
G E O D E S I C M A P P I N G S

and

THEIR GENERALIZATIONS

Josef MIKEŠ
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1. Introduction

Diffeomorphisms and automorphisms of geometrically generalized spaces consti-
tute one of the contemporary actual directions in differential geometry. A large
number of works is devoted to

geodesic, quasigeodesic, holomorphically projective, almost geodesic, F -planar

and other mappings, transformations and deformations.

This lecture is dedicated to some results concerning the fundamental equations
of these mappings and deformations.

Obviously the existence of a solution of these fundamental equations imply the
existence of the mentioned mappings, transformations and deformations.

These fundamental equations were found in several forms. Among these forms
there is the particularly important form of a

system of differential equations of Cauchy type.

For their linear forms the question of solvability can be answered by algebraic
methods.



2. On systems of differential equations of Cauchy type

Here we introduce the basic notions of the theory of systems of differential equa-
tions of Cauchy type. We restrict ourselves to the local theory.
Assume a smooth domain D ⊂ Rn with coordinates x = (x1, x2, . . . , xn) and
smooth functions FAi (x, y), i = 1, . . . , n; A = 1, . . . , N , on D ⊂ D ×RN .

The system of differential equations of Cauchy type has the following form

∂yA(x)

∂xi
= FAi (x, y(x)),

A,B = 1, . . . , N,
i = 1, . . . , n,

(1)

where y(x) = (y1(x), . . . , yN (x)) are unknown functions.

For initial Cauchy conditions: yA(xo) = y
o

A, A = 1, . . . , N, (2)

where xo ∈ D and y
o

A ∈ RN , then the system (1) has at most one solution.

For this reason the general solutions of the system (1) depends on r ≤ N real
parameters.

The system (1) may be written in terms of covariant derivatives. A fundamental
investigation of (1) consists in a check of the integrability conditions, which are
essentially algebraic equations for the unknown variables yA. In the case when
they are identifically fulfilled, we have r = N .



A homogeneous system of linearly differential equations of Cauchy type has the
following form

∂yA(x)

∂xi
= fAB i(x) yB(x),

A,B = 1, . . . , N,
i = 1, . . . , n,

(3)

where fAB i(x) are functions on D.
The integrability conditions of the homogeneous linear system (3):

∂2yA(x)

∂xi∂xj
=
∂2yA(x)

∂xj∂xi

constitute a system of homogeneous linear algebraic equations with respect to
the unknown functions yA(x).

Differential prolongation of their integrability conditions forms also a system of
homogeneous linear algebraic equations with respect to the unknown functions
yA(x).

This means that with the aid of linear algebra we may convince ourselves,
whether or not the system (3) has solutions and determine on how many pa-
rameters r ≤ N it depends



Many problems of differential geometry have been successfully solved by homo-
geneous systems of linearly differential equations of Cauchy type, for example:

• isometric and homothetic transformations of Riemannian spaces
(Killing and conformal Killing equations),

• affine and projective transformations
of Riemannian spaces and spaces with affine connections,
(Fubini equations)

• holomorphically projective transformations of Kählerian spaces.

• affine mappings of Riemannian spaces and spaces with affine connections,

The above results were found in the years 1900 – 1960 and shown in many
monographs – L.P. Eisenhart, S. Kobayashi, A.Z. Petrov, K. Yano, . . . .



Now I want to introduce new results which were obtaind in the last 40 years
and are connected which the mentioned systems of Cauchy type. This means that
for the mentioned types of geometrical problems regular methods of solution were
found.

• geodesic mappings of Riemannian spaces (N.S. Sinyukov, 1967),

• geodesic mappings of spaces with affine connections onto Riemannian spaces
(V.E. Berezovsky and J. Mikeš, 1989),

• geodesic mappings of Berwald spaces onto Riemannian spaces
(S. Bácsó, V.E. Berezovsky and J. Mikeš, 2007),

• geodesic deformation of Riemannian hypersurfaces in Riemannian spaces
(M.L. Gavrilchenko and J. Mikeš, 2004),

• conformal mappings of Riemannian spaces onto Einstein spaces
(J. Mikeš, M.L. Gavrilchenko and E. Gladysheva, 1992),
(L. Evtushik, I. Hinterleitner, N. Guseva and J. Mikeš, 2016),



