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Gravitational waves

1916 — Einstein describes gravitational waves. He uses
linearized version of general relativity theory and derives his
famous quadrupole formula”.

Guv — Nuv + h,uv “—
Minkowski flat metric — perturbation

20’ — 30’ — Einstein begins to have doubts about validity of
such an appraoch:

g =4| —dt® + dz? + dy? + d2?
—cos(z —t) (2 4 cos(z — t)) dt?
+2cos(z —t) (1 4 cos(z — t)) dtdz — cos?(z — t)dz?

Minkowski flat metric verturbation
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Gravitational waves

g = —dt°+ dz? + dy? + dz?
—cos(z —t) (2 + cos(z — t)) dt?
+2cos(z — t) (1 + cos(z — t)) dtdz — cos?(z — t)dz?

Choose a new variable: t:=t+sin(t—2x)
g = —dt®+ dz® + dy? + dz?

Main difficulty: how to decouple gauge freedom” from the
“‘true degrees of freedom”. (Einstein writes several papers.)

1937 — Einstein proves” that gravitational waves do not exist!

“"Red light”: serious people do not believe in gravitational waves
(including Leopold Infeld — father of the polish theoretical physics.)
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Gravitational waves

“'Red light”: serious people do not believe in gravitational waves
(including Leopold Infeld — father of the polish theoretical physics.)

1958—Andrzej Trautman Ph.D thesis: formulation of conceptual
framework and mathematical tools which are necessary to
describe gravitational radiation.

1) Radiation is not a local phenomenon.
2) It is localized at infinity™.

3) Boundary conditions are fundamental:
generalization of the ~"Sommerfeld radiation conditon” in
special relativity (,asymptotic flattness” in General Relativity).

1964 — Roger Penrose: conformal treatemant of infinity.

June 2, 2018 Geometry, Integrability and Quantization 4



Compactified space-time

[T future timelike infinity (single point)

future null infinity — ,Scri” — 3D

. (,endpoints of light rays”)

70 spacelike infinity (single point)

# = past null infinity — 3D

[~ past timelike infinity (single point)

To each 2-dimensional slice we may assigne energy which has not
been radiated yet (,Trautman-Bondi energy”). Na skraju!
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Compactified space-time

ldea of the conformal compactification:
—dt? 4 dz® + dy? + dz°

g —
line element
= —dt + dr?
Tt @ N on a unit sphere
u.=t—r, 11)::75—]—7". d92—|—Sin9dg02
g = —dudv—I—Z(U—U,)Qda2
u:=tanU, v:=tanV, —w/2 <UV <7/2.
L { dUdV + 1Sin2(V U)d 2]
— — — — o
J 4 cos?U cos?V 4
T=U-+V, R=V -U.
1 > >, 1 _. 5 2]
= —dT dR —Ssin“ Rd
J 4cosQUc052V[ T T 4 o
Tc[-m ], Re[0,m—|t]].
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Compactified space-time

[T future timelike infinity T'=4r, R=0

Z T future null infinity T+R=n

70 spacelike infinity

|
3

# = past null infinity R-T=m

T¢c[-mn/], R e [0,7—|t|] -

-

1 > >, 1 .5 2
— —dT dR —sin“© Rd
J 4cos2U cos2V T T 4 o
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Compactified space-time

[T future timelike infinity T'=4r, R=0

Z T future null infinity T+ R

=T
10 70 spacelike infinity -
= 7
# = past null infinity R-T=m

[~ past timelike Infinity T=-7n, R=
conformal facto 1
g = —dT? +dR? + Zsin2 Rdo?
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Compactified space-time

[T future timelike infinity T'=4r, R=0

Z T future null infinity TH+R=mr
10 70 spacelike infinity -
= 7
# = past null infinity R-T=m

[~ past timelike Infinity T=-7n, R=
conformal factor 1
g = Q2 |—dT?+dR*+ 2 sin? Rdo?
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Compactified space-time

[T future timelike infinity T'=4r, R=0

|
N

|
3

[~ past timelike Infinity T=-m, R=0
g = Q— fictitious
metric
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Compactified space-time

7t

Outgoing radiation

Incoming radiation

g = Q— fictitious
metric
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Universal propertis of radiation

7+ Asymptotic behaviour of radiation is
universal - not specific to general relativity.

In asymptotic regime: dynamic of
%Bavitational field = two decoupled
ave equations.

Penrose’ metric description
(fictitious!) of the ,Scri” is obsolete.

-
Consider wave equation on Minkowski space:

O¢ = (—d?/dt* + A) ¢ =0
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(¢ = (—dz/dtQ + A) d=0

Every solution of wave equation is uniquely determined by
initial (Cauchy) data:

50,5 =@, 5 6(0,8) =)
5(t,7) = (¢t (5@ |t|)))+t CE

N/

Mean value of the function over the sphere centered at 7
whose radius Is: |{]

,Huygens formula”
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t/\

2N

8(t,7) = o (¢ G(SGN) + 1 7(SG D) -
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t/

N\

/

(¢, ™)

F(s) =/ lim ¢(r,0,0,7) =0

T—00

Finite energy!

L, Y

2N

Point on the scri — ,endpoint” of a light ray.
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t/\

Finite energy!

