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Poisson manifold (M, {·, ·})

De�nition

A Poisson manifold (M, {·, ·}) is a smooth manifold M (equipped

with a Poisson structure) with a �xed bilinear and antisymmetric

mapping {·, ·} : C∞(M)× C∞(M)→ C∞(M), which satis�es

Leibniz rule and Jacobi identity.

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

{f, gh} = {f, g}h+ g{f, h},

where f, g, h ∈ C∞(M).

Poisson bracket can be written in terms of Poisson tensor

(π ∈ Γ∞
(∧2 TM

)
such that [π, π]S−N = 0) as follows

{f, g} = π(df, dg).
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Poisson tensor, Hamilton's equations

In the local coordinates x1, x2, . . . , xN on M

{f, g} =

N∑
i,j=1

πij(x)
∂f

∂xi

∂g

∂xj
.

Components of Poisson tensor are given by the formula

πij(x) = {xi, xj}

and satisfy

πij = −πji,
∂πij
∂xs

πsk + ∂πki
∂xs

πsj +
∂πjk
∂xs

πsi = 0.

Choosing the function H as a Hamiltonian we can de�ne a

dynamics on M using Hamilton equations

dxi
dt

= {xi, H}, i = 1, 2, . . . , N,

dx

dt
= π∇H,
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Bi-Hamiltonian structures

Let M be a manifold with two non-proportional Poisson brackets

{·, ·}1, {·, ·}2. If their linear combination α{·, ·}1 + β{·, ·}2,
α, β ∈ R, is also a Poisson bracket, we say that the brackets are

compatible and we call M the bi-Hamiltonian manifold.

By analogy we will say that two Poisson tensors π1 and π2
are compatible if their Schouten�Nijenhuis bracket vanishes

[π1, π2]S−N = 0.

∂πij1
∂xs

πsk2 +
∂πij2
∂xs

πsk1 +
∂πki1
∂xs

πsj2 +
∂πki2
∂xs

πsj1 +
∂πjk1
∂xs

πsi2 +
∂πjk2
∂xs

πsi1 = 0.
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Example� Bi-Hamiltonian structure related to
so(3)

Let us consider the Lie algebra so(3) of skew-symmetric matrices.

We will now construct two Lie brackets on so(3) given by two

choices of the matrix S

[A,B] = AB −BA, [A,B]S = ASB −BSA,

where S = diag(s1, s2, s3). We de�ne the Lie�Poisson bracket

{f, g}1(ρ) = 〈ρ, [df(ρ), dg(ρ)]〉 =
1

2
tr (ρ[df(ρ), dg(ρ)]) ,

{f, g}2(ρ) = 〈ρ, [df(ρ), dg(ρ)]S〉 =
1

2
tr (ρ[df(ρ), dg(ρ)]S) ,

The Poisson tensors can be written in the form

π1(X) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , π2(X) =

 0 −s3x3 s2x2
s3x3 0 −s1x1
−s2x2 s1x1 0

 .
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In this case, the Casimirs for these structures assume the following

form

c1(X) = x21 + x22 + x23, c2(X) = s1x
2
1 + s2x

2
2 + s3x

2
3.

Choosing as the Hamiltonian the Casimir c2 we obtain Euler's

equation, which describes the rotation of a rigid body

d~x

dt
= {c2, ~x}1 = {c1, ~x}2 = 2 (S2~x)× ~x,

where ~x = (x1, x2, x2) and S2 = diag (s1, s2, s3).
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Lie Algebroid

De�nition

Let M be a manifold. A Lie algebroid on M is a vector bundle

A→M , together with a vector bundle map a : A −→ TM , called

the anchor of a Lie algebroid A, and a bracket

[·, ·]A : ΓA× ΓA −→ ΓA which is R�bilinear and alternating,

satis�es the Jacobi identity (ΓA is a Lie algebra), and is such that

[X, fY ]A = f [X,Y ]A + a(X)(f)Y, (1)

a ([X,Y ]A) = [a(X), a(Y )], (2)

for all X,Y ∈ ΓA, f ∈ C∞(M). The manifold M is called the

base of a Lie algebroid A.
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Example

Let (M, {., .}) be a Poisson manifold, then its cotangent bundle

T ∗M →M possesses a Lie algebroid structure given by

a(df) := {f, .}

[df, dg]T ∗M := d{f, g},

where f, g ∈ C∞(M).
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Linear Fiber-wise Poisson Structure

If (A→M, [·, ·]A, a) is a Lie algebroid then on the total space A∗

of dual bundle A∗
q−→M there exists a Poisson structure given by

{f ◦ q, g ◦ q} = 0,

{lX , g ◦ q} = a(X)(g) ◦ q (3)

{lX , lY } = l[X,Y ]A ,

where X,Y ∈ Γ∞(A), lX(v) = 〈v,X(q(v))〉, v ∈ A∗ and
f, g ∈ C∞(M).
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Lifting of a Hamiltonian structure from M to TM

Theorem

If (M, {, }) is a Poisson manifold, then the manifold TM possesses

a Poisson structure given by

{f ◦ q, g ◦ q}TM = 0,

{ldf , g ◦ q}TM = {f, g} ◦ q (4)