• holomorphically projective mappings of Kählerian spaces
(V.V. Domashev and J. Mikeš, 1976),
(I. Hinterleitner and J. Mikeš, ),

• holomorphically projective mappings of hyperbolically Kählerian spaces
(I.N. Kurbatova, 1980),

• holomorphically projective mappings of parabolically Kählerian spaces
(M. Shiha, 1994),

• F -planar mappings of spaces with affine connections onto Riemannian spaces
(J. Mikeš, 1994, 1999),



3. Spaces with affine connection, Riemannian and

Kählerian spaces

If the contrary is not specified, the present review is given locally in tensor form
in the class of real sufficiently smooth functions. The dimension n of the spaces
under consideration, as a rule, is greater than 2, and is not mentioned specially.
All the spaces are assumed to be connected.

Let us give the basic notions of the theory for space with affine-connected (An),
Riemannian (Vn), and Kählerian (Kn) spaces.

3.1 Space with affine connection (An). In a space An with an affine connec-

tion without torsion covered by a local coordinate system x = (x1, x2, . . . , xn)
together with an object of the affine connection Γhij (x) (h, i, j, · · · = 1, n) the
Riemannian tensor and Ricci tensor are defined in the following way:

Rhijk ≡ ∂jΓ
h
ki + ΓαkiΓ

h
jα − ∂kΓhji − ΓαjiΓ

h
kα, Rij ≡ Rαijα, ∂i ≡ ∂/∂xi.

An equiaffine space is defined as An, with Rij = Rji. The spaces where the

conditions Rhijk = 0 (Rij = 0) hold are called flat (Ricci-flat, respectively).

The space An belongs to the class Cr (An ∈ Cr) if Γhij (x) ∈ Cr.



3.2 Riemannian Spaces (Vn).

In the Riemannian space Vn, determined by the symmetric and nondegenerate
metric tensor gij, Christoffel symbols of types I and II are introduced by the
formulas

Γijk ≡
1

2
(∂igjk + ∂jgik − ∂kgik)

and
Γhij ≡ ghαΓijα,

where gij are elements of the inverse matrix to gij.

The signature of the metrics is assumed, in general, to be arbitrary. Christof-
fel symbols of type II are the natural connection (the Levi-Civita connection)
of Riemannian spaces, with respect to which the metric tensor is covariantly
constant, i.e.,

gij,k = 0.

Hereafter “,” denotes the covariant derivative with respect to the connection of
the space Vn (or An).



A Riemannian space is equiaffine.
The space Vn belongs to the class Cr (Vn ∈ Cr) if gij ∈ Cr.
Using gij and gij, we introduce in Vn the operation of lowering and rising

indices, for example:

Rhijk ≡ ghαR
α
ijk; Rh k.ij. ≡ gkαRhijα; Rhi ≡ ghαRαi.

Together with the tensors of Riemann, Ricci, and the projective Weyl tensor,
the latter is simplified in Vn:

Wh
ijk ≡ Rhijk −

1

n− 1
(δhkRij − δ

h
jRik),

where δhi is the Kronecker symbol, in Vn we introduce into consideration the

scalar curvature R ≡ Rαβg
αβ and the Brinkmann and Weyl tensors of conformal

curvature:

Lij ≡ 1
n−2(Rij − R

2(n−1)
gij)

and
Chijk ≡ Rhijk − ghkLji + gikLjh + ghjLki − gijLkh.



3.3 Kählerian Spaces (Kn). In the present lecture, by a Kählerian space we
mean a wide class of spaces defined as follows:

A Riemannian space is called a Kählerian space Kn if, together with the metric
tensor gij(x), an affine structure Fhi (x) is defined that satisfies the relations

FhαF
α
i = eδhi ; Fα(igj)α = 0; Fhi,j = 0, where e = ±1, 0.

∗ If e = −1, then Kn is said to be an elliptical Kählerian space K−n ,
∗ if e = +1, then Kn is said to be a hyperbolic Kählerian space K+

n , and
∗ if e = 0 and Rg‖ Fhi ‖ = m ≥ 2, then

Kn is said to be an m-parabolic Kählerian space K
o(m)
n .

