantization with separation
of variables—Our main theorem!

@ One and two dimensional cases
—One:trivial but - - -

@ A metric of a complex Grassmann manifold
@ Deformation quantization for complex
Grassmann manifold :CP":not so hard but - - -
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Section 1

The deformation quantization with
separation of variables



Locally symmetric Kahler manifold

Definition (Locally symmetric Kahler manifold)

A Riemannian(Kahler) manifold (M, g) is called a locally symmetric
Riemannian(Kahler) manifold when

VmRi' =0 (Vi,j, k, 1, m).

Example (Locally symmetric Kéhler manifold)
Examples

o Symmetric Kahler manifold

(Kahler homogeneous space with a transitive action)
@ Compact Riemann surface

e Complex Grassmann manifold (including projective space CP")
@ and more - - -
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Deformation quantization

Definition (Deformation quantization of Poisson manifolds)

F is defined as a set of formal power series:
JF = {f ‘ f=>,fkh~ fi € COO(M)} . A star product * : F x F — F,

is defined as
frg=>_ Cilf g)h¥
k

such that the product satisfies the following conditions.

@ (F,+,x%) is a (nhoncommutative) algebra.
@ Ci (-,-) is a bidifferential operator.
@ (p and (; are defined as

CO(fag):fga Cl(fag)_cl(g7 f):{f,g}’ (1)

where {f, g} is the Poisson bracket.
@ Fxl=1xf=f. )
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A star product with separation of variables

Definition (A star product with separation of variables)

* is called a star product with separation of variables on a Kahler manifold
M when
axf =af, fxb=1b

where Da = b = 0.

Definition (Def of L¢, Ry)

Lrg =fxg , Ref :=fxg

A,

Remark (Associativity<—Commutativity)

(Fxg)xh="Ff=x*(g=xh)
< R/-, (Lfg): Lf (Rhg) < [Lf,Rh] =0
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Our main theorem

We use
S = {A A=) auD" aa € C“(M)},

where D' := g'%9, and « is a multi-index o« = (a1, 2, . .., ). In this
article, we also use the Einstein summation convention over repeated
multi-indices and a, D := )" a.D*.

Our main theorem

When the star product with separation of variables for smooth functions f
and g on a local symmetric Kahler manifold is given as

frg= Z Z Tnnﬂ,, (Do‘"f> (Dﬁ%g»

n=0 &, 63

these smooth functions T” ., which are covariantly constants, are
Qo

determined by the following recurrence relations for Vi :
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Recurrence relations of our main theorem

Recurrence relations of our main theorem

Zhg’d Oz,, edﬂn—e,

= ﬂ, nﬁn
(B = Okp = Oik + 1) (B = Okp = Sik +2) 1, 7% 7n
+ Z Z 2 R_ Ta ,8 —ep+26—6;
k=1 p=1
N—-1N—k N
+ > (B = dkp — S + 1) (B — Skt — Sikay + 1)
k=1 I=1 p=1

% Rpk+//< Tn
i Oénﬁn_ep+ek+ek+l &
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Karabegov1996

Theorem

[Karabegov [15]]. For an arbitrary Kahler form w, there exist a star
product with separation of variables * and it is constructed as follows. Let

f be an element of F and A, € S be a differential operator whose
coefficients depend on f i.e.

n

An = ana()D?, D" = [J(D))", D'=g"0, (2)
i=1

where o is an multi-index o = (a1, aa, ..., ap). Then,

o0
Le=) A, (3)
n=0

is uniquely determined such that it satisfies the following conditions.
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following conditions

Theorem (following conditions)
For Rg.o = 01% + hoy,

[Lf, Rﬁ?‘b} =0, Ll = Fx1=1F. (4)

Then the star products are given by Lfrg := f % g and the star products
satisfy the associativity;

Lp(Lgf) = hx(gxf)=(hxg)*f=Lp,gf. (5)

V.

Recall that each two of D' commute each other, so if a multi index « is
fixed then the A, is uniquely determined. (4)-(5) imply that Lrg =f * g
gives deformation quantization.

