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Introduction and Motivation UFABC

e If () is the 27m-periodic wave function on the circle, the
quantum angle @ cannot be a multiplication operator,
ap(a) = arp(a) without breaking periodicity.
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Introduction and Motivation UFABC

e If () is the 27m-periodic wave function on the circle, the
quantum angle @ cannot be a multiplication operator,
ap(a) = arp(a) without breaking periodicity.

@ Except if @ stands for the 2w-periodic discontinuous angle
function,

(0}

(@)(@) = (a—2r | =) v(a). (1)
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Introduction and Motivation UFABC

e If () is the 27m-periodic wave function on the circle, the
quantum angle @ cannot be a multiplication operator,
ap(a) = arp(a) without breaking periodicity.

@ Except if @ stands for the 2w-periodic discontinuous angle
function,

o

(@)(@) = (a—2r | =) v(a). (1)

e However, for @ Self-Adjoint (SA), spec(@) C [0, 27], the CCR
[@, pa] = ikl does not hold for SA quantum angular
momentum p, = —ih%.

Rodrigo Fresneda (UFABC - S3o Paulo, Brasil) Quantum Localisation on the Circle



Introduction and Motivation UFABC

e If () is the 27m-periodic wave function on the circle, the
quantum angle @ cannot be a multiplication operator,
ap(a) = arp(a) without breaking periodicity.

@ Except if @ stands for the 2w-periodic discontinuous angle
function,

(0}

(@)(@) = (a—2r | =) v(a). (1)

e However, for @ Self-Adjoint (SA), spec(@) C [0, 27], the CCR
[@, pa] = ikl does not hold for SA quantum angular
momentum p, = —ih%.

@ Instead, one has
[@, Pa] = ihl [1 —2r > §(a - 2n7r)] . (2)
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@ This is an old problem (dating back to Dirac " The Quantum
Theory of the Emission and Absorption of Radiation™).
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@ This is an old problem (dating back to Dirac " The Quantum
Theory of the Emission and Absorption of Radiation™).

@ Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.
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@ This is an old problem (dating back to Dirac " The Quantum
Theory of the Emission and Absorption of Radiation™).

@ Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.

@ We revisit the problem of the quantum angle through
coherent state (CS) quantisation, which is a particular method
belonging to covariant integral quantisation (S.T. Ali, J.-P.
Antoine, and J.-P. Gazeau, Coherent States, Wavelets and
their Generalizations).
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@ This is an old problem (dating back to Dirac " The Quantum
Theory of the Emission and Absorption of Radiation™).

@ Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.

@ We revisit the problem of the quantum angle through
coherent state (CS) quantisation, which is a particular method
belonging to covariant integral quantisation (S.T. Ali, J.-P.
Antoine, and J.-P. Gazeau, Coherent States, Wavelets and
their Generalizations).

@ Our approach is group theoretical, based on the unitary
irreducible representations of the (special) Euclidean group
E(2) = R2xS0O(2) (see also S. De Bievre, Coherent states
over symplectic homogeneous spaces).
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This is an old problem (dating back to Dirac " The Quantum
Theory of the Emission and Absorption of Radiation™).

Most approaches rely on replacing the angle operator by a
quantum version of a smooth periodic function of the classical
angle at the cost of losing localisation.

We revisit the problem of the quantum angle through
coherent state (CS) quantisation, which is a particular method
belonging to covariant integral quantisation (S.T. Ali, J.-P.
Antoine, and J.-P. Gazeau, Coherent States, Wavelets and
their Generalizations).

Our approach is group theoretical, based on the unitary
irreducible representations of the (special) Euclidean group
E(2) = R2xS0O(2) (see also S. De Bievre, Coherent states
over symplectic homogeneous spaces).

