
Quantum Localisation on the Circle
XXth International Conference on Geometry, Integrability and

Quantization

Rodrigo Fresneda (UFABC - São Paulo, Brasil)

Varna, 6th of June of 2018

J. Math. Phys., 59(5), 52105 (2018), in collaboration with J.P. Gazeau
(Univ. Paris-Diderot) and D. Noguera (CBPF, Rio de Janeiro)

Rodrigo Fresneda (UFABC - São Paulo, Brasil) Quantum Localisation on the Circle



Introduction and Motivation

If ψ(α) is the 2π-periodic wave function on the circle, the
quantum angle α̂ cannot be a multiplication operator,
α̂ψ(α) = αψ(α) without breaking periodicity.

Except if α̂ stands for the 2π-periodic discontinuous angle
function,

(α̂ψ)(α) :=
(
α− 2π

⌊ α
2π

⌋)
ψ(α) . (1)

However, for α̂ Self-Adjoint (SA), spec(α̂) ⊂ [0, 2π], the CCR
[α̂, p̂α] = i~I does not hold for SA quantum angular
momentum p̂α = −i~ ∂

∂α .

Instead, one has

[α̂, p̂α] = i~I

[
1− 2π

∑
n

δ(α− 2nπ)

]
. (2)
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This is an old problem (dating back to Dirac ”The Quantum
Theory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.

We revisit the problem of the quantum angle through
coherent state (CS) quantisation, which is a particular method
belonging to covariant integral quantisation (S.T. Ali, J.-P.
Antoine, and J.-P. Gazeau, Coherent States, Wavelets and
their Generalizations).

Our approach is group theoretical, based on the unitary
irreducible representations of the (special) Euclidean group
E(2) = R2oSO(2) (see also S. De Bièvre, Coherent states
over symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators from
the classical angle function through a consistent and
manageable quantisation procedure.
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over symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators from
the classical angle function through a consistent and
manageable quantisation procedure.

Rodrigo Fresneda (UFABC - São Paulo, Brasil) Quantum Localisation on the Circle



This is an old problem (dating back to Dirac ”The Quantum
Theory of the Emission and Absorption of Radiation”).

Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.

We revisit the problem of the quantum angle through
coherent state (CS) quantisation, which is a particular method
belonging to covariant integral quantisation (S.T. Ali, J.-P.
Antoine, and J.-P. Gazeau, Coherent States, Wavelets and
their Generalizations).

Our approach is group theoretical, based on the unitary
irreducible representations of the (special) Euclidean group
E(2) = R2oSO(2) (see also S. De Bièvre, Coherent states
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Covariant integral quantisation - general scheme

Let G be a Lie group with left Haar measure dµ(g) and g 7→ U(g) a
UIR of G in H. For ρ ∈ B(H) , suppose the following operator is
defined in a weak sense:

R :=

∫
G
ρ (g)dµ (g) , ρ (g) := U (g) ρU† (g)

Then , R = cρI , since U (g0)RU† (g0) =
∫
G ρ (g0g)dµ (g) = R

That is, the family of operators ρ(g) provides a resolution of the
identity ∫

G
ρ (g)

dµ (g)

cρ
= I , cρ =

∫
G
tr(ρ0ρ(g))dµ (g)

This allows an integral quantisation of complex-valued functions on
the group

f 7→ Af =

∫
G
ρ(g) f (g)

dµ (g)

cρ
,

which is covariant in the sense that

U(g)Af U
†(g) = AU(g)f , (U(g)f )(g ′) = f (g−1g ′)
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Covariant integral quantisation - homogeneous spaces

We consider the quantisation of functions on a homogeneous
space X , the left coset manifold X ∼ G/H for the action of a
Lie Group G , where the closed subgroup H is the stabilizer of
some point of X .

The interesting case is when X is a symplectic manifold (e.g.,
co-adjoint orbit of G ) and can be viewed as the phase space
for the dynamics.

Given a quasi-invariant measure ν on X , one has for a global
Borel section σ : X → G a unique quasi-invariant measure
νσ(x).

Let U be a square-integrable UIR, and ρ0 a density operator
such that cρ :=

∫
X tr (ρ0 ρσ(x)) dνσ(x) <∞ with

ρσ(x) := U(σ(x))ρU(σ(x))†.
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One has the resolution of the identity

I =
1

cρ

∫
X
ρσ(x) dνσ(x) .

We then define the quantisation of functions on X as the
linear map

f 7→ Aσf =
1

cρ

∫
X

f (x) ρσ(x)dνσ(x) .