∗ The space K
o(n/2)
n is called a parabolic Kählerian space Ko

n.
The spaces K+

n , K−n and Ko
n must be of even dimension.

The spaces K−n were first considered by P.A. Shirokov, the spaces K+
n were

considered by P.K. Rashevskii, and the spaces K
o(m)
n were studied by V.V. Vish-

nevskii. In the investigations mentioned these spaces are referred to as A-spaces.
Independently from P.A. Shirokov the spaces K−n were studied by E. Kähler. In
the international literature these spaces are preferably referred to as Kählerian
spaces.



4. Conformal mappings onto Einstein spaces

4.1 Conformal mappings of Riemannian spaces

Considering concrete mappings of spaces, for example, f : Vn → V̄n, both spaces
are referred to the general coordinate system x with respect to this mapping.
This is a coordinate system where two corresponding points

M ∈ Vn and f (M) ∈ V̄n
have equal coordinates x = (x1, x2, . . . , xn); the corresponding geometric objects
in Vn will be marked with a bar.
For example, Γ̄hij are the Christoffel symbols in V̄n.

The mapping from Vn onto V̄n is conformal if and only if, in the common
coordinate system x with respect to the mapping, the conditions

ḡij(x) = e2ψ(x)gij(x),

where ψ(x) is a function on Vn, gij and ḡij are metric tensors of Vn and V̄n,
respectively.



4.2 Conformal mappings onto Einstein spaces

One of the directions of investigation is the study of conformal mappings of Vn
onto the Einsteinian spaces begun by H.W. Brinkmann (1925). He found fun-
damental equation of these problem in the nonlinear differential equations in co-
variant derivatives of Cauchy type. These results were presented in detail by A.Z.
Petrov, and M.L. Gavril’chenko continued these investigations.

J. Mikeš, M.L. Gavril’chenko, and E.A. Gladysheva proved that Vn admit a con-
formal mapping onto the Einsteinian space V̄n if and only if in Vn the system of
linear differential equations of Cauchy type in covariant derivatives

s,i = si;
si,j = sLij + u gij;
u,i = sαL

α
i ,

where Lij is the Brinkmann tensor, had a solution for the unknown invariants

s(> 0), u and the vector si. In this case ḡij = s−2gij.



5 Fundamental equations of Theory of Geodesic Mappings

5.1 Geodesic curves.

In Riemannian spaces Vn and spaces An with affine connection straight lines
generalise to geodesic curves, which are characterised by the property that there
is a parallel tangent vector field along them.

This is expressed by the equation

∇λ(s)λ(s) = 0 or ∇λ(t)λ(t) = %(t)λ(t),

that ∇ is the covariant derivative of the tangent vector λ(t) along a geodesic is
equal to zero or parallel to itself.



5.2 Geodesic mappings.

The diffeomorphism f from the space of an affine connection An onto the space
of an affine connection Ān is called a geodesic mapping if f maps any geodesic
line of An into a geodesic line of Ān.

As an example we may take projective mappings, which map straight lines in
Euclidean space to straight lines.

The GM problem was first posed by E. Beltrami (1865). Significant contributions
to the investigation of the general laws of this theory were made by T. Levi-Civita,
T. Thomas, H. Weyl, A.S. Solodovnikov, G.I. Kruchkovich, and N.S. Sinyukov;
see also the books of L.P. Eisenhart, A.Z. Petrov, A.P. Norden, G. Vranceanu,
and others.

Mikeš J. et al. Differential geometry of special mappings. Olomouc: Palacky University, 566 p. (2015).

Mikeš J., Vanžurová A., Hinterleitner I. Geodesic mappings and some generalizations. Palacky Univ., 304 p. (2009).



The second direction of GM-theory is the integration of basic GM-equations.

• U. Dini found metrics of geodesically corresponding surfaces.

• The problem of finding metrics for the Riemannian spaces Vn and V n was
formulated by T. Levi-Civita, and he solved it for the case of proper Riemannian
spaces.

• By the method used by T. Levi-Civita, this problem was solved, also, in the
case in which one of the spaces is proper Riemannian and the other is pseudo-
Riemannian.

