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Scalars
Consider a (2+1)-dimensional scalar field φ, depending on space
coordinates forming a Heisenberg algebra (time remains commutative):

φ(t, x̂ , ŷ), [x̂ , ŷ ] = iθ1̂1 . (1)

θ is a constant with the dimensionality of an area. φ is a time-dependent
scalar operator acting on the Hilbert space H on which the algebra is
represented. (1) implies [x̂ , φ(x̂ , ŷ)] = iθ ∂φ

∂ŷ and [ŷ , φ(x̂ , ŷ)] = −iθ ∂φ
∂x̂ .

The field action reads (allow for φ† 6= φ)

S =

∫

dt TrH

(

1

2
φ̇†φ̇+

1

2
[x̂ , φ†][x̂ , φ] +

1

2
[x̂ , φ†][ŷ , φ]− V (φ†φ)

)

(2)

If V (φ†φ) = 0, the equations of motion for φ are

φ̈+
1

θ2
[x̂, [x̂ , φ]] +

1

θ2
[ŷ , [ŷ , φ]] = 0. (3)

In Cartesian coordinates, the solutions are plane waves

φ ∼ e i(kx x̂+ky ŷ)−iωt , k2
x + k2

y = ω2, (4)

only formally identical to the commutative ones: due to the operators in
the exponent, such waves have bilocal character. If a mass term
m2φ†φ/2 is inserted in the action, ω2 −→ ω2 −m2.



Continuous representation
Consider again φ(t, x̂ , ŷ ); [x̂ , ŷ ] = iθÎ ; x̂, ŷ : H → H. Choose the basis
{|x >} of eigenstates of x̂ : x̂|x >= x |x >, ŷ |x >= −iθ ∂

∂x |x >.
To quantize φ, promote normal modes expansion coefficients a and a∗.
to annihilation/creation operators a, a† on a standard Fock space F .
To introduce NC space, apply Weyl (not Weyl-Moyal!) quantization to
the exponentials e i(kxx+ky y) (the normal modes). The result is

φ =

∫ ∫

dkxdky

2π
√

2ω~k

[

âkxky e
i(ω~k

t−kx x̂−ky ŷ) + â
†
kxky

e−i(ω~k
t−kx x̂−ky ŷ)

]

. (5)

φ acts on a direct product of two Hilbert spaces, φ : F ⊗H → F ⊗H.
Saturate the action of φ on H by working with expectation values
< x ′|φ|x >: F → F . Bilocality appears explicitely due to

< x ′|e i(kx x̂+ky ŷ |x >= e ikx(x+ky θ/2)δ(x ′−x−kyθ) = e ikx
x+x′

2 δ(x ′−x−kyθ).
(6)

The span along the x axis is (x ′ − x) = θky ; the energy is

ω~k =

√

k2
x +

∆x2

θ2
+m2. (7)

Notice the intrinsic IR/UV-dual character of the dipoles: both big
momentum (UV) and big extension (IR) give big energy.



Symmetries
Reintroduce the commutative z direction and use the notation

< x ′|φ|x >≡ φ(x ′, x) ≡ φ(x̄ ,∆x), x̄ ≡ x + x ′

2
, ∆x ≡ (x ′ − x)

The free equation of motion for φ(t, x̂ , ŷ , z) follows from the action

S = TrH

∫

dt

∫

dz

(

(φ̇)2 +
1

θ2
[x̂ , φ]2 +

1

θ2
[ŷ , φ]2 − (∂zφ)

2 +m2φ2
)

,

and reads (∂2t − ∂2z +m2)φ+ 1
θ2 [ŷ , [ŷ , φ]] +

1
θ2 [x̂ , [x̂ , φ]] = 0. Sandwiching

it between |x > states, one gets rid of NC and obtains the wave equation
(

∂2t − ∂2x̄ − ∂2z +
(x ′ − x)2

θ2
+m2

)

φ(x , x ′) = 0

for a dipole living in (2+1) commutative dimensions at t, x̄, z and having
extension ∆x . Notice the full agreement with the dispersion relation (7).
In the interacting case, the relevant Lagrangian is thus

2L = (∂tφ)
2 − (∂x̄φ)

2 + [(θ−1∆x)2 +m2]φ2 − 2V (φ)

and is invariant under Lorentz boosts along the x̄-axis, and along the
z-axis, independently (recall the tensorial character of θ = θxy ∼ xy and
∆x ∼ x). These bilocal representation symmetries are at variance with
the Moyal approach claim O(2)x−y ⊗ O(1, 1)t−z .