Covariance holds in the sense U(g)Aσf U(g)† = A
σg
Ul (g)f , where

σg (x) = gσ(g−1x) with Ul(g)f (x) = f
(
g−1x

)
.

For ρ = |η〉〈η|, we are working with CS quantisation, where
the CS’s are defined as |ηx〉 := |U(σg (x))η〉.
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Coherent states for semi-direct product groups

Let V , dimV = n, S ≤ GL(V ) and G = V o S

Given k0 ∈ V ∗ , one can show that

H0 = {g ∈ G |(k0, 0) = Ad#
g (k0, 0)} = N0 o S0

for (k0, 0) ∈ g∗

Furthermore, X = G/H0 ' V0 ×O∗ ' T ∗O∗, V0 = T ∗k0O
∗, is

a symplectic manifold with symplectic measure dµ(p,q) which
allows the construction of a section
V0 ×O∗ 3 (p,q) 7→ σ(p,q) ∈ G

Finally, given a UIR χ of V and a UIR L of S , one can
construct an irreducible representation (v , s) 7→ UχL (v , s) of
G induced by the representation χ⊗ L of V o S0.

Given η ∈ H = L2(O∗, dν), one constructs a family ηp,q:
ηp,q(k) =

(
UχL (σ(p,q))η

)
(k)
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Coherent-state quantisation for semi-simple Lie groups

If one can prove∫
V0×O∗ dµ(p,q)〈φ |ηp,q 〉H〈ηp,q |ψ 〉H = cη〈φ |ψ 〉 where
φ, ψ : O∗ → C and 0 < cη <∞

we obtain the resolution of the identity
1

cη

∫
V0×O∗ dµ(p,q)|ηp,q 〉〈ηp,q | = I

CS quantisation maps the classical function
f (p,q) ∈ V0 ×O∗ to the operator on H
Af =

1

cη

∫
V0×O∗ dµ(p,q) |ηp,q〉 〈ηp,q | f (p,q)

The quantisation is covariant UχL (g)Af UχL (g)† =

A
σg
Ul (g)f , A

σg
f :=

1

cη

∫
V0×O∗ dµ(p,q)

∣∣ησgp,q
〉 〈
η
σg
p,q
∣∣ f (p,q) ,

with |ησgp,q 〉 = UχL (gσ(g−1(p,q)))|η 〉
The semiclassical portrait of the operator Af is defined as

f̌ (p,q) =
1

cη

∫
V0×O∗ dµ(p′,q ′)f (p′,q ′)

∣∣〈ηp′,q′ |ηp,q〉∣∣2 .
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The Euclidean group E(2)

Now G = E(2), where V = R2 and S = SO(2), so
E(2) = R2 o SO(2) = {(r , θ) , r ∈ R2 , θ ∈ [0, 2π)} , with
composition (r , θ)(r ′, θ′) = (r +R(θ)r ′, θ + θ′).

V ∗ = R2, O∗ = {k = R(θ)k0 ∈ R2 |R(θ) ∈ SO(2)} ' S1

The stabilizer under the coadjoint action Ad#E(2) is

H0 =
{

(x , 0) ∈ E(2) | ĉ · x = 0, ĉ ∈ R2, ‖ĉ‖ = 1, fixed
}

.

The classical phase space
X ≡ T ∗S1 ' (R2 o SO(2))/H0 ' R× S1 carries coordinates
(p, q) and has symplectic measure dp ∧ dq.

The UIR of E(2) are L2(S1,dα) 3 ψ(α) 7→ (U(r , θ)ψ) (α) =
e i(r1 cosα+r2 sinα)ψ(α− θ).
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Coherent states for E(2)

Theorem

Given the unit vector ĉ ∈ R2 and the corresponding subgroup H0,
there exists a family of affine sections σ : R× S1 → E(2) defined
as σ(p, q) = (R(q)(κp + λ), q) , where κ,λ ∈ R2 are constant
vectors, and ĉ · κ 6= 0.

From the section σ(p, q), the representation U(r, θ), and a vector
η ∈ L2(S1, dα), we define the family of states
|ηp,q〉 = U(σ(p, q))|η〉.
Theorem

The vectors ηp,q form a family of coherent states for E(2) which

resolves the identity on L2(S1,dα), I =
∫
R×S1

dp dq

cη
|ηp,q 〉〈ηp,q | ,

if η(α) is admissible in the sense that supp η ∈ (γ − π, γ)mod 2π,

and 0 < cη :=
2π

κ

∫
S1
|η(q)|2

sin(γ − q)
dq <∞.
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Quantisation of classical variables

Given the family of coherent states |ηp,q〉, we apply the linear

map f 7→ Aσf =
∫
R×S1

dp dq

cη
f (p, q) |ηp,q 〉〈ηp,q | to classical

observables f (p, q).