• For pseudo-Riemannian spaces this problem was solved by

– P.A. Shirokov for V2,

– A.Z. Petrov for V3,

– V.I. Golikov for Lorentzian spaces V4,

– G.I. Kruchkovich for Lorentzian spaces Vn, and

– A.V. Aminova for arbitrary Vn.

A detailed description is given in the review by A.V. Aminova.



5.3 Levi-Civita equations.
The mapping fromAn onto Ān is geodesic if and only if, in the common coordinate
system x with respect to the mapping, the conditions

Γ̄hij (x) = Γhij (x) + δhi ψj + δhjψi (4)

hold, where ψi (x) is a covector.
If ψi 6≡ 0, then a geodesic mapping is called nontrivial (NGM); otherwise it is

said to be trivial or affine. Under GM the following conditions hold:

R̄hijk = Rhijk + δhi ψ[jk] + δhkψij− δ
h
jψik; R̄ij = Rij + (n− 1)ψij +ψ[ij], (5)

where ψij ≡ ψi,j − ψiψj. The Weyl tensor of the projective curvature Wh
ijk is

an invariant object of the geodesic mapping, i.e. W̄h
ijk = Wh

ijk.

If the spaces An and Ān are equiaffine, the covector ψi is gradient-like.
If Ān is the Riemannian space V̄n with the metric tensor ḡij, condition (4) is

equivalent to
ḡij,k = 2ψkḡij + ψiḡjk + ψjḡik. (6)

Conditions (4) and (6) are called the Levi-Civita equations.



5.4 Sinyukov’s equations. (Vn → V̄n)

N.S. Sinyukov proved that Riemannian space Vn admits GM onto Riemannian
space V̄n if and only if in Vn the linear homogeneous differential equations in
covariant derivatives of Cauchy type

(a) aij,k = λi gjk + λj gik;

(b) nλi,j = µgij + aiαR
α
j − aαβR

α β
.ij. ;

(c) (n− 1)µ,i = 2(n + 1)λαR
α
i + aαβ

(
2R

αβ
.i,. −R

αβ
..,i

) (7)

have a solution respectively to the unknown symmetric nondegenerated tensor
aij, the gradient vector λi, and the function µ.

Notice that µ ≡ λα,βg
αβ. The solutions of Eqs. (6) and (7) are related by the

following equalities:

aij = e2ψgαβgαigβj; λi = −e2ψgαβgαiψβ.

The function ψ generates the vector ψi (≡ ∂iψ).
Formula (7a) gives the necessary and sufficient condition for the existence of

GM: Vn→ V̄n. This mapping is nontrivial if and only if λi 6≡ 0.



5.5 Mikeš-Berezovski’s equations. (An → V̄n)

J. Mikeš and V. E. Berezovski showed that the affine-connection space An admits
GM onto Riemannian space V̄n with the metric tensor gij if and only if the
complete set of differential equations of Cauchy type in covariant derivatives

gij,k = 2ψkgij + ψ(igj)k;

nψi,j = nψiψj + µgij −Rij − giαgβγRαβγj−
2

n+1R
α
αij;

(n− 1)µ,i = 2(n− 1)ψαg
βγRαβγi + ψαg

αβ
(

5Rβi + 6
n+1R

γ
γβi −Riβ

)
+gαβ

(
R
γ
αβi,γ −Rαi,β −

2
n+1R

γ
γαi,β

)
has a solution in An respectively to the unknown symmetric nondegenerated tensor
gij, the covector ψi, and the function µ.

This system is nonlinear.



5.6 Mikeš-Berezovski’s equations. (Equiaffine An → V̄n)

The equiaffine space An admits GM onto V n if and only if the complete set of
linear differential equations of Cauchy type in the covariant derivatives in An

a
ij
,k = δikλ

j + δ
j
kλ
i; nλi,j = µδij + aiαRαj − aαβRiαβj;

(n− 1)µ,i = 2(n + 1)λαRαi + aαβ(2Rαi,β−Rαβ,i )

has a solution respectively to the unknown symmetric nondegenerated tensor aij,
the vector λi, and the function µ.
The solutions of this system and (6) are related by the equality

aij = e2ψḡij; λi = −e2ψḡiαψα.
In this case, the set of equations obtained is linear and its solution is reduced to

the investigation of the integrability conditions and their differential continuations,
which are a set of algebraic (homogeneous with respect to the unknown tensors
aij, λi, and µ) equations with coefficients from An. Thus, in principle, we
can solve the following problem if the given equiaffine space An admits geodesic
mappings onto the Riemannian space V̄n and if the choice of this mapping is
arbitrary.