Interactions
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figure 1: Area versus finiteness



Radial Coordinates
If the physical situation requires polar coordinates (a source emiting
radiation, a circular membrane oscillating), the harmonic oscillator
(radial) basis {|n〉}

N̂ |n〉 = n |n〉 , N̂ = â†â, â =
1√
2θ

(x̂ + i ŷ), n = 0, 1, 2, . . . (8)

is the natural one. The equations of motion become

φ̈+
2

θ
[â, [â†, φ]] = 0. (9)

N̂ = 1
2 (

x̂2+ŷ2

θ − 1) is basically (half) the radius square operator, in units
of θ. Its eigenvalues n in (8) correspond to discrete points with radius

growing like
√
n (n ∼ r2

2θ ) for large n. The NC plane is realized via (8) as
the semi-infinite discrete space of the points labeled by n.



Recurrence relation
Can sandwich any equation containing the operatorial field φ(x̂ , ŷ , t)
between 〈n′| and |n〉 states, eliminating NC in this way. The resulting
field 〈n′|φ(t) |n〉 ≡ φn′,n(t) is commutative and bilocal. If
φn′,n(t) = e iωtφn′,n then â |n〉 = √

n |n − 1〉, â† |n〉 =
√
n + 1 |n + 1〉 lead

to the equation of motion for φn′,n

√
n′ + 1

√
n + 1φn′+1,n+1 +

√
n′
√
nφn′−1,n−1 − (n′ + 1 + n − λ)φn′,n = 0.

(10)
Above, λ = θ

2ω
2. Eq. (10) is a recurrence relation of order two,

describing the radial classical dynamics of a field which lives on a discrete
space. The initial angular dependence of φ(x̂ , ŷ , t) is not lost. It is
encoded in the two-index structure of φn′,n. The operator φ is
reconstructed from the c-numbers φn′,n via

φ =
∑

n′,n∈IN

|n′〉φn′,n(t) 〈n| . (11)

The bilocality of the fields φn′,n thus implies the nonlocality of φ.



Radial symmetry
Recall

N |n〉 = n |n〉 , N = a†a, a =
1√
2θ

(x + iy). (12)

N = 1
2 (

x2+y2

θ − 1) is basically the radius square operator, in units of θ.

If φ depends only on the combination of x̂ and ŷ given by N̂ , φ = φ(N̂),

have radial symmetry – recall that N̂ = 1
2 (

x̂2+ŷ2

θ − 1).
Then φ diagonal in the |n〉 basis: 〈n′|φ |n〉 = φn′,nδn′,n ; local field!
Define φn,n ≡ φn. Then

(n + 1)φn+1 + nφn−1 + (λ − 2n− 1)φn = 0, n = 0, 1, 2, . . . (13)

The expectation value φn ≡ 〈n|φ |n〉 characterizes φ =
∑∞

n=0 |n〉φn 〈n|
uniformly at radius squared n. No angular dependence appears anymore.
If a single value φn0 is nonzero, then |n0〉φn0 〈n0| describes a field located
at n0.
If the discrete derivative operator ∆ is defined by

∆φn = φn+1 − φn. (14)

we obtain the difference equation (2λ/θ = ω2 −m2)

n∆2φn−1 +∆φn + λφn = 0, n = 0, 1, 2, . . . (15)



Solution of the equation of motion

(n + 1)φn+1 + nφn−1 + (λ− 2n − 1)φn = 0, (16)

equivalent to the difference equation (15), describes travelling or
stationary waves on the semi-infinite discrete space of points
n = 0, 1, 2, . . . Two linearly independent solutions are (up to a
multiplicative dimensionfull constant)

φ1(n) =

n
∑

k=0

(−λ)k
k!