One of our aims is to build acceptable angle operators from
the classical angle function through a consistent and
manageable quantisation procedure.
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Covariant integral quantisation - general scheme UFABC

@ Let G be a Lie group with left Haar measure du(g) and g — U(g) a
UIR of G in H. For p € B(H) , suppose the following operator is
defined in a weak sense:

R = / p(&)du(g).p(g) == Ulg) pU' (g)
G
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Covariant integral quantisation - general scheme UFABC

@ Let G be a Lie group with left Haar measure du(g) and g — U(g) a
UIR of G in H. For p € B(H) , suppose the following operator is
defined in a weak sense:

R = / p(&)du(g).p(g) == Ulg) pU' (g)
G

o Then , R = c,/, since U(go) RU'(g0) = [ r(gog)du(g) =R
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Covariant integral quantisation - general scheme UFABC

@ Let G be a Lie group with left Haar measure du(g) and g — U(g) a
UIR of G in H. For p € B(H) , suppose the following operator is
defined in a weak sense:

R = / p(&)du(g).p(g) == Ulg) pU' (g)
G

o Then , R = c,/, since U(go) RU'(g0) = [ r(gog)du(g) =R
@ That is, the family of operators p(g) provides a resolution of the
identity

L@ -1 ¢~ [ nuenante)
G G
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Covariant integral quantisation - general scheme UFABC

@ Let G be a Lie group with left Haar measure du(g) and g — U(g) a
UIR of G in H. For p € B(H) , suppose the following operator is
defined in a weak sense:

R = / p(&)du(g).p(g) == Ulg) pU' (g)
G

o Then , R = c,/, since U(go) RU'(g0) = [ r(gog)du(g) =R
@ That is, the family of operators p(g) provides a resolution of the
identity

L@ -1 ¢~ [ nuenante)
G G

o This allows an integral quantisation of complex-valued functions on

the group an(e)
f Ar :/ ole) fg) =5
G Cp
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Covariant integral quantisation - general scheme UFABC

@ Let G be a Lie group with left Haar measure du(g) and g — U(g) a
UIR of G in H. For p € B(H) , suppose the following operator is
defined in a weak sense:

R = / p(&)du(g).p(g) == Ulg) pU' (g)
G

o Then , R = c,/, since U(go) RU'(g0) = [ r(gog)du(g) =R
@ That is, the family of operators p(g) provides a resolution of the
identity

L@ -1 ¢~ [ nuenante)
G G

o This allows an integral quantisation of complex-valued functions on

the group an(e)
f Ar :/ ole) fg) =5
G Cp

@ which is covariant in the sense that
U(g)ArU'(g) = Aueyr » (U()F)(g') = f(g'g")
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Covariant integral quantisation - homogeneous spaces UFABC

@ We consider the quantisation of functions on a homogeneous
space X, the left coset manifold X ~ G/H for the action of a
Lie Group G, where the closed subgroup H is the stabilizer of
some point of X.
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Covariant integral quantisation - homogeneous spaces UFABC

@ We consider the quantisation of functions on a homogeneous
space X, the left coset manifold X ~ G/H for the action of a
Lie Group G, where the closed subgroup H is the stabilizer of
some point of X.

@ The interesting case is when X is a symplectic manifold (e.g.,
co-adjoint orbit of G) and can be viewed as the phase space
for the dynamics.
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Covariant integral quantisation - homogeneous spaces UFABC

@ We consider the quantisation of functions on a homogeneous
space X, the left coset manifold X ~ G/H for the action of a
Lie Group G, where the closed subgroup H is the stabilizer of
some point of X.

@ The interesting case is when X is a symplectic manifold (e.g.,
co-adjoint orbit of G) and can be viewed as the phase space
for the dynamics.

@ Given a quasi-invariant measure v on X, one has for a global
Borel section o : X — G a unique quasi-invariant measure
Ve ().

Rodrigo Fresneda (UFABC - S3o Paulo, Brasil) Quantum Localisation on the Circle



Covariant integral quantisation - homogeneous spaces UFABC

@ We consider the quantisation of functions on a homogeneous
space X, the left coset manifold X ~ G/H for the action of a
Lie Group G, where the closed subgroup H is the stabilizer of
some point of X.

@ The interesting case is when X is a symplectic manifold (e.g.,
co-adjoint orbit of G) and can be viewed as the phase space
for the dynamics.