Fact (Transition maps)
The following formulas are given in [30].For U, N Up # 0

Frpg (W, W) = ¢, pf xag (W, W) = ¢ pf (w(2), W (2)) x2 8 (W (2), W (2))

3/6/2017
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We need to solve

We need to solve

(L, Ryo| = [Lf, D®] + [Lf, hdy] = 0.

Definition (Twisted symbol)

A map from differential operators to formal polynomials is defined as

o (A€) =) a

where

A= Z aqD?.
o

This map is called “twisted symbol”. It becomes easier to calculate
commutators by using the following theorem.
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Useful formulae for the first term [L¢, O:9]

There are some useful formulae. D' satisfies the following equations.
[D),D™ =0 , [D',059] =06, VI, m, (6)

where [A, B] = AB — BA and ¢ is a Kahler potential . Using them, one
can construct a star product as a differential operator Lf .

Proposition (Karabegov [15])

Let a(&) be a twisted symbol of an operator A. Then the twisted symbol
of the operator [A, 3:®] is equal to da/IE';

0

= 0—570(/\).

1

This proposition follows from From (6), i.e. o ([D7,8;¢]> = oL
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The first term [L¢, 3:P]

Proposition (The first term)

Let f and g be smooth functions on a locally symmetric Kahler manifold
Mand L¢ be a left star product by f given as (??). Then

Lro0lg =Y Zﬁ” 1o 5 (D) (D%4%) (7)

n=0 3
or equivalently,
o ([Lr, 3y0]) = 22L5)
o¢!
o (pang) (5 G A
—ZZB,T (D")(g“ ¢ 5””)
n=0 3
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The second term [L¢, hdy]

Proposition (The second term)

Let f and g be smooth functions on a locally symmetric Kahler manifold
M. Let Lf be a left star product by f given as (7?). Then,

[Lr, hidlg

N n(pRn =
_ hi Z Z Z Bk (512< — R kk Trlﬁ* (Dd},f) (Dﬁ:-l—e;—e]}g)
n=0 —'lg*k 1a_'n_,;;
oo N—1N-—k

+h BiBi R T o (Dof ) (DPite=dig)

00 N
—hy : > & T,an_llﬁf_l (Dan_l+adf> (DBHg> '
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The second term [L¢, hdy]

The following formulas are given in [28].

Fact (D =V)

For smooth functions f and g on a locally symmetric Kahler manifold, the
following formulas are given.

3 o _ nl In

vjlvjnf_glljlg/njnDlD f

Vi Vi,8 = ik 'gﬁ’nkanl --D™g
l ln — I] I'JI" = e 3

D1 D f—gll g VJI anf

D™ ...DMg — gk .. -gr_""k"Vkl Vg
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The second term [L¢, hdy]

If B2 >1and Y3, 87 > 0, by using Fact 2, we obtain (??) as

A

3\m-11h3 o] (p3\F—m 1)\ ()
3 (07)™ 0793} (077 (D7) T (07) e (8)

n

2 com—1 =p = - —\ 55 N\ B
_ Z (Da)m 1 gabgaka,l o gaka,ﬁg—m[vb,, VT] Vka,l .. Vka,ﬁg—m (Da+1) A (DN) N g
B; B;—m

:Z Z (Dé)m—l R#_ D (Da)ﬁg—m (Dm)ﬁé'ﬂ o (DN)B’"V

m=1 nazl

+Z Z > 8pR7. D% (D) (D7) a“...(DJ)@”*luh(Dﬂ,)/mg_

m=1 j=a+1 & 5*
9)

Here, we used
(Vi Vi Vi Vi f ZRukn Vi Viy ViVig - Vi f. (10)

form>1.
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Section 2

One and two dimensional cases



One dimensional case

The Scalar curvature R is defined as R = gin,-J'- = R7j—j-

Theorem (Noncommutative Riemannian surfaces)

