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SL2(R) and Its Subgroups
SL2(R) is the group of 2× 2 matrices with real entries and det = 1. A
two dimensional subgroup F (F ′) of lower (upper) triangular matrices:

F =

{
1√
a

(
a 0
c 1

)}
, F ′ =

{
1√
a

(
a b

0 1

)}
, a ∈ R+, b, c ∈ R.

F is isomorphic to the group of affine transformations of the real line
(ax+ b group), isomorphic to the upper half-plane.
There are also three one dimensional continuous subgroups:

A =

{(
et 0
0 e−t

)
= exp

(
t 0
0 −t

)
, t ∈ R

}
, (1)

N =

{(
1 t

0 1

)
= exp

(
0 t

0 0

)
, t ∈ R

}
, (2)

K =

{(
cos t sin t
− sin t cos t

)
= exp

(
0 t

−t 0

)
, t ∈ (−π,π]

}
. (3)

http://en.wikipedia.org/wiki/SL%282%2CR%29


. . . and Nothing Else
(up to a conjugacy)

Proposition 1.

Any one-parameter continuous subgroup of SL2(R) is conjugate to either
A, N or K.

Proof.
Any one-parameter subgroup is obtained through the exponentiation

etX =

∞∑
n=0

tn

n!
Xn (4)

of an element X of the Lie algebra sl2 of SL2(R). Such X is a 2× 2 matrix
with the zero trace. The behaviour of the Taylor expansion (4) depends
from properties of powers Xn. This can be classified by a straightforward
calculation.



Elliptic, Parabolic, Hyperbolic
the First Appearance

Lemma 2.

The square X2 of a traceless matrix X =

(
a b

c −a

)
is the identity matrix

times a2 + bc = −detX. The factor can be negative, zero or positive,
which corresponds to the three different types of the Taylor expansion (4)
of etX =

∑
tn

n!X
n.

It is a simple exercise in the Gauss elimination to see that through the
matrix similarity we can obtain from X a generator

• of the subgroup K if (− detX) < 0;

• of the subgroup N if (− detX) = 0;

• of the subgroup A if (− detX) > 0.

The determinant is invariant under the similarity, thus these cases are
distinct.



SL2(R) and Homogeneous Spaces
Let G be a group and H be its closed subgroup.
The homogeneous space G/H from the equivalence relation: g ′ ∼ g iff
g ′ = gh, h ∈ H. The natural projection p : G→ G/H puts g ∈ G into its
equivalence class.
A continuous section s : G/H→ G is a right inverse of p, i.e. p ◦ s is an
identity map on G/H. Then the left action of G on itself:

Λ(g) : g ′ 7→ g−1 ∗ g ′, generates

G

p

��

g∗ // G

p

��
G/H

s

OO

g· // G/H

s

OO

If G = SL2(R) and H = F, then SL2(R)/F ∼ R and p :

(
a b

c d

)
7→ b

d
:

s : u 7→
(

1 u

0 1

)
, g : u 7→ p(g−1 ∗ s(u)) = au+ b

cu+ d
, g−1 =

(
a b

c d

)
.



SL2(R) and Imaginary Units
Consider G = SL2(R) and H be any of 1D subgroups A, N or K. A right
inverse s to the natural projection p : G→ G/H:

s : (u, v) 7→ 1√
v

(
v u

0 1

)
, (u, v) ∈ R2, in the diagram

G

p

��

g∗ // G

p

��
G/H

s

OO

g· // G/H

s

OO

defines the G-action g · x = p(g · s(x)) on the homogeneous space G/H:(
a b

c d

)
: (u, v) 7→

(
(au+ b)(cu+ d) − σcav2

(cu+ d)2 − σ(cv)2
,

v

(cu+ d)2 − σ(cv)2

)
.

This becomes a Möbius map in (hyper)complex numbers:1(
a b

c d

)
: w 7→ aw+ b

cw+ d
, w = u+ iv, i2(:= σ) = −1, 0, 1.