@ Given a quasi-invariant measure v on X, one has for a global
Borel section o : X — G a unique quasi-invariant measure
Ve ().

o Let U be a square-integrable UIR, and py a density operator
such that ¢, := [y tr(po po(x)) drs(x) < co  with
po(x) := U(a(x))pU(o(x))".
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@ One has the resolution of the identity

1

I = - po(x) dvy(x) .
p JX
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@ One has the resolution of the identity

1

I = - po(x) dvy(x) .
p JX

@ We then define the quantisation of functions on X as the
linear map

1f»—>A”:i
p

/ F(x) 9o () v (x) .
X
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@ One has the resolution of the identity

1

== Cp | P ) dva(x).

@ We then define the quantisation of functions on X as the
linear map

o 1
f—A _Cp/X f(x) po(x) dvg(x).

o Covariance holds in the sense U(g)AZU(g)" = u( )¢+ Where

og(x) = go(g1x) with Uj(g)f(x) = f (g 1x)
e For p = |n)(n|, we are working with CS quantisation, where
the CS’s are defined as |ny) := |U(og(x))n).
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Coherent states for semi-direct product groups UFABC

o Let V,dmV =n, S<GL(V)and G=V xS
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Coherent states for semi-direct product groups UFABC

o Let V,dmV =n, S<GL(V)and G=V xS
@ Given kg € V* , one can show that

Ho = {g € G|(ko,0) = Ad¥ (ko,0)} = No x Sp

for (ko,0) € g*
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Coherent states for semi-direct product groups UFABC

o Let V,dmV =n, S<GL(V)and G=V xS
@ Given kg € V* , one can show that

Ho = {g € G|(ko,0) = Ad¥ (ko,0)} = No x Sp

for (ko,0) € g*

e Furthermore, X = G/Hy ~ Vo x O* ~ T*O*, Vp = T;(“OO*, is
a symplectic manifold with symplectic measure du(p, q) which
allows the construction of a section
Vo x O* 5 (p,q) = o(p,q) € G
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Coherent states for semi-direct product groups UFABC

o Let V,dmV =n, S<GL(V)and G=V xS
@ Given kg € V* , one can show that

Ho = {g € G|(ko,0) = Ad¥ (ko,0)} = No x Sp

for (ko,0) € g*

e Furthermore, X = G/Hy ~ Vo x O* ~ T*O*, Vp = T;(“OO*, is
a symplectic manifold with symplectic measure du(p, q) which
allows the construction of a section
Vo x O* 5 (p,q) = o(p,q) € G

@ Finally, given a UIR x of V and a UIR L of S, one can
construct an irreducible representation (v, s) — XtU(v, s) of
G induced by the representation y ® L of V x Sg.
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Coherent states for semi-direct product groups UFABC

o Let V,dmV =n, S<GL(V)and G=V xS

@ Given kg € V* , one can show that
Ho = {g € G|(ko,0) = Ad¥ (ko,0)} = No x So

for (ko,0) € g*

e Furthermore, X = G/Hy ~ Vo x O* ~ T*O*, Vp = T;(“OO*, is
a symplectic manifold with symplectic measure du(p, q) which
allows the construction of a section
Vo x O* 5 (p,q) = o(p,q) € G

@ Finally, given a UIR x of V and a UIR L of S, one can
construct an irreducible representation (v, s) — XtU(v, s) of
G induced by the representation y ® L of V x Sg.

e Given n € H = L?(O*,dv), one constructs a family 7 q:
Mp,a(k) = (XLU(U(PaQ))n) (k)
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Coherent-state quantisation for semi-simple Lie groupsUrasc

@ If one can prove

fvox(’)* du(p, q)( ¢ | 1p,q )1 {NMp,q| V) = cy(@|v) where
¢, 0" = Cand 0< ¢, < o0
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Coherent-state quantisation for semi-simple Lie groupsUrasc

@ If one can prove

fvox(’)* du(p, q)( ¢ | 1p,q )1 {NMp,q| V) = cy(@|v) where
¢, 0" = Cand 0< ¢, < o0

@ we obtain the resolution of the identity

1
o Jvoxor (P, @) Mp.q ) (Np,g | = 1
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Coherent-state quantisation for semi-simple Lie groupsUrasc

@ If one can prove

fvox(')* du(p, @)@ Mp,q )1 (Mp,g | V)1 = c;(@|9) where
¢, 0" = Cand 0< ¢, < o0

@ we obtain the resolution of the identity

1
o Jvoxor (P, @) Mp.q ) (Np,g | = 1

@ CS quantisation maps the classical function
f(p,q) € Vo x O* to the operator on H