C k
n , (17)

φ2(n) =

n−1
∑

k=0

(−λ)k
k!

n−k
∑

j=1

C k
n−j

k + j
. (18)

They are finite sums. φ2(n) = e−λ
(

φ̃2(n) − φ1(n) ·
∑∞

k=1
λk

k!k

)

, where

φ̃2(n) =
n

∑

k=0

(−λ)k
k!

C k
n (Hn−k − 2Hk) +

(−λ)n
n!

∞
∑

s=1

λs(s − 1)!

[(n + s)!/n!]2
. (19)

Hk is a discrete version of the logarithmic function,

Hk = 1 +
1

2
+

1

3
+ · · ·+ 1

k
, k = 1, 2, 3 . . . ; H0 = 0. (20)



Sources

(n + 1)φ(n + 1)− (2n+ 1− λ)φ(n) + nφ(n − 1) = j(n). (21)

Consider first a nonzero source δn,n0 . Adapt the method of variation of
constants to the discrete case

φp(n) = c1(n)φ1(n) + c2(n)φ2(n). (22)

Assuming c1,2(n) constant except for a jump at n0,

ci(n + 1)− ci(n) = fiδn0,n, i = 1, 2, (23)

obtain

f1 =
φ2(n0)

(n0 + 1)W (n0)
= φ2(n0), f2 = − φ1(n0)

(n0 + 1)W (n0)
= −φ1(n0).

(24)
W (n) is the nonzero discrete Wronskian. In the physically most
interesting case n0 = 0 the difference equation (21) becomes first-order.
The above method works the same, due to the simple Ansatz (23). From
the physical point of view, the second solution φ2, involved with
radiation, is tied to a source at the origin.
The solution for an arbitrary distribution of charges j(n), ∀n, is now
obtained by linear superposition of the above type of solutions.
It does not display singularities.



Commutative limit
Consider the n → ∞ limit (small θ limit). Using λ = θω2/2 and

n = r2

2θ → ∞, φ1(n) becomes, as a function of r ,

φ1(n)
n→∞→ f1(r) =

∞
∑

k=0

(−1)k(ωr)2k

(k!)222k
= J0(ωr)

r→∞∼
√

2

πωr
cos(ωr−π/4).

(25)
f1(r) is independent of θ. Similarly, φ2 becomes

φ2(n) → f2(r) =

∞
∑

k=0

(−1)k(ωr)2k

(k!)222k
[2ln(ωr)− 2Hk + γ − ln(2θω2)]. (26)

γ is the Euler-Mascheroni constant, γ = limk=∞(Hk − lnk) ≃ 0.5772.
f2(r) still depends on θ, via a logarithmic term; its θ → 0 limit is singular.
Using the series expansion of the Bessel function of first (J0) and second
kind (Neumann function, Y0), f2(r)/π = Y0(ωr) + (γ + ln(2θω2))J0(ωr).



Dirac equation

Pick up 2-spinor in (2+1)-dimensions, Ψ =

(

ψ
χ

)

. Commutative Dirac

equation would be

i∂tΨ = (−iα1∂x − iα2∂y + βm)Ψ. (27)

Recall [x̂ , φ(x̂ , ŷ)] = iθ ∂φ
∂ŷ , [ŷ , φ(x̂ , ŷ)] = −iθ ∂φ

∂x̂ .
Take α1 = σx , α2 = σy , β = σz .

θ(E −m) ψ = [y , χ] + i [x , χ] (28)

θ(E +m) χ = [y , ψ] + i [x , ψ]. (29)

The NC Dirac equation is written conveniently as

√

θ/2 (E −m) ψ = +i [a†, χ] (30)
√

θ/2 (E +m) χ = −i [a , ψ]. (31)



Relation to scalar solutions
If λ1 ≡ θ

2 (E −m)2, λ2 ≡ θ
2 (E +m)2 then

√

λ1 ψ = +i [a†, χ] (32)
√

λ2 χ = −i [a , ψ]. (33)

That leads immediately to

θ

2
(E 2 −m2) ψ = [a , [a†, ψ] (34)

θ

2
(E 2 −m2) χ = [a†, [a , χ]. (35)

Both fermionic components obey the scalar wave equation, in complete
analogy with the commutative case. Yet...