Let M be a one-dimensional locally symmetric Kahler manifold (N = 1)
and f and g be smooth functions on M. The star product with separation
of variables for f and g can be described as

frg
5[ [ seame o 2) ()
where

R = Rl
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Two dimensional case (the first term)

Next, we discuss star products on general two-dimensional locally
symmetric Kahler manifolds.
According to Proposition ??, for a two-dimensional locally symmetric

Kihler manifold M, T - is given as
041/31

1 1

( Tao.wo  Taoo > — h< £11 612 >
T T B '
(0.1),(10) " (0,1),(0.1)

Next, we estimate T2 =
0262
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Two dimensional case

Let M be a two-dimensional locally symmetric Kahler manifold and f and
g be smooth functions on M. T02? & given in (7?) is obtained by
2172

(2 0),(2,0) (2 0),(1,1) (2 0),(0,2)
9 1),(2,0) (21 1),(1,1) (1 1),(0,2)
02,20 02,11 T(o 2),(0,2)

(g11)° 811851 (81)°
=1 | 281181, 8&n8i2+ 81180 28518%
(e12)° 8518 (822)°
2+ hRMy AR RRTL, \ T
x| BRP 14+ARY BR,
hR;%*; hR*%; 2+ hR5*%5
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Section 3

A metric of a complex Grassmann
manifold



Complex Grassmann manifold G, 4

Definition (Complex Grassmann manifold as a set)

Complex Grassmann manifold G, 4 is defined as a set of the whole p
dimensional part vector space of p + g dimensional vector space.

Gpqg :={V C CP9 . dimcV = p}

In this section, capital letter indices A, B, C--- mean aa’,bb’,cc’---. In
the inhomogeneous coordinates

Z=27" =77 (i=1,2,---p,i' =1,2,---q) , the Kihler potential
of Gp 4 is given as

®=In|E+22], (11)

where Z = ¢ (Y) = (') € M(q,p;C) and E, € M (q, q; C) is the unite
matrix. From (11), the following facts are derived.
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Fubini-Study metric

Fact (Fubini-Study metric)
The Fubini-Study metric (g;3) is

ds® = 2g,5dz' dz’,

then B o
g’ = <5,-j + 2K 3k ) (6/ . ' K )
where
g7 = &gy = 01030 = b7, g = g = abyy.
with

aU—5U+z b//—51/+2 ij
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The Riemannian curvature

The Riemannian curvature of a Hermitian manifold M is defined as

/ 1 / / /
Rijk = airjk — 3J=|_,-k + rj'.’kl_,-n - ﬂ(rj-n
where
1598j3

I
rjk =8 Dz

Fact

The Riemannian curvature of a Hermitian manifold M is obtained as

| \

[Via vj] Vig - Vkmf == Z Rijknl Vig - 'an_1V/an+1 Vi, . (12)

n=1

form> 1.
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Curvature with Fubini-Study metric

Fact (Curvature with Fubini-Study metric)

The curvature of a complex Grassmann manifold is

CD PC QD
RiP5=8" 2% Rapes = O3 cOwp — Swclamp:  (13)
where
PR 1 (a=c,b=d)
ablcd” 1 0 (otherwise)

From these facts, we can derive the recurrence relations to determine star
products on the Grassmann manifolds.
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Section 4

Deformation quantization for
complex Grassmann manifold



Deformation quantization for CPN

In this subsection, we obtain concrete expression of star products on CPN.
A complex projective space CPN is a Grassmann manifold G,y by
definition.

Let M be a complex projective space and f and g be smooth functions on

M. The recurrence relation of T", 7 given in (1?) is
anB;

hg:
Tn . — id Tn—l . .
& dz_: (L+h—hn) 7 c-eafi—a

(14)

v
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Deformation quantization for CPN

Let f and g be smooth functions on a projective space CPN. A star
product with separation of variables on a projective space CPN is given as

fxg (15)
—f. g+§ Z |Gan,6n { e Zk) lﬁ,’g!} (Dornf> (Dﬁig).