1
Ar = :n fVox(’)* du(p; q) [1p.q) (1p.al f(P: q)
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Coherent-state quantisation for semi-simple Lie groupsUrasc

@ If one can prove

fvox(')* du(p, @)@ Mp,q )1 (Mp,g | V)1 = c;(@|9) where
¢, 0" = Cand 0< ¢, < o0

@ we obtain the resolution of the identity

1
o Jvoxor (P, @) Mp.q ) (Np,g | = 1

@ CS quantisation maps the classical function
f(p,q) € Vo x O* to the operator on H

A = = o (P ) 1.0 Ul F(P. @)
@ The quantisation is covariant XLU(g)AsXtU(g)t =
Ath(g)fv AP = fvoxO* dp(p. q) [npfa) (npfal f(p. @),
with |7pq ) = XLU(gJ(g (p.q)))ln)
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Coherent-state quantisation for semi-simple Lie groupsUrasc

@ If one can prove

fvox(')* du(p, @)@ Mp,q )1 (Mp,g | V)1 = c;(@|9) where
¢, 0" = Cand 0< ¢, < o0

@ we obtain the resolution of the identity

1
o Jvoxor (P, @) Mp.q ) (Np,g | = 1

@ CS quantisation maps the classical function
f(p,q) € Vo x O* to the operator on H

1
Ar = — Jypxo- 4P, @) [1lp.a) (11p.al (P, @)
1
@ The quantisation is covariant XLu(g)Asxtu(g)t =
AZ{f(g)fv A = fvoxo* du(p, q) |npta) (1pial f(P. @)

with |npfq) = XLU(gJ( “(p.9)))In)
@ The semiclassical portrait of the operator Ar is defined as

¥ 1 2
f(p.q) = — Jyyxo AP’ @) (P, ') [(npr.q'l71p.0)|
n
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The Euclidean group E(2)

e Now G = E(2), where V = R? and S = SO(2), so
E(2) =R? x SO(2) = {(r,0), r € R?, 6 € [0,27)}, with
composition (r,0)(r',0") = (r + R(O)r',6 +¢').
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The Euclidean group E(2)

e Now G = E(2), where V = R? and S = SO(2), so
E(2) = R? x SO(2) = {(r,0), r € R%, 6 € [0,27)}, with
composition (r,0)(r',0") = (r + R(O)r',6 +¢').

o V*=R2 0* = {k =R(0)ko € R?| R(#) € SO(2)} ~S!
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The Euclidean group E(2)

e Now G = E(2), where V = R? and S = SO(2), so
E(2) = R2 x SO(2) = {(r,0), r e R?, 0 € [0,27)}, with
composition (r,0)(r',0") = (r + R(O)r',6 +¢').
o V*=R2 0* = {k =R(0)ko € R?| R(#) € SO(2)} ~S!
@ The stabilizer under the coadjoint action Adﬁ(z) is
Ho = {(x,0) €E(2)| & -x =0, € € R?, ||&]| = 1, fixed}.
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The Euclidean group E(2)

Now G = E(2), where V =R? and S = SO(2), so
E(2) = R2 x SO(2) = {(r,0), r e R?, 0 € [0,27)}, with
composition (r,0)(r',0") = (r + R(O)r',6 +¢').
V¥ =R2, O* = {k = R(0)ko € R?>|R(0) € SO(2)} ~ St
@ The stabilizer under the coadjoint action Adﬁ(z) is
Ho = {(x,0) €E(2)| & -x =0, € € R?, ||&]| = 1, fixed}.
@ The classical phase space
X = T*S* ~ (R? x SO(2))/Ho ~ R x S carries coordinates
(p, @) and has symplectic measure dp A dgq.
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The Euclidean group E(2)