Nondiagonal solutions
Sandwich between |n〉 states, 〈n′|ψ |n〉 ≡ ψn′n,

√

θ/2(E −m) ψn′n = +i
√
n′ χn′−1,n − i

√
n + 1 χn′,n+1 (36)

√

θ/2(E +m) χn′n = −i
√
n′ + 1 χn′+1,n + i

√
n χn′,n−1 (37)

Notice that even for n′ = n, not enough to have ”diagonal” solutions!
Previous scalar solutions not enough. Must go to case without radial
symmetry!
If find a generic scalar solution φ, can choose ψ ∼ φ and χ ∼ −i [a, φ].
Then, have second spinor of the form χ ∼ φ and ψ ∼ +i [a†, φ].
Then, normalize.



Back to scalars
General case: consider a more suggestive form

φn1,n2 ≡ φ
(n1−n2)
min{n1,n2}

, m ≡ |n1 − n2|, n1, n2 ∈ IN . (38)

Then φ
(m)
n and φ

(−m)
n obey the same second-order difference equation

√
n +m + 1

√
n+ 1φ

(m)
n+1 +

√
n +m

√
nφ

(m)
n−1 + (λ− 2n−m − 1)φ(m)

n = 0
(39)

but their boundary/initial conditions are assigned independently.
The field φ turns into

φ =
∞
∑

m=0

am

∞
∑

n=0

|n +m〉 e iωtφ(m)
n 〈n|+

∞
∑

m=0

bm

∞
∑

n=0

|n〉 e iωtφ(−m)
n 〈n +m| .

(40)
Configurations with different m can be freely superposed in (40); the
coefficients am and bm are determined solely through initial/boundary

conditions (e.g. which modes are excited). In contrast to |n〉φ(0)n 〈n|,
which associates a value φ

(0)
n to one point n, |n +m〉φ(m)

n 〈n| associates a
value φ

(m)
n to the two points n +m and n. Thus, m is a measure of the

delocalization of the field configuration it characterizes.



Operatorial Noether Theorem

The bilocal quantity φ
(m)
n ≡ φn′,n is described by a discrete radius

squared n and an ’extension’ m ≡ |n′ − n|.
Claim: m is related to the quantity conjugated to the polar angle, i.e. to
the planar angular momentum.
Proof: Adapt Noether’s theorem to the operatorial set-up of φ(x̂ , ŷ ) and
obtain the expression for angular momentum in the x − y plane, Jz ≡ J.
First, identify the generator of rotations in the NC plane. Since

e iαN̂ x̂e−iαN̂ = +x̂ cosα+ ŷ sinα, e iαN̂ ŷ e−iαN̂ = −x̂ sinα+ ŷ cosα,

N̂ = 1
2 (

x̂2+ŷ2

θ − 1) = â†â generates rotations in the NC x − y plane. The
variation of the field φ under an infinitesimal rotation is then

δφ ≡ e iαN̂φ(x̂ , ŷ)e−iαN̂ − φ(x̂ , ŷ) ≃ iα[N̂ , φ], if α→ 0. (41)

The field action remains invariant under such unitary transformations.
Second, adapt the Noether theorem to this operatorial set-up. The
conserved charge associated to the invariance under rotations, namely
angular momentum, turns out to be

Jz = TrH i φ̇†[â†â, φ]. (42)



Angular Momentum versus Nonlocality
We show that states ’delocalized’ by an amount m carry m units of
angular momentum. Denoting the angular momentum of a field
configuration φ by Jz [φ], obtain

Jz

[

∑

n∈IN

|n+m〉φ(m)
n 〈n|

]

= +mω

∞
∑

n=0

[φ(m)
n ]2; (43)

Jz

[

∑

n∈IN

|n〉φ(−m)
n 〈n +m|

]

= −mω

∞
∑

n=0

[φ(−m)
n ]2. (44)

Dividing by the normalization factor N+
m =

∑∞
n=0[φ

(m)
n ]2, leads to

Jz

[

φ(+m) ≡ 1
√

N+
m

∑

n∈IN

|n +m〉φ(m)
n 〈n|

]

= (+mω).