In works of Cartan (see Eisenhart, Non Riemannian spaces, Princeton, 1927)
was proved that

any space with arbitrary affine connection ∇ is projective equivalent
to normal affine connection. This connections is equiaffine!

This classical result follows that Berezovski and Mikeš equations hold factually
for geodesic mappings of any spaces with arbitrary connection onto (pseudo-)
Riemannian spaces.



5.7 Infinitesimal Geodesic Deformations.

Let Vn ⊂ Vm (n < m). The relation ỹα = yα(x)+ε ξα(x), where (x1, x2, . . . , xn)
and (y1, y2, . . . , ym) are local coordinates in Vn and Vm, ξα is a vector field on

Vm, determined at the points of Vn, and ε is a small parameter, defines Ṽn, which
is an infinitesimal deformation of Vn.

The infinitesimal deformations of Vn (of first order) are called (M.L. Gavrilčenko)
geodesic if, under these deformations, all geodesic lines of Vn are preserved with
accuracy up to ε2. The deformation is geodesic if and only if

δgij,k = 2ψkgij + ψigjk + ψjgik, (8)

where δgij is the first variation of the metric tensor of Vn:

g̃ij(x) = gij(x) + ε δgij(x).



5.8 Infinitesimal Geodesic Deformations of hypersurfaces of Riemannian spaces.

If m = n + 1 and ηα(x) a nonisotropic normal vector of Vn, then the set of
vectors {yα,i ; η

α} forms a basis in Vm.

Let us assume ξα(x) = λi(x)yα,i + µ(x)ηα, where λi(x) and µ(x) are a vector
field and a function on Vn respectively; then

δgij ≡ λ(i,j) − 2µΩij

and Eqs. (8) are reduced to the following system:

λi,jk = λαR
α
kji + gi(jψk) + (µΩi(j),k) − (µΩij),k, (9)

where Ωij is the second fundamental tensor of Vn.

M.L. Gavrilchenko and J. Mikeš proved that, if Rg
∥∥Ωij

∥∥ ≥ 3, then the system (9)
may be reduced to a linear complete system of differential Cauchy-type equations
in covariant derivatives with respect to components of some second valency tensor,
three vectors, and three functions. Hence, the general solution of the Eqs. (9)
depends on r (≤ n(n + 3) + 3) parameters.



6. Holomorphically Projective Mappings of Kählerian Spaces

6.1 Introduction

The holomorphically projective mappings (HPM) of Kählerian spaces Kn are nat-
ural generalizations of geodesic mappings. In the HPM theory we can isolate
problems similar to those considered in the GM theory. Moreover, it turns out
that many results that are valid for GM can be extended, almost completely, to the
case of HPM. Note that HPM were considered, as a rule, under the condition of
preservation of the structure. It turned out that in the case of HPM the structure
is necessarily preserved.

The works by Tashiro, Ishihara, Otsuki and Tashiro, Domashev and Mikeš as well
are devoted to general questions concerning the theory of holomorphically projec-
tive mappings of the classic Kählerian spaces K−n , the works by Prvanović, Kur-
batova, Mikeš are devoted to the theory of hyperbolic Kählerian spaces K+

n , and
the works by Vishnevsky, Shiha and Mikeš are devoted to parabolically Kählerian

spaces K0
n and K

o(m)
n .



6.2 Definitions and the basic equations
An analytically planar curve of the Kählerian space Kn is a curve defined by the
equations xh = xh(t) whose tangent vector λh = dxh/dt, being translated,
remains in the area element formed by the tangent vector λh and its conjugate
λ̄h ≡ λαFhα , i.e., the conditions

∇tλh ≡
dλh

dt
+ Γhαβλ

αλβ = %1(t)λh + %2(t)λ̄h,

where %1, %2 are functions of the argument t, are fulfielled.

The diffeomorphism of Kn onto K̄n is a holomorphically projective mapping
(HPM), if it transform all analytically planar curves of Kn into analytically planar
curves of K̄n.