{ldf , ldg}TM = ld{f,g},

where ldf (v) = 〈v, df(q(v))〉, v ∈ TM and f, g ∈ C∞(M).
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Corollary

Let (M,π) be a Poisson manifold and let x = (x1, . . . , xN ) be a

system of local coordinates on M . Then the Poisson tensor πTM
on the manifold TM associated with π has the form

πTM (x,y) =

 0 π(x1, . . . , xN )

π(x1, . . . , xN )
∑N

s=1

∂π

∂xs
(x1, . . . , xN )ys

 ,

in the system of local coordinates (x,y) = (x1, . . . , xN , y1, . . . , yN )
on TM .
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Lifting of Casimir functions from M to TM

Theorem

Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for

the the Poisson structure π, then the functions

ci ◦ q and ldci =

N∑
s=1

∂ci
∂xs

ys, i = 1, . . . r,

are the Casimir functions for the Poisson tensor πTM .

Tangent lifts of bi-Hamiltonian structures



Lifting of functions in involution from M to TM

Theorem

Let functions {Hi}ki=1 be in involution with respect to the Poisson

bracket generated by π, then the functions

{Hi ◦ q, ldHi
=

N∑
s=1

∂Hi

∂xs
(x)ys}ki=1, (5)

are in involution with respect to the Poisson tensor πTM .

Theorem

If (M,π1, π2) is a bi-Hamilton manifold then (TM, π1,TM , π2,TM )
is a bi-Hamilton manifold.
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In the case of a linear Poisson structure, we have additionally a

Lie-Poisson structure on TM .

Theorem

Let π be the Lie-Poisson structure on g∗. Then the tensor

π̃Tg∗(x,y) =

(
λπ(y) π(x)

π(x) π(y)

)
gives the Poisson structure on Tg∗ for any λ ∈ R.

Theorem

Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for

the Poisson structure π with λ 6= 0, then the functions

ci(t) + ci(w) ci(t)− ci(w), i = 1, . . . r,

where t =
(
x1 −

√
λy1, . . . , xN −

√
λyN

)
,

w =
(
x1 +

√
λy1, . . . , xN +

√
λyN

)
, are the Casimir functions.
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Example

The Poisson structures on T so(3) are given by tensors

π1,TM (X,Y ) =



0 0 0 0 −x3 x2
0 0 0 x3 0 −x1
0 0 0 −x2 x1 0
0 −x3 x2 0 −y3 y2
x3 0 −x1 y3 0 −y1
−x2 x1 0 −y2 y1 0

 .

Moreover the Casimirs are given by

c1(X) = x21 + x22 + x23,
1

2
ldc1 = x1y1 + x2y2 + x3y3.

In this case we recognize the Lie-Poisson structure of

e(3) ∼= T so(3).
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We have another Poisson structure on T so(3)

π̃1,TM (X,Y ) =



0 −y3 y2 0 −x3 x2
y3 0 −y1 x3 0 −x1
−y2 y1 0 −x2 x1 0

0 −x3 x2 0 −y3 y2
x3 0 −x1 y3 0 −y1
−x2 x1 0 −y2 y1 0

 .

In this case, we recognize the Lie-Poisson structure of

so(4) ∼= T so(3). The Casimir functions now are given by the

formulas

c1(X + Y ) + c1(X − Y ) = 2
(
x21 + x22 + x23 + y21 + y22 + y23

)
,

c1(X + Y )− c1(X − Y ) = 4 (x1y1 + x2y2 + x3y3) .
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Lifting of a bi-Hamiltonian structure from M to
TM (Main results)

Theorem

If (M, {, }1, {, }2) is a bi-Hamiltonian manifold, then for any λ ∈ R
its tangent bundle TM possesses a Poisson structure {, }TM,λ

given by

{f ◦ q, g ◦ q, }TM,λ = 0,

{ldf , g ◦ q}TM,λ = {f, g}1 ◦ q (6)

{ldf , ldg}TM,λ = ld{f,g}1 + λ{f, g}2 ◦ q,

where ldf (v) = 〈v, df(q(v))〉, v ∈ TM and f, g ∈ C∞(M).
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Lifting of a bi-Hamiltonian structure from M to
TM

Corollary

Let (M,π1, π2) be a bi-Hamiltonian manifold and let

x = (x1, . . . , xN ) be a system of local coordinates on M . Then the

Poisson tensor πTM,λ related to (M,π1, π2) takes form

πTM,λ(x,y) =

 0 π1(x)

π1(x)
∑N

s=1

∂π1
∂xs

(x)ys + λπ2(x)

 ,

in the system of local coordinates (x,y) = (x1, . . . , xN , y1, . . . , yN )
on TM .
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Lifting of Casimir functions from M to TM

Theorem

Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for

the Poisson structure π1 and functions fλi , i = 1, . . . , r, satisfy the

conditions {fλi , xj}1 = {xj , ci}2, for j = 1, · · · , n, then the

functions

ci ◦ q and c̃i =
N∑
s=1

∂ci
∂xs

(x)ys + λfλi (x), i = 1, . . . r,

are the Casimir functions for the Poisson tensor πTM,λ.