1Kisil, Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic
Actions of SL2(R), 2012.



Structural Equivalence Principle

During this course we will see many illustrations to the following:
Structural Equivalence Principle—SEP:
The structure of the group SL2(R) and its representations are
interchangeable by simultaneous choice of one-dimensional subgroup K,
N ′ or A ′ and the corresponding hypercomplex unit i, ε or j, see Table 1.

Case: elliptic parabolic hyperbolic

Numbers complex dual double

Subgroup H K N A

σ = ι2 −1 0 1

Table: Correspondence between components of the construction



Möbius Transformations of R2

For all numbers define Möbius’ transformation of R2 → R2,
(in elliptic and parabolic cases this is even R2

+ → R2
+!):(

a b

c d

)
: u+ iv 7→ a(u+ iv) + b

c(u+ iv) + d
. (5)

Product

(
a b

c d

)
=

(
τ 0
0 τ−1

)(
1 ν

0 1

)(
cosφ sinφ
− sinφ cosφ

)
gives Iwasawa

SL2(R) = ANK. In all A subgroups A and N acts uniformly:

1

1

1

1
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1

1

1

1

1

1

Vector fields are:
dKe(u, v) = (1 + u2 − v2, 2uv)
dKp(u, v) = (1 + u2, 2uv)
dKh(u, v) = (1 + u2 + v2, 2uv)

dKσ(u, v) = (1 + u2 + σv2, 2uv)

Figure: Depending from i2 = σ the orbits of subgroup K are circles, parabolas
and hyperbolas passing (0, t) with the equation (u2 − σv2) + v(σt− t−1) + 1 = 0.
This leads to elliptic, parabolic and hyperbolic analytic functions.
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Fix subgroups of i, ε and j

1

1

1

1

1

1

K =

(
cos t − sin t
sin t cos t

)
= exp

(
0 −t
t 0

) N ′ =

(
1 0
t 1

)
= exp

(
0 0
t 0

) A ′ =

(
cosh t sinh t
sinh t cosh t

)
= exp

(
0 t

t 0

)
Fix subgroups of ι = (0, 1) are S(t) = exp

(
0 σt

t 0

)
, where σ = ι2.



Compactification of Re and Rp

Figure: Riemann sphere, stereographic projection and their parabolic
counterpart. Ideal elements (images of infinity) are shown in red. They are the
point in the elliptic case and the line in the parabolic.



Compactification of Rh

Figure: Hyperbolic counterpart of the Riemann sphere (incomplete so far!) Ideal
elements for the light cone at infinity.
In all EPH cases ideal points comprise the corresponding zero-radius cycle at
infinity.



Induced Representations
Let G be a group, H its closed subgroup, χ be a linear representation of
H in a space V. The set of V-valued functions with the property

F(gh) = χ(h)F(g),

is invariant under left shifts.
The restriction of the left regular representation to this space is called an
induced representation.
Equivalently we consider the lifting of f(x), x ∈ X = G/H to F(g):

F(g) = χ(h)f(p(g)), p : G→ X, g = s(x)h, p(s(x)) = x.

This is a 1-1 map which transform the left regular representation on G to
the following action:

[ρ ′(g)f](x) = χ(h)f(g · x), where gs(x) = s(g · x)h.

In the case of SL2(R) we have three different types of actions.



Characters and transformations of R2

Multiplication by an unimodular complex number is an orthogonal
rotation of R2. Multiplication by unimodular dual and double numbers
can be viewed as parabolic and hyperbolic rotations2 preserving the area
(i.e. the symplectic form). They induce some representations as well.

2Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, 1979.



Affine Group
For G = SL2(R) and H = F the action on G/H is:

g : u 7→ p(g−1 ∗ s(u)) = au+ b

cu+ d
, where g−1 =

(
a b

c d

)
.

We calculate also that

r(g−1 ∗ s(u)) =
(
(cu+ d)−1 0

c cu+ d

)
.