Similarly, Jz
[

φ(−m)
]

= (−mω). Can write φ as an m-expansion

φ =
∑

m∈IN

[amφ
(+m) + bmφ

(−m)]. (45)

In the 1D discrete view this is an expansion in field configurations with
well-defined bilocality m. In the 2D NC FT view, Eq. (45) accounts for
nonradial dependence of φ through an angular momentum expansion.



Bilocal waves via finite series
Parametrize the two independent solutions of the difference equation as:

φ1(m)
n =

√

(n +m)!

n!
f1(λ)u

(m)
n , φ2(m)

n =

√

(n +m)!

n!
f2(λ)v

(m)
n . (46)

The continuum limit behaviour of u
(m)
n and v

(m)
n requires (see below)

f1(λ) = λ
m
2 , f2(λ) = λ−

m
2 . (47)

u
(m)
n and v

(m)
n , denoted collectively by φ̃

(m)
n , satisfy the simpler recurrence

(n +m + 1)φ̃
(m)
n+1 + nφ̃

(m)
n−1 + (λ− 2n−m − 1)φ̃(m)

n = 0. (48)

If the discrete derivative operator ∆ is defined by

∆φn = φn+1 − φn (49)

and the shift operator Ê is defined by

Êφn ≡ φn+1, (50)

then the homogeneous difference equation (48) can be rewritten as
[

D̂
]

φ̃(m)
n ≡

[

n∆2Ê−1 + (m + 1)∆ + λ
]

φ̃(m)
n = 0. (51)

The difference operator
[

D̂
]

annihilates the field φ̃
(m)
n , ∀n ∈ IN .



First solution
Define for α real, the falling factorial power n

α

,

n
α ≡ Γ(n + 1)

Γ(n + 1− α)
, =⇒ ∆n

α

= αn
α−1

. (52)

For natural α = k , n
k

= n(n − 1) · · · (n − k + 1); this explains the name.
Search for an expansion in falling factorial powers of n

φ̃(m)
n = am0 (σ, λ)n

σ

+ am1 (σ, λ)n
σ+1

+ am2 (σ, λ)n
σ+2

+ . . . (53)

From
[

D̂
]

∑∞
k=0 a

m
k (σ, λ)n

σ+k

= 0 we obtain the indicial equation

σ(σ +m) = 0 (54)

and the recurrence relation for the expansion coefficients amk (σ, λ)

(k + σ)(k + σ +m) amk (σ, λ) + λ amk−1(σ, λ) = 0. (55)

Eq. (55) guarantees that (53) is also an expansion in powers of λ. For
σ → 0 we obtain the first finite series solution

u(m)
n =

n
∑

k=0

(−λ)k
k!(m+ k)!

[

Γ(n + 1)

Γ(n + 1− k)
=

n!

(n − k)!
= n

k

]

. (56)

From now on we drop a dimensionfull multiplicative constant a0.



Second solution - infinite series
The second solution cannot be obtained easily since roots differ by an
integer in the indicial equation: σ = −m makes the coefficients diverge
after some k . We therefore solve the inhomogeneous equation

[

D̂
]

∞
∑

k=0

ak(σ)n
σ+k

= σ(σ +m)2n
σ

, (57)

take the derivative of its solution with respect to σ, then take the limit
σ +m → 0. Carefully tracking the poles of intervening digamma

functions Ψ(x) = Γ′(x)
Γ(x) , we obtain the second solution

w (m)
n =

n
∑

k=0

λm(−λ)k
(k +m)!

C k
n (Hn−k − Hk − Hk+m + Hm−1 − γ) (58)

−n!
m−1
∑

k=0

λk

k!

(m − k − 1)!

(m − k + n)!
+

∞
∑

k=n+1

λk+m(−)nn!(k − n − 1)!

k!(k +m)!
.