Now G = E(2), where V =R? and S = SO(2), so
E(2) = R2 x SO(2) = {(r,0), r e R?, 0 € [0,27)}, with
composition (r,0)(r',0") = (r + R(O)r',6 +¢').
V* =R2, 0* = {k = R(0)ko € R? | R(A) € SO(2)} ~ St
@ The stabilizer under the coadjoint action Adéé(z) is
Ho = {(x,0) €E(2)| & -x =0, € € R?, ||&]| = 1, fixed}.
@ The classical phase space
X = T*S* ~ (R? x SO(2))/Ho ~ R x S carries coordinates
(p, @) and has symplectic measure dp A dgq.
o The UIR of E(2) are L2(S!,da) 3 () = (U(r,0)y) (o) =
ei(r1 cos a+ro sin a)w(a _ 0)_
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Coherent states for E(2)

Given the unit vector ¢ € R? and the corresponding subgroup Ho,
there exists a family of affine sections o : R x S — E(2) defined
as o(p,q) = (R(q)(kp + A), q) , where k, X € R? are constant
vectors, and € - k # 0.
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Coherent states for E(2) UFABC

Given the unit vector ¢ € R? and the corresponding subgroup Ho,
there exists a family of affine sections o : R x S — E(2) defined
as o(p,q) = (R(q)(kp + A), q) , where k, X € R? are constant
vectors, and € - k # 0.

From the section o(p, q), the representation U(r,#), and a vector
n € L2(St, da), we define the family of states

1Mp.q) = Ula(p,q))n).

Rodrigo Fresneda (UFABC - S3o Paulo, Brasil) Quantum Localisation on the Circle



Coherent states for E(2) UFABC

Given the unit vector ¢ € R? and the corresponding subgroup Ho,
there exists a family of affine sections o : R x S — E(2) defined
as o(p,q) = (R(q)(kp + A), q) , where k, X € R? are constant
vectors, and € - k # 0.

From the section o(p, q), the representation U(r,#), and a vector
n € L2(St, da), we define the family of states

1Mp.q) = Ula(p,q))n).

Theorem

The vectors np,q form a family of coherent states for E(2) which

dpd
resolves the identity on [3(S',da), | = [p, « el |7p.a)(Mp.al .
ifn(a) is admissible in the sense that suppn € (v — m,~) mod 2,
: n(q)?
and 0 < ¢, := fS sm'y q)dq<oo.

v

Rodrigo Fresneda (UFABC - S3o Paulo, Brasil) Quantum Localisation on the Circle




Quantisation of classical variables UFABC

e Given the family of coherent states |7, 4), we apply the linear
dpd .
map £ A7 = [ P9 5(p, ) [1pq) (g | to classical

observables f(p, q).
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Quantisation of classical variables UFABC

e Given the family of coherent states |7, 4), we apply the linear

dpd .
map f = A7 = [o .« uf( q) | p.q ) {Mp.q| to classical

observables f(p, q).

e For f(p,q) = u(q) with u(q + 27) = u(q), A, is the
multiplication operator (A,)(o) = (Eyy * u) (o) ¥(a) where

Epr(a) = 2= In(e)]? supp E;.y C (v —m,7) is a probability

Kcy sin(y—a) ?
distribution on the interval [—7, 7].
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Quantisation of classical variables UFABC

e Given the family of coherent states |7, 4), we apply the linear

dpdqf(

map f = A7 = [o .« q) | p.q ) {Mp.q| to classical

observables f(p, q).

e For f(p,q) = u(q) with u(q + 27) = u(q), A, is the
multiplication operator (A,)(o) = (Eyy * u) (o) ¥(a) where
Epy(a) == 3—; si':((;)‘lz) , supp Ep., C (7 —m,7) is a probability
distribution on the interval [—7, 7].

@ In particular, for the Fourier exponential €,(«) = e ne7,
the above expression is (E,.y * €,) (o) = 2mcy (Epy) €7
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Quantisation of classical variables UFABC

e Given the family of coherent states |7, 4), we apply the linear

dpdqf(

map f = A7 = [o .« q) | p.q ) {Mp.q| to classical

observables f(p, q).

e For f(p,q) = u(q) with u(q + 27) = u(q), A, is the

multiplication operator (A,)(o) = (Eyy * u) (o) ¥(a) where

Epy(a) = ,3: S||r7‘|7(('yla) , supp E,., C (v —m,~) is a probability

distribution on the interval [—7, 7].