A generic character of F is a power of its diagonal element:

ρκ

(
a 0
c a−1

)
= aκ.

Thus the corresponding realisation of induced representation is:

ρκ(g) : f(u) 7→
1

(cu+ d)κ
f

(
au+ b

cu+ d

)
where g−1 =

(
a b

c d

)
. (6)



Induced Wavelet Transform

Let v0 ∈ H be an eigenfunction as follows:

ρ(h)v0 = χ̃(h) · v0, for all h ∈ H̃.

It is suitable to be the mother wavelet (vacuum vector). Then we have

[Wf](gh) = 〈f, ρ(gh)v0〉 = 〈f, ρ(g)ρ(h)v0〉
= 〈f, χ̃(h) · ρ(g)v0〉 = χ̃(h−1) 〈f, ρ(g)v0〉 .

For v0 the induced wavelet transform W : H→ L∞(G/H̃) by

[Wf](w) = 〈f, ρ0(s(w))v0〉 , (7)

where w ∈ G/H̃ and s : G/H̃→ G.
It intertwines ρ with a representation induced by χ̃−1 of H̃.
Particularly, it intertwines ρ with the representation associated to
G-action on the homogeneous space G/H̃.



Lie algebra
and derived representation

The Lie algebra sl2 of SL2(R) consists of all 2× 2 real matrices of trace
zero. One can introduce a basis:

A =
1

2

(
−1 0
0 1

)
, B =

1

2

(
0 1
1 0

)
, Z =

(
0 1
−1 0

)
. (8)

The commutator relations are

[Z,A] = 2B, [Z,B] = −2A, [A,B] = −
1

2
Z.

The derived representation for a vector field Y ∈ sl2 is defined through
the exponential map exp : sl2 → SL2(R) by the standard formula:

dρY =
d

dt
ρ(etY)

∣∣∣∣
t=0

. (9)



Derived representation
on the real line

Example 1 (the derived representation of (6)).

For A = 1
2

(
−1 0
0 1

)
we get (etA)−1 = e−tA =

(
et/2 0

0 e−t/2

)
. Thus:

dρAf(u) =
d

dt
[ρ(etA)f](u)

∣∣∣∣
t=0

=
d

dt

[
1

e−κt/2
f
(
etu

)]∣∣∣∣
t=0

=
κ

2
f(u) + uf ′(u).

Similarly, for the basis (8) of sl2 the derived representation of (6) is:

dρAκ =
κ

2
· I+ u · ∂u, (10)

dρBκ =
κ

2
u · I+ 1

2
(u2 − 1) · ∂u, (11)

dρZκ = −κu · I− (u2 + 1) · ∂u (12)



Cauchy–Riemann Equation
from Invariant Fields

Let ρ be a unitary representation of Lie group G with the derived
representation dρ of g. Let a mother wavelet w0 be a null-solution, i.e.
Aw0 = 0, for the operator A =

∑
J ajdρ

Xj , where Xj ∈ g. Then the
wavelet transform F(g) = Wf(g) = 〈f, ρ(g)w0〉 for any f satisfies to:

DF(g) = 0, where D =
∑
j ajL

Xj .

Here LXj are left the invariant fields (Lie derivatives) on G corresponding
to Xj.

If LXj is derived representation of Lie derivative A, N, K (without the
matching subgroup) then C-R operator and Laplacian are given by:

D = ιLA + LX, and ∆ = DD̄ = −σLA
2
+ LX

2
, (13)

where X is in the orthogonal complement (with respect to the Killing
form) of the corresponding subgroup K, N, A.



Cauchy–Riemann Equation
Example

Consider the representation ρ

ρ2(g) : f(u) 7→
1

(cu+ d)2
f

(
au+ b

cu+ d

)
where g−1 =

(
a b

c d

)
.

Let A and N ∈ sl2 generates

(
et/2 0

0 e−t/2

)
and

(
1 t

0 1

)
. Then the

derived representations are:

[dρAf](x) = f(x) + xf ′(x), [dρNf](x) = f ′(x).