Theorem

If the functions {Hi} are in involution with respect to the Poisson

tensor π then the functions {Hi ◦ q, H̃i =
∑N

s=1

∂Hi

∂xs
(x)ys} are in

involution with respect to the Poisson tensor πTM,λ.
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Toda lattice � bi-Hamiltonian system

The Hamiltonian

H =
∑
i∈Z

(
1

2
p2i + eqi−1−qi

)
.

Hamilton's equations{
q̇i = {qi, H} = pi
ṗi = {pi, H} = eqi−1−qi − eqi−qi+1

.

Under Flaschka's transformation

ai =
1

2
e
(qi−1−qi)

2 , bi = −1

2
pi−1

the system transforms to

dai
dt

= ai (bi+1 − bi) ,

dbi
dt

= 2
(
a2i − a2i−1

)
.
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The Toda lattice is equivalent to the Lax equation

dL

dt
= [A,L],

where

Lfi = aifi+1 + bifi + ai−1fi−1,

Afi = aifi+1 − ai−1fi−1
are linear operators in the Hilbert space of square summable

sequences l2(Z).
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The Toda lattice is a bi-Hamiltonian system. There exist another

Poisson bracket, which we denote by π2, and another function H1,

which will play the role of the Hamiltonian for the π2 bracket, such

that π1 + π2 is Poisson tensor and π1∇H = π2∇H1

(H =
∑

i

(
2b2i + 4a2i

)
). The Poisson tensor π1 is given by the

relations

8{ai, bi}1 = −ai, 8{ai, bi+1}1 = ai.

For the Toda lattice the π2 bracket (which appeared in a paper of

M. Adler) is quadratic in the variables bi,ai and it is given by the

relations

{ai, ai+1}2 =
1

2
aiai+1, {ai, bi}2 = −aibi,

{ai, bi+1}2 = aibi+1, {bi, bi+1}2 = 2a2i

and all other brackets are zero.
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Example- Extended Toda Lattice

Functions Hk = TrLk are the functions in involutions with respect

to the both brackets. The above functions for k = 1, 2, 3 have the

expressions

H1 = trL =
∑
i∈Z

bi, H2 = 2H = trL2 =
∑
i∈Z

(
b2i + 2a2i

)
, (7)

H3 = trL3 =
∑
i∈Z

(
b3i + 3a2i bi + 3a2i bi+1

)
.

Now deformed tangent Poisson structure πTM,λ in local coordinates

ai, bi, ni,mi, i ∈ Z, is given by the relation

{ai,mi}TM,λ = −1

4
ai, {ai,mi+1}TM,λ =

1

4
ai, (8)

{bi, ni}TM,λ =
1

4
ai, {bi+1, ni}TM,λ = −1

4
ai, (9)

{ni, ni+1}TM,λ =
λ

2
aiai+1, {ni,mi}TM,λ = −1

4
ni − λaibi,

(10)

{ni,mi+1}TM,λ =
1

4
ni + λaibi+1, {mi,mi+1}TM,λ = 2λa2i .
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From the last theorem we transform the functions Hk = TrLk into

the functions Hk ◦ q∗M = TrLk ◦ q∗M and

H̃k =
∑N

s=1

(
∂Hk

∂as
ns +

∂Hk

∂bs
ms

)
, i.e.

H1 =
∑
i∈Z

bi, H̃1 =
∑
i∈Z

mi,

H2 =
∑
i∈Z

(
b2i + 2a2i

)
, H̃2 =

∑
i∈Z

(2bimi + 4aini) ,

(11)

H3 =
∑
i∈Z

(
b3i + 3a2i bi + 3a2i bi+1

)
, H̃3 =

∑
i∈Z

(
3b2imi + 3a2imi + 3a2imi+1+

+6aibini + 6aibi+1ni) ,

. . . . . .

Tangent lifts of bi-Hamiltonian structures



Now if we take as the Hamiltonian

H = αH2 + βH̃2 =
∑
i∈Z

(
αb2i + 2αa2i + 2βbimi + 4βaini

)
(12)

then Hamilton's equations are in the form

dai
dt

=
1

2
βai (bi+1 − bi) ,

dbi
dt

= β
(
a2i − a2i−1

)
, (13)

dni
dt

=
1

2
αai (bi+1 − bi) +

1

2
βai (mi+1 −mi) +

1

2
βni (bi+1 − bi) +

+ 2βλai
(
a2i+1 − a2i−1 − b2i + b2i+1

)
,

dmi

dt
= α

(
a2i − a2i−1

)
+ 2β (aini − ai−1ni−1) +

+ 4βλ
(
a2i bi+1 + a2i bi − a2i−1bi − a2i−1bi−1

)
.

We can interpret these equations as an extension of the Toda

lattice. It is the integrable system, where the integrals of motions

are given by formulas (11). If we put α = λ = 0, β = 2 and we take

ni = mi = 0 then we observe that we reduce it to Toda lattice.
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Thank you for your

attention
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