@ In particular, for the Fourier exponential €,(«) = e ne7,
the above expression is (E,.y * €,) (o) = 2mcy (Epy) €7

@ For the momentum f(p, q) = p,

(Ap?) (@) = (—imi - Aa) ¥ («) for real 7.
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Quantisation of classical variables UFABC

e Given the family of coherent states |7, 4), we apply the linear

dpdqf(

map f = A7 = [o .« q) | p.q ) {Mp.q| to classical

observables f(p, q).

e For f(p,q) = u(q) with u(q + 27) = u(q), A, is the
multiplication operator (A,)(o) = (Eyy * u) (o) ¥(a) where

Epy(a) = ,3: s||:17((72a) , supp E,., C (v —m,~) is a probability

distribution on the interval [—7, 7].

@ In particular, for the Fourier exponential €,(«) = e ne7,
the above expression is (E,.y * €,) (o) = 2mcy (Epy) €7

@ For the momentum f(p, q) = p,

(Ap?) (@) = (—imi - Aa) ¥ («) for real 7.

e For a general polynomial f(q, p) = ZLV:() uk(q) p* one gets
N ok
S o ai(a)(—ida)F.



the Angle operator: analytic and numerical results UFABC

@ For the 27-periodic and discontinuous angle function
a(a) = a for a € [0,27), we get the multiplication operator

(Enqyxa)(a) = a+2m(1— [ Epy(q dq)—f]_7T qE,~(q)dg.
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the Angle operator: analytic and numerical results UFABC

@ For the 27-periodic and discontinuous angle function
a(a) = a for a € [0,27), we get the multiplication operator
(Enqyxa)(a) = a+2m(1— [ Epy(q dq)—fq_7T qE,~(q)dg.
@ We choose a specific section with A =0, v = 7/2 and as
fiducial vectors the family 7(59(a) of periodic smooth even

functions, suppn = [—¢, €] mod 27, parametrized by s > 0 and
0<e<m/2,
1 a 1
(s€) — (7) h — / d
N> () = ws where e : B x ws(x) .

and

s
— <
we(x) = exp( 1x2> 0< x| <1,
0 Ix| > 1,

are smooth and compactly supported test functions.
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the Angle operator: analytic and numerical results UFABC

@ For the 27-periodic and discontinuous angle function
a(a) = a for a € [0,27), we get the multiplication operator
(Enqyxa)(a) = a+2m(1— [ Epy(q dq)—fq_7T qE,~(q)dg.
@ We choose a specific section with A =0, v = 7/2 and as
fiducial vectors the family 7(59(a) of periodic smooth even
functions, suppn = [—¢, €] mod 27, parametrized by s > 0 and

0<e<m/2
T](S’E)(a) — 1 Ws (g) where e := /1 dx ws(X)-
\/@ € -1

and

s
— <
we(x) = exp( 1x2> 0< x| <1,
0 Ix| > 1,

are smooth and compactly supported test functions.

o(nse)) () > d(a) as e—0 or as s— .
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Figure: Plots of 1(*¢) for various values of 7 = —-
€
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Figure: Plots of (En(s,e).% * a) () for various values of 7 = .
' €
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Figure: Plots of the lower symbol ¢(q) of the angle operator A for
various values of 7 =
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Angle-angular momentum: commutation relations and vrAsc

Heisenberg inequality

e For A =0 and () € L%(St,da), we find the non-canonical
CR ([Ap, Agl¥) () = —ic (1 — 27wE;;. () ¥ () where
— <)
— ra(nn)
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Angle-angular momentum: commutation relations and vrAsc

Heisenberg inequality

e For A =0 and () € L%(St,da), we find the non-canonical
CR ([Ap, Agl¥) () = —ic (1 — 27wE;;. () ¥ () where

_ @)
— kai(ny)

(s,€) ™
o Since lim._,0 253(7);; = 1 and lim,_,0 Ey-(0) = 6(a), with

the choice K = 1 one has, in the limit € — 0, for a € [0, 27)
mod 27, ([Ap, AglY) () = (—i+i27d(a)) Y(a).
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Angle-angular momentum: commutation relations and vrAsc

Heisenberg inequality

e For A =0 and () € L%(St,da), we find the non-canonical
CR ([Ap, Agl¥) () = —ic (1 — 27wE;;. () ¥ () where
— <)
— ra(nn)

@ (77(5’6) ’ %)

@ Since lim._yo IR = 1 and lime_0 E; () = 0(), with

the choice K = 1 one has, in the limit € — 0, for a € [0, 27)
mod 27, ([Ap, AglY) () = (—i+i27d(a)) Y(a).