The corresponding left invariant vector fields on upper half-plane are:

LA = a∂a, LN = a∂b.

The mother wavelet 1
x+i is a null solution of the operator

dρA + idρN = I+ (x+ i) ddx . Therefore the wavelet transform will consist
of the null solutions to the operator LA − iLN = a(∂a + i∂b)—the
Cauchy-Riemann operator.



Cauchy Integral Formula
Eigenvector of K

The infinitesimal version of the eigenvector property ρ(h)v0 = χ(h) · v0 is
dρZnv0 = λv0, explicitly, cf. (12)

nuf(u) + f ′(u)(1 + u2) = λf(u).

The generic solution is:

f(u) =
1

(1 + u2)n/2

(
u+ i

u− i

)iλ/2

=
(u+ i)(iλ−n)/2

(u− i)(iλ+n)/2
.

To avoid multivalent function we need to put λ = im with an integer m.
The Cauchy–Riemann condition (which turn to be later the same as “the
minimal weight condition”) suggests m = n. Thus, the induced wavelet
transform is:

f̂(x,y) = 〈f, ρnf0〉 =
∫
R
f(u)

√
y

u− x− iy
dx =

√
y

∫
R
f(u)

dx

u− (x+ iy)

And its image consists of null solutions of Cauchy–Riemann type
equations. For m > n we obtain polyanalytic functions annihilated by
powers of Cauchy–Riemann operator.



Fix Subgroups of i and j

1

1

1

1

Figure: Elliptic and hyperbolic fix groups of the imaginary units.
In the hyperbolic case there are fixed geometric sets: {−1, 1}, (−1, 1), R.



Other Integral Transforms
Eigenvalues of A

For the subgroup A ′ generated by B ∈ sl2 the derived representation,
cf. (11):

dρBnf(u) = −nuf(u) + (u2 − 1)f ′(u).

It has two singular point ±1, its solution has compact support [−1, 1].

f(x) =
1

(u2 − 1)n/2

(
u+ 1

u− 1

)λ/2
=

(u+ 1)(λ−n)/2

(u− 1)(λ+n)/2
.

For λ = jm we also get, cf. K-case:

f(x) =
(x+ j)(m−κ)/2

(x− j)(m+κ)/2
.

−1

−0, 5

0, 5

1

−1 −0, 5 0, 5 1



Hyperbolic Wavelets from Double
Numbers

The choice of the A-eigenvector as mother wavelet:

• f0 = δ(x± 1)—Dirichlet condition.

• f0 =
1

(x− j)σ
=

(
x+ j

x2 − 1

)σ
—Neumann condition.

• f0 =
χ(1 − x2)

(x− j)σ
—space-like and time-like separation, Fig. 4.

• . . . (combination of above)

Then we follow the general scheme both for wavelets with complex and
double valued wavelets:

• wavelets or coherent states vσ(g, z) = ρσ(g)v0(z).

• d’Alambert integral from the universal wavelet transforms

Wσ : f(z) 7→Wσf(u) = 〈f(z), ρσv0(u, z)〉



Other Integral Transforms
Eigenvalues of N

The subgroup N consists of shifts, the eigenfunction is eλu and the
induced wavelet transform coincides with the Fourier transform.
For the subgroup N ′, the generator is dρ

Z/2−B
n = (un) · I− u2 · ∂u,

cf. (11–12). The eigenvector dρ
Z/2−B
n f = λf is f0(u) = u

ne
λ
u .

Consider some identities for dual numbers:

eεαt = 1 + εαt; (t± ε)α = tα−1(t± εα); (t− ε)(t+ ε) = t2.

Combining them together we can write for λ = εm:

e
εm
u = 1 +

εm

u
=

(
u+ ε

u− ε

)m/2
Then the solution f0(u) = u

ne
λ
u is:

|u|−κ e−
εm
u =

1

((u+ ε)(u− ε))κ/2

(
u+ ε

u− ε

)m/2
=

(u+ ε)(m−κ)/2

(u− ε)(m+κ)/2
(14)

The respective wavelet transform is again very similar to the complex
case.