(¢, ™)

F(s)=/lim r-¢(r,0,0,r)

T—00

2N

Point on the scri — ,endpoint” of a light ray.
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Wave equation

Finite energy!

F(s)=/lim r-¢(r,0,0,r)

T—00

V
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Radiation data on Scri

Null hyperplane y ;\t Lt A
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Radiation data on Scri

Null hyperplane 44

v=t+ z

o 0
Zdady = 0

ov

F(s) = /gqbdacdy
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Geometric structure of ,Scri”

To parameterize the set of all il
planes (pgints of ,scri”): choose
a time axjs.

1) Intersection of ,s” with

a chogen time axis.

2) Two angles describing all th
light/rays starting from a point
(,celestial sphere™)

V
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Geometric structure of ,Scri”

t=20

Coordinate syMscri: (1,0,0) € R x G2
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Initial data vs. radiation data

Theorem: Transformation between initial (Cauchy) data (=, ¢)

and the radiation data 7 is a symplectomorphism (canonical
transfrormation) of the two canonical structures:

QCauchy = / 5m(Z) A Sp(B)d3x <

Qaucny (7 9), (7', 0) = [ (7@ @) — 7' (@0 (@)) >

OF dp = sin 8dfdy
$2Radiation = /5“5;_“ N oFdrdp

OF
2padiation(F, @) = [ Z-Gdrdu

The two structures can be treated as different representations of
the same phase space describing possible field configurations.

measure on 52
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Initial data vs. radiation data

Theorem: Transformation between initial (Cauchy) data (=, ¢)

and the radiation data 7 is a symplectomorphism (canonical
transfrormation) of the two canonical structures:

QCauchy = / 5m(Z) A Sp(B)d3x <

(n(@), p(P)} = 63 (7 - 7)

OF dp = sin 8dfdy
QRadiation = /5""8“;_” NoFdrdu

measure on 52

The two structures can be treated as different representations of
the same phase space describing possible field configurations.
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| orentz Invariance

$2Radiation = /5“ NoFdrdpu

Symplectic structure in space of radiation data is not, a priori,
Lorentz invariant: depends upon the choice of the time axis!

What happens if we change the time axis?
1) Time parameter changes.
2) Change of the volume element di. on the celestial sphere.

3) Change of the value of F(s) = lim r-¢(r,0,0,7)

T—00

But, the miracle occurs:

OF
Fo=F-\Jdu Q frodition = / 5= NOFdr
remains unchaned!!!
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Field energy

Time evolution of the field is generated by the Hamiltonian
(field energy).

In ,,Cauchy picture: Qcquchy = / O N O
> = = L 2\ 13
ro= T = s %:Ej(w +(ch))dac >0
—pA\
T = Ap = .._6_H Py
%
. Q Radiation = f S| A 6 Fd
In ,radiation picture”: Radiation @ T
time evolution = translation in parameter r (=
: OH
F=0r = P H = /(7387]:) dr
- OH

(llke momentum in the conventional Cauchy formulation)

June 2, 2018 Geometry, Integrability and Quantization 25




Time evolution

(¢, )

H = %/ (71'2 + (ch)z) d3z
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Time evolution

H=[(0rF)dr

(¢, )

H = ;/ (72 + (Vp)?) d3x
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Time evolution

H = /(an)QdT

QRadiation = / 5"""""" N oFdr

(¢, )

Quantization??7
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Cauchy problem on a hyperboloid
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Cauchy problem on a hyperboloid

H = /(an)QdT

QRadiation = / 5"""""" N oFdr
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Mixed: ,Cauchy—Radiation” picture

/\ QRadiation = / 5"""""" N oFdr

QC’a,uchy — /57T Now

H = %/ (7r2 —+ (Vc,o)z) A3z
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Mixed: ,Cauchy—Radiation” picture
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Mixed: ,Cauchy—Radiation” picture

Htoml — f)]_L— _I_ H—|—
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Mixed: ,Cauchy—Radiation” picture

t
Htoml = N 4 7‘[+ %/Htotal —0 H(t) = /_Oo (37—.7:)2 dr

H— is strictly increasing, whence, HT is strictly decreasing
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Mixed: ,Cauchy—Radiation” picture

plotal — 31— 4 1T = const.

#t\,0  Trautman-Bondi energy

7

(o, ) H- AH

=
S

Ho= [ (0rF)dr

H (1) =/

T

(0-F)2 dr
<t
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Technicalities

Technical features which are specific to General Relativity:

No null hyper-planes (but asymptotically...)

Meaningful physical quantities never defined by volume
Integrals but only by surface integrals.

Hence: shape of the hyperbolid does not matter!

What matters is its intersection with the Scri.

Cauchy energy density is given by a complete divergence of a
, superpotential” (i.e. ,Freud”, ,Landau-Lifshitz” or any other)
and, whence, Trautman-Bondi energy can be calculated as a
surface integral over any 2D surface on Scri.
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Mixed: ,Cauchy—Radiation” picture
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,Cauchy—Radiation” picture

#T\,0  Trautman-Bondi energy

F H TH
already radiated energy

Hiotal — 34— 4+ 1+ = const.
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