. o Gk . .
where |-| is the permanent and G55 is a matrix made of metrics.
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Matrix made of metrics

Definition
A matrix GP1 is defined by using the Riemannian metrics on M. Its
elements are metrics on M and are located as follows. &, and 3, are
elements of ZN.
G Gin
GanbBn —
Gnl : Gnn
where
1 1
Gog=18pg | : *-. i | €M(a},85:C)
1 1
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Perma

A function similar to the determinant is defined on the matrix space.

Definition (Permanent)

Let C = (C,1)1<pepi<j<, b @ n x n matrix. We define |- | as a
C-valued function on M (n, n; C) such that

11t = > ] Chonii-

on€S, k=1

This is called “permanent”.

C11 €12

= C11C22 + C12021
1 2
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Deformation quantization for CPN

Let f and g be smooth functions on a projective space CPN. A star
product on a projective space CPN is given in [28] as

~ _ > r(l—n+1/h)gj1k1-.gjnkn .
"= Z_% T (1 + 1/h) (V'

= Z r,(ﬂlrﬁ"fl}g) (D D" (T Vie)

F(1—n+1/R)gmk - mnkn [ ~k Kn n i
E s o) o o).

V. f) (Vig - V,8)

(16)

As mentioned in Section 77, the star product with separation of variables
is uniquely determined. This fact means (15) coincides with (16). This

coincidence is easily checked from Definition 11.
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Deformation quantization for G;

In this subsection, we derive the recurrence relation to obtain concrete
expression of star products on a Grassmann manifold Gy 2. The
inhomogeneous coordinates are zll/, 212/,221/ and z22'. To decide the
order of coordinates is useful in order to calculate the finite sum. We set
the order:11’ < 12/ < 21’ < 22’. In this subsection, j is used as “Not /.
That means that if i =1 then j = 2 and if i = 2 then j = 1. For example,
if I =i’ =11, then ijf =12/ ji’ =21/, J=22". If | = ii’ = 12/, then

i’ =11 ji' = 22", J = 21'. A finite sum is defined as

4
E ap = a1 + aipr + anyr + apyr.
D=1
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Deformation quantization for G;

Let f and g be smooth functions on Gy 3. The recurrence relation of
T" g/ven in (??)is

Br (1+h— hBf — hBjy — hBg) TL
~h(By +) (B + 1) Tafi-arayrey-a
= hgj, To’;_l e T8y e :

_67/37; eu’ﬁn

= n—1 n—1
+ hgjir To?,, i T heiy T .

n—eiBr—&’

for each |.

Star products on a noncommutative G are determined by this formula

recursively. For general G, 4, the recurrnce relations are determined in a
similar way.
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Conclusion

Thank you for your attention!
Conclusion

@ T[he deformation quantization with separation
of variables—You can make it by algebraic
recurrence relations |

® Noncommutative Riemannian surfaces

@ Noncommutative Grassmann manifold
— CP":not so hard but - - -
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Section

A function similar to the
determinant “permanent”



permanent

A function similar to the determinant is defined on the matrix space.

Definition (permanent)

Let C = (Ci,1)1<pepi<j<, b @ n x n matrix. We define |- | as a
C-valued function on M (n, n; C) such that

11t = > ] Chonii-

on€S, k=1

This is called “permanent”.
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permane

Here we show some examples. These suggest some properties like
determinant.

o
ci1 C12

= C11C22 + C12C21
C1 2

€11 Ci2 A3
1 €2 3
€31 C32 (33

= C11C22C33 + C11C23C32 + C12C21C33 + C12C23C31 + C13C21C32 + C13C22C31
C (23 Ci1 <13 C11 C12

=11 + C12 + c13
C32 (33 €31 €33 1 22
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permanent

Similar to a determinant
+
“c|” =1cl™,

where tC is a transposed matrix of C.
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Cofactor expansion of a permanent