Hk is a discrete version of the logarithmic function,

Hk = 1 +
1

2
+

1

3
+ · · ·+ 1

k
, k = 1, 2, 3 . . . ; H0 = 0; (59)

γ is the Euler-Mascheroni constant, γ = limk=∞(Hk − lnk) ≃ 0.5772.



Second solution - finite series
w

(m)
n is an infinite convergent series in λ. To obtain a finite series, search

for a linear combination of u
(m)
n and w

(m)
n ,

v (m)
n = a(λ)u(m)

n + b(λ)w (m)
n , (60)

that is independent of λ in n = 0 and n = 1. Convenient to impose

v
(m)
0 = 0 and v

(m)
1 = 1

m+1 , in order to determine a(λ) and b(λ). Obtain

v (m)
n = e−λw (m)

n +e−λ

[

m−1
∑

k=0

λk m!

k!(m− k)
+ λm

(

1

m
+ γ

)

−
∞
∑

k=1

λk+m m!

(k +m)!k

]

u(m)
n .

A long calculation involving products and sums of finite and infinite
power series and a variety of combinatorial identities leads to

v (m)
n =

n−1
∑

L=0

(−λ)L
{

n−L
∑

s=1

(−)s−1C s+L
n

(m + s)(m + s + 1) · · · (m + s + L)

}

. (61)

This is our final result for v
(m)
n . The first v

(m)
n ’s can be calculated easily.

As expected, v
(m)
0 = 0 and v

(m)
1 = 1

(m+1) for any natural m; then,

v
(m)
2 =

(3 +m)− λ

(m + 2)!/m!
, v

(m)
3 =

(m2 + 6m + 11)− (2m+ 8)λ+ λ2

(m + 3)!/m!
.



General solution
Putting everything together we obtain the two finite series solutions:

φ1(m)
n =

√

λm
(n +m)!

n!

n
∑

k=0

(−λ)k
[

C k
n

(k +m)!

]

; (62)

φ2(m)
n =

√

λ−m
(n +m)!

n!

n−1
∑

L=0

(−λ)L
{

n−L
∑

s=1

(−)s−1C s+L
n (m + s − 1)!

(m + s + L)!

}

.

(63)
They are finite sums and are linearly independent, since their Casoratian
(the discrete analogue of the Wronskian) is nonvanishing:

Dm
n ≡ φ1(m)

n φ
2(m)
n+1 − φ

1(m)
n+1 φ

2(m)
n =

1√
n +m + 1

√
n+ 1

. (64)

The general solution is a linear combination with coefficients determined

from appropriate boundary conditions. Since φ
(−m)
n obeys the same

equation, it will also be a superposition of the solutions (62) and (63)
but with coefficients determined from independently assigned boundary
conditions.
Recall that m (respectively −m) characterizes simultaneously the degree
of nonlocality and the angular momentum of each bilocal configuration

|n +m〉φ(m)
n 〈n| (respectively |n〉φ(−m)

n 〈n +m|).



Radially symmetric solutions
If φ = φ(N̂), the relevant difference equation simplifies to the local form
(13). Its first solution follows immediately

un ≡ u(m=0)
n =

n
∑

k=0

(−λ)k
k!

C k
n , (65)

Although the indicial equation σ2 = 0 has now equal roots, the second
(infinite series) solution

wn =
n

∑

k=0

(−λ)k
k!

C k
n (Hn−k − 2Hk − γ) +

(−λ)n
n!

∞
∑

s=1

(+λ)s(s − 1)!

[(n + s)!/n!]2
(66)

is still the specialization of w
(m)
n to m = 0, namely wn ≡ w

(0)
n . If

vn = a(λ)un + b(λ)wn obeys v0 = 0 and v1 = 1 then

vn =

n−1
∑

N=0

(−λ)N
{

n−N
∑

s=1

(−)s−1C s+N
n

s(s + 1) · · · (s + N)

}

(67)

Again, vn ≡ v
(0)
n . One can reach an even simpler expression

vn =

n−1
∑

k=0

(−λ)k
k!

n−k
∑

j=1

C k
n−j

k + j
. (68)



Sources - pointlike
Sources can be introduced an inhomogeneous term jn,

√
n +m + 1

√
n + 1φ

(m)
n+1 +

√
n +m

√
nφ

(m)
n−1 + (λ− 2n−m− 1)φ(m)

n = jn.
(69)