Raising/Lowering Operators

Denote X̃ = dρ(X) for X ∈ sl2. Let X = Z be the generator of the
compact subgroup K, eigenspaces Z̃vk = ikvk are parametrised by an
integer k ∈ Z. The raising/lowering operators L±:

[Z̃,L±] = λ±L±. (15)

[L± are eigenvectors for operators adZ of adjoint representation of sl2.]
From the commutators (15) L+vk are eigenvectors of Z̃ as well:

Z̃(L+vk) = (L+Z̃+ λ+L+)vk = L+(Z̃vk) + λ+L+vk

= ikL+vk + λ+L+vk = (ik+ λ+)L+vk.

Thus those operators acts on a chain of eigenspaces:

. . .
L+ // Vik−λ
L−

oo
L+ // Vik
L−

oo
L+ // Vik+λ
L−

oo
L+ // . . .
L−

oo



Finding Raising/Lowering Operators
Elliptic and hyperbolic

Subgroup K. Assuming L+ = aÃ+ bB̃+ cZ̃ we obtain a linear equation:

c = 0, 2a = λ+b, −2b = λ+a.

The equations have a solution if and only if λ2+ + 4 = 0, and the raising
operator is L+ = iÃ+ B̃.

Subgroup A. For the commutator [B̃,L+] = λL+ we will got the system:

2c = λa, b = 0,
a

2
= λc.

A solution exists if and only if λ2 = 1. The obvious values λ = ±1 with
the operator L± = ±Ã+ Z̃/2. Each indecomposable sl2-module is formed
by one-dimensional chain of eigenvalue with transitive action of
raising/lowering operators.



Hyperbolic Ladder Operators
Double numbers: λ = ±j solves λ2 = 1 additionally to λ = ±1.
The raising/lowering operators Lh± = ±jÃ+ Z̃/2 “orthogonal” to L±.

. . .

L+j
��

. . .

L+j
��

. . .

L+j
��

. . .
L+h// V(n−2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k−2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h// V(n−2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+jk
L−h

oo
L+h //

L−j

OO

L+j

��

V(n+2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h// V(n−2)+j(k+2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k+2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k+2)
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .

L−j

OO

. . .

L−j

OO

. . .

L−j

OO



Parabolic Ladder Operators

A generator X = −B+ Z/2 of the subgroup N ′ gets the equations:

b+ 2c = λa, −a = λb,
a

2
= λc,

which can be resolved if and only if λ2 = 0. Restricted with the real
(complex) root λ = 0 make operators L± = −B̃+ Z̃/2. Does not affect
eigenvalues and thus are useless. However, a dual number λt = tε, t ∈ R
leads to the operator L± = ±tεÃ− B̃+ B̃/2, which allow us to build a
sl2-modules with a one-dimensional continuous(!) chain of eigenvalues.

K Introduction of complex numbers is a necessity for the existence of
raising/lowering operators;

N we need dual numbers to make raising/lowering operators useful;

A double number are required for neither existence nor usability of
raising/lowering operators, but do provide an enhancement.



Similarity and Correspondence

Principle of Similarity and correspondence

1 Subgroups K, N and A play the similar role in a structure of the
group SL2(R) and its representations.

2 The subgroups shall be swapped together with the respective
replacement of hypercomplex unit ι.

Manifestations:

• The action of SL2(R) on SL2(R)/H for H = A ′, N ′ or K and
linear-fractional transformations of respective numbers.

• Subgroups K, N ′ and A ′ and unitary rotations of respective unit
cycles.

• Representations induced from subgroup K, N ′ or A ′ and unitarity in
respective numbers.

• The connection between raising/lowering operators for subgroups K,
N ′ or A ′ and corresponding numbers.
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