Proposition

The following is a proposition similar to cofactor expansion of a
determinant.
+ & +
€1 -+ CQj - Cn i1 - QG Clin
. n . . . . .
+ A ~ A~
|C| e Cll Cij o .. Cin — E CU CI]. .. Cij 0oo Cin
: 0, : Jj=1 :
Cn1 Cnj Cnn Cnl C/;Ij Chn
v
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Matrix made of metrics

Definition
A matrix GP1 is defined by using the Riemannian metrics on M. Its
elements are metrics on M and are located as follows. &, and 3, are
elements of ZN.
G Gin
GanbBn —
Gnl : Gnn
where
1 1
Gog=18pg | : *-. i | €M(a},85:C)
1 1
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Cofactor expansion

From Proposition 0.11, we obtain the following corollary.

Corollary (Cofactor expansion of a permanent)

For a matrix G

N N
G BT N gy | gan-afi-a| n o | gon—eifi-a|"
= Bigi = K8k
J=1 K=1
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N=2and n=2

N=2 andﬂn = 2 are substituted in Theorem ??. The results are listed
here. a5, 85 € {(2,0),(1,1),(0,2)} and i = {1,2}.

W (gn)’ = (2 +hR;'y ) Th.0) 20 + Ry Th0)02) + hRy? Té0)011)
12 (g12)° = (2 + hRiﬁi ) T(zo,z),(z,o) + hRizii 7—(20,2),(0,2) + F'Riﬁi T(2(>,2),(1,1)
2%y 81, = (2 +hRyM
hgi181 = (1 + hRy?; ) Thonwn + hR; Mg Thon20 + hRs?2; T.0).02)

P giog50 = (1 + hRiﬁi ) 7—(20,2),(1,1) + hRéﬁi T(Zo,z),(z,o) + hRiiii 7—(20,2),(0,2)

Pg1183, + 851812 = (1 + hR5?; ) T(21,1), )t hRsM T(21,1),(2,0) + hRy % T(21,1),(o,2)
12 (gn) = (2 + hR5?; ) Th.oy02) + hR;M Th0)20) + hR;? Th0)11)

12 (g2)° = (2 + hRs 2 ) T 2).02) + hRs M5 To2),.00 + hRs*5 Th2).w1)

21g5185 = (2 + Ry ) Té 102 + hR;M5 Thy 20+ hR;?5 Té1y.0)

W1 85 = (1 + hRi2li) 7—(22,0),(1,1) + hRy™5 T(Zz,o),(z,o) + hR;?5 T(22,0),(0,2)

i ) Ta,c0) T AR1 Ty 02 T AR Tha.a

P2 g5185 = (1 + hRizli) T(zo,z)‘(1,1) +hRts T(zo,z),(z,o) + IRy T(zo,z),(o.z)
K2 g5181, + 1281185 = (1 + ﬁRiné) T(21,1),(1,1) +hRi'5 T(21,1),(2‘0) + IRy T(21,1),(0,2)-

There are multiple overlapping and tautological equations are omitted.
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N=2and n=2

With (?7) these are the same as the following equation.

(g11)2 811831 (851)2
P | 2811812 851812 + 81183 285183
(g12)° 851852 (g2)°
Tho.20) TRo).wy (20)(02) 2+hRMy hRsYy
= T(jl’l),(zm T(jl,l),(l,l) (11)(02) hRi*'y  14+hRy  h
To2.20 To2.wy 02,02 hR;**1 hRs?; 2+

then Proposition 0.7 is proved.

! Kentaro Hara and Akifumi Sako (Tokyo Quantization of Locally Symmetric Khler Mz 3/6/2017 44 / 52



The local coordinate can be defined in a similar way to S. Kobayashi and
K. Nomizu pp.160-162[19].
Let U be an open subset of G, 4 . A chart (U, ¢) is defined by

U:—{Y— < :2 ) GM(erq,p:(C):!Yo\#O}
and
¢:U— M(q,p;C)

where
p(Y)=V1Y;

This is a holomorphic map of U onto an open subset of p x g-dimensional
complex space.
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