The solution for an arbitrary distribution of sources jn, φ
(m)
n [jn], is a linear

superposition of solutions φ
(m)
n [jδn,n0] with sources jn = jδn,n0 localized at

an arbitrary but single point n0.
If n0 = 0 one has the most interesting case - a source at the origin,
jn = jδn,0. If j =

√
m!λ−m/2, the difference equation (69) is now solved

precisely by φ
2(m)
n (+cφ

1(m)
n , c arbitrary). Indeed, φ

2(m)
n does solve the

homogeneous equation (39) everywhere except at n = 0, where the
difference equation becomes first order and admits only one solution,

φ
1(m)
n . If a source j =

√
m!λ−m/2 is added at n = 0 however, φ

2(m)
n is the

particular solution of the resulting inhomogeneous equation. This is in
line with the fact that vn enters the description of radially propagating
waves, which require a source at the origin. If jn = j0δn,0, the solution is

φ(m)
n [j0δn,0] = j0

λm/2

√
m!

φ2(m)
n . (70)



Sources - general
Consider then the case of a source at n0 ≥ 1 (a ring-like source),
jn = jδn,n0 . Adaptation to the discrete case of the method of variation of
constants (or of the method of Green functions) leads to

φ(m)
n [jδn,n0 ] = c1φ

1(m)
n +c2φ

2(m)
n −jθn,n0

(

φ1(m)
n φ2(m)

n0
− φ2(m)

n φ1(m)
n0

)

, (71)

with the step function θm,n ≡ θ(m − n) defined as

θm,n =

{

1 if m− n ≥ 0
0 if m− n < 0.

(72)

Finally, denoting by φ
(m)
n [0] = c1φ

1(m)
n + c2φ

2(m)
n the general solution in

the absence of sources, we obtain the general solution with an arbitrary
source distribution jn as

φ(m)
n [jn] = φ(m)

n [0]−
∑

n0

jn0θn,n0

(

φ1(m)
n φ2(m)

n0
− φ2(m)

n φ1(m)
n0

)

. (73)

The sum is taken over all points n0 with nonzero sources, jn0 6= 0. If a

source j0 appears at the origin one notes that, due to φ
1(m)
0 = λm/2

m! and

φ
2(m)
0 = 0, the n0 = 0 contribution in (73) reproduces (70). The general

solution (73) does not display singularities, even at the location of the
sources.



Commutative limit
As θ → 0, one has n ≃ n′ ≃ r2

2θ → ∞ and λ = θω2

2 → 0, but
λ · n ∼ (ωr

2 )2 is finite; m stays finite as well. Taking n → ∞, expanding

the square roots to order O( 1
n2
) and replacing ∆

∆n
by d

dn
one obtains

(

n +
m

2

) d2φmn
dn2

+
dφmn
dn

+

(

λ− m2

4n

)

φmn = 0. (74)

Recalling that λ = θω2

2 and passing via n ≡ r2

2θ from a function of n to a

function of r , φ
(m)
n → f (m)(r), Eq. (74) becomes as θ → 0:

d2f (m)

dr2
+

1

r

df (m)

dr
+ (ω2 − m2

r2
)f (m)(r) = 0. (75)

This is precisely the Bessel equation of order m for a function of
independent variable ωr . Our solutions should therefore reduce at large
distances to linear combinations of the cylindrical functions of order m.



Standing waves

Indeed, as n ≃ r2

2θ → ∞, λ = θω2

2 → 0 and λ · n ≃
(

ωr
2

)2
, a properly

normalized u
(m)
n becomes, as a function of r , the m-th order Bessel

function Jm(ωr),

√

λm
(n +m)!

n!
u(m)
n −→ Jm(ωr). (76)

In this way we also establish the function f1 in (46) to be λm/2, up to
multiplicative factors which go to 1 when λ goes to 0. For instance,
ortogonality of the φ1,mn in (62), seen as functions of λ ∈ [0,∞), requires

further multiplication of the LHS of (76) by e
−λ

2 . Not being of
immediate relevance for our purposes, such factors are omitted.
The correspondence between NC and usual waves can now be established
through their behaviour at large distances. Given that the m-th order
Bessel function Jm(ωr) describes usual radially standing waves

(oscillations), Eq. (76) implies that its counterpart φ
1(m)
n describes

radially standing NC waves (oscillations). Moreover, Jm(ωr) can carry
angular momentum ωm or −ωm in usual planar field theory, in perfect

agrement with the fact that φ
1(m)
n enters (40) in combination with either

|n +m〉 〈n| or |n〉 〈n +m|.