Under the HPM, the structure of the spaces Kn and K̄n is preserved, i.e.,
in the coordinate system x, general with respect to the mapping the condition
F̄hi (x) = Fhi (x) are satisfied.

The holomorphically projective mappings were introduced by Otsuki and Tashiro

for K−n , by Prvanović for K+
n , and by Vishnevsky for K

o(m)
n under the a priori

assumption that the structure was preserved.



6.3 Fundamental equations of Theory HPM
The necessary and sufficient conditions for the holomorphically projective map-
pings of Kn and K̄n are ulfillment of the following conditions in the general (with
respect to the mapping) coordinate system (K−n by Tashiro, K+

n by Prvanović,

K
o(m)
n by Shiha and Mikeš):

Γ̄hij(x) = Γhij(x) + ϕ̄iδ
h
j + ϕ̄jδ

h
i + ϕiF

h
j + ϕjF

h
i , (10)

where ϕi is a vector, and the vector ϕ̄i ≡ ϕαF
α
i is necessarily a gradient.

When ϕi 6≡ 0, we say that the HPM is nontrivial (NHPM).

The Riemannian and Ricci tensors K±n and K̄±n are connected by the conditions

R̄hijk = Rhijk + δhkψij − δ
h
jψik − eδ

h
k̄
ψi̄ + eδh̄ ψik̄ − 2eδhı̄ ψ̄k;

R̄ij = Rij + (n + 2)ψij,

where ψij ≡ ϕ̄i,j − ϕ̄iϕ̄j + ϕiϕj, with ψij + eψı̄̄ = 0.
Relation (10) are equivalent to the equations:

ḡij,k = 2ϕ̄kḡij + ϕ̄iḡjk + ϕ̄jḡik + ϕiF̄jk + ϕjF̄ik, (11)

where F̄ij ≡ ḡiαF
α
j .



6.3 Fundamental equations of Theory HPM in new linear form

J. Mikeš has found out for K−n and Kurbatova for K+
n that the Kählerian space

K±n admits of a nontrivial holomorphically projective mapping if and only if the
system of equations

(a) aij,k = λigjk + λjgik − eλı̄g̄k − eλ̄gı̄k;

(b) nλi,j = µgij + aiαR
α
j − aαβR

α
· ij

β
· ; (12)

(c) µ,i = 2λαR
α
i

has a nontrivial solution in it for the unknown tensors

aij (= aji = −eaı̄̄; |aij| 6= 0), λi ( 6= 0) and µ.

The solutions of (11) and (12) are connected by the relations

aij = e2ψḡαβgαigβj, λi = −e2ψḡαβgαiϕ̄β,

where ψ is an invariant generated by the gradient ϕ̄i = ψ,i.

Conditions (12a) are necessary and sufficient for the existence of NHPM K±n .
For K−n they were obtained by Domashev and J. Mikeš.



Equations (12) form a linear homogeneous system of the Cauchy system relative
to the components of the unknown tensors aij, λi and µ. Consequently, the

general solution of this system depens on r ≤ (n/2 + 1)2 parameters.
The solution of Eqs. (12) in K±n reduces to the study of the integrability

conditions for (12) and their differential prolongations, which, in turn, constitute
a system of homogeneous linear algebraic equations for the unknows aij, λi and µ.

Thus, we can find out whether the given space K±n admits of NHPM, and if it
does, then with what arbitrariness.

It has been found for K
o(m)
n that (11) are equivalent to the conditions

aij,k = τ̄igjk + τ̄jgik + τiFjk + τjFik,

where τ̄i ≡ ταF
α
i , Fij = giαF

α
j .

M. Shiha showed that these equations could be reduced to a system of the
Cauchy type for r ≤ (n + 2)(n + 1)/2−m(n−m + 1) parameters.
Hinterleitner, I.; Mikeš, J. On holomorphically projective mappings from manifolds with equiaffine connection onto

Kähler manifolds. Arch. Math., Brno 49, No. 5, 295-302 (2013).

Hinterleitner, I. Holomorphically projective mappings of (pseudo-) Kähler manifolds preserve the class of differentia-

bility. Filomat 30 (2016), no. 11, 3115–3122.