For f (p, q) = u(q) with u(q + 2π) = u(q), Au is the
multiplication operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where

Eη;γ(α) := 2π
κcη

|η(α)|2
sin(γ−α) , suppEη;γ ⊂ (γ − π, γ) is a probability

distribution on the interval [−π, π].

In particular, for the Fourier exponential en(α) = e inα, n ∈ Z,
the above expression is (Eη;γ ∗ en) (α) = 2πcn (Eη;γ) e inα.

For the momentum f (p, q) = p,

(Apψ) (α) =

(
−i c2(η, γ)

κc1(η, γ)

∂

∂α
− λa

)
ψ (α) for real η.

For a general polynomial f (q, p) =
∑N

k=0 uk(q) pk one gets∑N
k=0 ak(α)(−i∂α)k .
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the Angle operator: analytic and numerical results

For the 2π-periodic and discontinuous angle function
a(α) = α for α ∈ [0, 2π), we get the multiplication operator
(Eη,γ ∗a)(α) = α+2π(1−

∫ α
−π Eη;γ(q)dq)−

∫ γ
γ−π q Eη,γ(q)dq .

We choose a specific section with λ = 0, γ = π/2 and as
fiducial vectors the family η(s,ε)(α) of periodic smooth even
functions, suppη = [−ε, ε] mod 2π, parametrized by s > 0 and
0 < ε < π/2,

η(s,ε)(α) =
1√
εe2s

ωs

(α
ε

)
where es :=

∫ 1

−1
dx ωs(x) .

and

ωs(x) =

 exp

(
− s

1− x2

)
0 ≤ |x | < 1 ,

0 |x | ≥ 1 ,

are smooth and compactly supported test functions.(
η(s,ε)

)2
(α)→ δ(α) as ε→ 0 or as s →∞.
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Figure: Plots of the lower symbol q̌(q) of the angle operator Aa for

various values of τ =
s

ε2
.
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Angle-angular momentum: commutation relations and
Heisenberg inequality

For λ = 0 and ψ(α) ∈ L2(S1, dα), we find the non-canonical
CR ([Ap,Aa]ψ) (α) = −ic (1− 2πEη;γ(α))ψ(α) where

c := c2(η,γ)
κc1(η,γ)

Since limε→0
c2(η(s,ε),

π
2
)

c1(η(s,ε),
π
2
)

= 1 and limε→0 Eη;γ(α) = δ(α), with

the choice κ = 1 one has, in the limit ε→ 0, for α ∈ [0, 2π)
mod 2π, ([Ap,Aa]ψ) (α) = (−i + i2πδ(α))ψ(α).

The uncertainty relation for Ap and Aa, with the coherent
states ηp,q, is ∆Ap ∆Aa > 1

2 |〈ηp,q |[Ap,Aa]|ηp,q 〉|.
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Figure: Plots of the dispersions ∆Aa and ∆Ap with respect to the

coherent state |η(s,ε)p,q 〉 for various values of τ =
s

ε2
.
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L.H.S.-R.H.S.
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with respect to the coherent state |η(s,ε)p,q 〉 for various values of τ = s
ε2 .
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Conclusions

We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).

The cylinder R× S1 depicts the classical phase space of the motion of
a particle on a circle, and is mathematically realized as the left coset
E(2)/H, where H is a stabilizer subgroup under the coadjoint action
of E(2).
The coherent states for E(2) are constructed from a UIR of
E(2) = R2 o SO(2) restricted to an affine section
R× S1 3 (p, q) 7→ σ(p, q) ∈ E(2).
For functions on the cylindric phase space, the corresponding
operators and lower symbols are determined . For periodic functions
f (q) of the angular coordinate q, the operators Af are multiplication
operators whose spectra are given by periodic functions.
The angle function a(α) = α is mapped to a SA multiplication angle
operator Aa with continuous spectrum.
For a particular family of coherent states, it is shown that the
spectrum is [π −m(s, ε), π + m(s, ε)], where m(s, ε)→ π as ε→ 0 or
s →∞.
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obrigado!

Figure: UFABC Campus in Santo André, São Paulo
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