Travelling waves
For the second solution things are less immediate. In the end, one obtains
√

λ−m
(n +m)!

n!
v (m)
n −→ πYm(ωr) + Jm(ωr)[Hm−1 − 2γ − log(θω2/2)].

(77)
This also establishes the function f2 in (46) to be λ−m/2.
On the other hand, the first Hankel function of order m

H1
m(ωr) = Jm(ωr) + iYm(ωr) (78)

describes waves which propagate outward radially and rotate angularly
with frequency plus or minus ωm [unless waves with m and −m

dependence are superposed, e.g. to render the angular part of the wave

standing]. In consequence, the linear combination of φ
1(m)
n and φ

2(m)
n

which tends to H1
m(ωr) as θ → 0 will describe a NC wave radially

propagating outwards towards n = ∞ and carrying angular momentum
+mω or −mω [unless two waves with opposite m are superposed]. This
combination is easily found to be

φ3(m)
n = φ1(m)

n +
i

π

(

φ2(m)
n − φ1(m)

n

[

Hm−1 − 2γ − log
θω2

2

])

(79)

and displays angular momentum mω when it combines with |n+m〉 〈n|
and angular momentum −mω when it combines with |n〉 〈n +m|.



Amusing (and Useful) Identities
Notation: n, k non-negative integers, i.e. n, k ∈ IN ; C k

n = n!
(n−k)!k! .

Discrete logarithm is Hn ≡ 1 + 1
2 + 1

3 + · · ·+ 1
n
. Then (known identity)

n
∑

k=1

(−)k−1C k
n

k
= Hn (80)

together with two useful generalizations of it,
n

∑

k=1

(−)k−1

k

C k
n m!

(k + 1)(k + 2) . . . (k +m)
= Hn+m − Hm, (81)

n
∑

k=1

(−)k−1

k

C k+m
n+m p!

(k + 1) . . . (k + p)
=

n
∑

j=1

Cm
m+n−j

p + j
. (82)

If translate the denominator k in (80) by a positive integer p, find

n
∑

k=0

(−)k−1C k
n

k + p
= − (p − 1)!n!

(p + n)!
p = 1, 2, 3 . . . (p ≥ 1). (83)

and its generalization, again for p integer and p ≥ 1,
n

∑

k=0

(−)k−1C k
n m!

(k + p)(k + p + 1) . . . (k + p +m)
= − (p − 1)!(n +m)!

(p + n+m)!
. (84)

k+m
∑n−k m−1 k



Some special functions

Digamma function: Ψ(x) = d log Γ(x)
dx

= Γ′(x)
Γ(x) , (Γ(z + 1) = zΓ(z); z

complex but not a negative integer, n positive integer)

Ψ(z+1) ≡ Γ′(z + 1)

Γ(z + 1)
= −γ+

∞
∑

l=1

z

l(l + z)
, Ψ(n+1) = −γ+Hn. (86)

Bessel functions:

Jm(z) =

∞
∑

k=0

(−)k(z/2)2k+m

k!(k +m)!
, (87)

Neumann functions Ym:

πYm(z) = 2Jm(z)(γ + log
z

2
)−

m−1
∑

k=0

(m − k − 1)!

k!

(z

2

)2k−m

−
∞
∑

k=0

(−)k
(z

2

)2k+m Hm+k + Hk

k!(k +m)!
. (88)

Laguerre polynomials:

Lmn (λ) =

n
∑

k

Γ(n +m+ 1)

Γ(k +m + 1)

(−λ)k
k!(n− k)!

. (89)
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