@ The uncertainty relation for A, and Ag, with the coherent
states 7)p.q, is AA, AAg = 3 [(0p.q[Ap, Adll p.q) -
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Figure: Plots of the dispersions AAg and AA, with respect to the

coherent state | n) ) for various values of 7 =

€2:
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L.H.S-R.H.S. - L.H.S.-R.H.S.

2 2
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Figure: Plots of the difference L.H.S.-R.H.S. of the uncertainty relation

with respect to the coherent state |n§,f2,6)> for various values of 7 = 5.
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Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).
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Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).

@ The cylinder R x S! depicts the classical phase space of the motion of
a particle on a circle, and is mathematically realized as the left coset
E(2)/H, where H is a stabilizer subgroup under the coadjoint action
of E(2).
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Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).

@ The cylinder R x S! depicts the classical phase space of the motion of
a particle on a circle, and is mathematically realized as the left coset
E(2)/H, where H is a stabilizer subgroup under the coadjoint action
of E(2).

@ The coherent states for E(2) are constructed from a UIR of
E(2) = R? x SO(2) restricted to an affine section
R x 8" > (p,q) = o(p, q) € E(2).
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Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).

@ The cylinder R x S! depicts the classical phase space of the motion of
a particle on a circle, and is mathematically realized as the left coset
E(2)/H, where H is a stabilizer subgroup under the coadjoint action
of E(2).

@ The coherent states for E(2) are constructed from a UIR of
E(2) = R? x SO(2) restricted to an affine section
R x S 3 (p,q) = o(p, q) € E(2).

@ For functions on the cylindric phase space, the corresponding
operators and lower symbols are determined . For periodic functions
f(q) of the angular coordinate g, the operators As are multiplication
operators whose spectra are given by periodic functions.

Rodrigo Fresneda (UFABC - S3o Paulo, Brasil) Quantum Localisation on the Circle



Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution
of the identity provided by coherent states for the special Euclidean
group E(2).

@ The cylinder R x S! depicts the classical phase space of the motion of
a particle on a circle, and is mathematically realized as the left coset
E(2)/H, where H is a stabilizer subgroup under the coadjoint action
of E(2).

@ The coherent states for E(2) are constructed from a UIR of
E(2) = R? x SO(2) restricted to an affine section
R x S 3 (p,q) = o(p, q) € E(2).

@ For functions on the cylindric phase space, the corresponding
operators and lower symbols are determined . For periodic functions
f(q) of the angular coordinate g, the operators As are multiplication
operators whose spectra are given by periodic functions.

@ The angle function a(a) = « is mapped to a SA multiplication angle
operator Ay with continuous spectrum.
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Conclusions UFABC

@ We have presented a picture of a quantisation based on the resolution

of the identity provided by coherent states for the special Euclidean

group E(2).

The cylinder R x S? depicts the classical phase space of the motion of

a particle on a circle, and is mathematically realized as the left coset

E(2)/H, where H is a stabilizer subgroup under the coadjoint action

of E(2).

The coherent states for E(2) are constructed from a UIR of

E(2) = R? x SO(2) restricted to an affine section

R x S 3 (p,q) = o(p, q) € E(2).

@ For functions on the cylindric phase space, the corresponding

operators and lower symbols are determined . For periodic functions

f(q) of the angular coordinate g, the operators As are multiplication

operators whose spectra are given by periodic functions.

The angle function a(a) = « is mapped to a SA multiplication angle

operator Ay with continuous spectrum.

@ For a particular family of coherent states, it is shown that the
spectrum is [r — m(s, €), ™ + m(s, €)], where m(s,e) — m as e — 0 or
5 — 00.
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obrigado! UFABC

Figure: UFABC Campus in Santo André, S3o Paulo
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