7. F -planar mappings

7.1 F -planar curves
Let usconsider the space An, of affine connection without torsion reffered to the
coordinate system x in which, along with the affine connection Γhij(x), the affine

structure Fhi (x) is defined.

The curve `: xh = xh(t) is said to be F -planar if, being translated along it, the
tangent vector λh ≡ dxh/dt lies in the surface area formed by the tangent λh

and its conjugate λαFhα , i.e.,

∇tλh = %1λ
h + %2λ

αFhα ,

where %1, %2 are functions of the parameter t.
F -planar curves generalize, in natural way, geodesic, analytically planar, and

quasi-geodesic curves by sence A.Z. Petrov.

Mikeš, J.; Sinyukov, N.S. On quasiplanar mappings of spaces of affine connection. Sov. Math. 27:1, 63-70 (1983).



7.2 F -planar mappings
The diffeomorphism An → Ān is said to be an F -planar mapping if, under this
mapping, any F -planar curve An passes into the F̄ -planar curve Ān.

Theorem 1 The mapping of An onto Ān is F -planar if and only if the conditions

(a) Γ̄hij = Γhij + δhi ψj + δhjψi + Fhi ϕj + Fhj ϕi,

(b) F̄hi = αFhi + βδhi ,
(14)

where ψi(x), ϕi(x) are vectors and α(x), β(x) are invariants, are satisfied in the
coordinate system x which is general with respect to the mapping.

Conditions (14b) mean that F -planar mappings preserve the structure Fhi .
F -planar mappings generalize geodesic, quasigeodesic, holomorphically projec-

tive, planar, and almost geodesic of the type of π2, subprojective mappings.

Mikeš, J.; Sinyukov, N.S. On quasiplanar mappings of spaces of affine connection. Sov. Math. 27:1, 63-70 (1983).

Hinterleitner, I.; Mikeš, J. On F-planar mappings of spaces with affine connections. Note Mat. 27:1, 111-118 (2007).



If An admits an F -planar mappings onto the Riemannian space V̄n, then Eqs.
(14a) are equivalent, to the equations:

ḡij,k = 2ψkḡij + ψiḡjk + ψjḡik + ϕk(Fij + Fji) + ϕiFjk + ϕjFik, (15)

where Fij ≡ ḡiαF
α
j .

We often encounter equations of this kind in the statement of other problems
in works by V.S. Sobchuk and by S.V. Stepanov.

Under the condition that Rank‖Fhi −%δ
h
i ‖ > 5 or F(ij) = 0 Eqs. (15) reduce to

a system of Cauchy type whose general solution depends on r ≤ n(n+ 5)/2 + 3
parameters.



7.3 On the other definition of F -planar mappings

Hinterleitner, I.; Mikeš, J., P. Peška On fundamental equations of F-planar mappings. Lobach. Math. J. n. 4, (2017).

We can give another definition of the F -planar mappings:

Definition. A diffeomorphism f from An onto Ān is called an F-planar mapping
if it satisfies condition (14a).

We remark that condition (14a) are fulfilled for holomorphically projective map-
pings, and their generalization.

In Definition of F -planar mapping is defined for all F -planar curve on An which
are mapped onto F̄ -planar curve on Ān, i.e.

∇tλ = %1(t)λ + %2(t)Fλ 7−→ ∇̄tλ = %1(t)λ + %2(t) F̄ λ,

where λ is tangent vector of curve ` = `(t).



By simply modification of following proof of Theorem 1 it can see, that equation
(14a) hold, when all curves ` are mapped onto f (`) and if the following conditions
hold:

(a) ∇tλ = 0 7−→ ∇̄tλ = %1(t)λ + %2(t)Fλ,

(b) ∇tλ = %(t)λ 7−→ ∇̄tλ = %1(t)λ + %2(t)Fλ,

(c) ∇tλ = %(t)Fλ 7−→ ∇̄tλ = %1(t)λ + %2(t) F̄ λ,

(d) ∇tλ = %1(t)λ + %2(t)Fλ 7−→ ∇̄tλ = %1(t)λ + %2(t)Fλ,

(e) ∇tλ = 0 7−→ ∇̄tλ = %1(t)λ + 2ϕ(λ)Fλ.
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