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Fractional Linear Transformations
and cycles

Symmetries of Lie spheres geometry include fractional linear
transformations (FLT) of the form:(

a b

c d

)
: x 7→ ax+ b

cx+ d
, where det

(
a b

c d

)
6= 0. (1)

Cycles (quadrics) in Rpq given by FSC 2× 2 matrices:1

kx̄x− lx̄− xl̄+m = 0 ↔ C =

(
l m

k l̄

)
, (2)

where k,m ∈ R and l ∈ Rpq. For brevity we also encode a cycle by its
coefficients (k, l,m). A justification of (2) is provided by the identity:(

1 x̄
)(l m

k l̄

)(
x

1

)
= kxx̄− lx̄− xl̄+m, since x̄ = −x for x ∈ Rpq.

1Fillmore and Springer, “Möbius groups over general fields using Clifford algebras
associated with spheres”, 1990; Cnops, An introduction to Dirac operators on
manifolds, 2002, (4.12); Kisil, Geometry of Möbius Transformations: Elliptic,
Parabolic and Hyperbolic Actions of SL2(R), 2012, § 4.4.



FLT invariant inner product
The identification is also FLT-covariant in the sense that the

transformation x 7→ ax+b
cx+d (1) associated with the matrix M =

(
a b

c d

)
sends a cycle C to the cycle MCM∗.2

The FLT-invariant inner product of cycles C1 and C2 is

〈C1,C2〉 = < tr(C1C2) , (3)

where < denotes the scalar part of a Clifford number. This definition in
term of matrices immediately implies that the inner product is
FLT-invariant. The explicit expression in terms of components of cycles
C1 = (k1, l1,m1) and C2 = (k2, l2,m2) is also useful sometimes:

〈C1,C2〉 = l1l2 + l̄1l̄2 +m1k2 −m2k1 . (4)

All non-linear conditions below can be linearised if the additional
quadratic condition of normalisation type is imposed:

〈C,C〉 = ±1. (5)

2Cnops, An introduction to Dirac operators on manifolds, 2002, (4.16).



Inner product and geometric relations I

The relation 〈C1,C2〉 = 0 is called the orthogonality of cycles. In most
cases it corresponds to orthogonality of quadrics in the point space.
It is a part of the following list:

1. A quadric is flat (i.e. is a hyperplane), that is, its equation is linear.

1.1 k component of the cycle vector is zero;
1.2 is orthogonal 〈C1,C∞〉 = 0 to the “zero-radius cycle at infinity”

C∞ = (0, 0, 1).

2. A quadric is a Lobachevsky line if it is orthogonal
〈
C1,CR

〉
= 0 to

the real line cycle CR . A similar condition is meaningful in higher
dimensions as well.

3. A quadric C represents a point, that is, it has zero radius at given
metric of the point space. Then, the determinant of the
corresponding FSC matrix is zero or, equivalently, the cycle is
self-orthogonal (isotropic): 〈C,C〉 = 0.

4. Two quadrics are orthogonal in the point space Rpq. Then, cycles
are orthogonal in the sense of the inner product (3).



Inner product and geometric relations II
5. Two cycles C and C̃ are tangent〈

C, C̃
〉2

= 〈C,C〉
〈
C̃, C̃

〉
. (6)

If cycle C is normalised by the condition (5), it is linear to
components of the cycle C:〈

C, C̃
〉
= ±

√〈
C̃, C̃

〉
. (7)

Different signs here represent internal and outer touch.

6. Inversive distance θ of two (non-isotropic) cycles is defined by the
formula: 〈

C, C̃
〉
= θ

√
〈C,C〉

√〈
C̃, C̃

〉
(8)

In particular, the above discussed orthogonality corresponds to θ = 0
and the tangency to θ = ±1. For intersecting spheres θ provides the
cosine of the intersecting angle.



Inner product and geometric relations III
7. A generalisation of Steiner power d of two cycles is defined as:3

d =
〈
C, C̃

〉
+
√
〈C,C〉

√〈
C̃, C̃

〉
, (9)

where both cycles C and C̃ are k-normalised, that is the coefficient
in front the quadratic term in (2) is 1. Geometrically, the generalised
Steiner power for spheres provides the square of tangential distance.
However, this relation is again non-linear for the cycle C.
If we replace C by the cycle C1 =

1√
〈C,C〉C satisfying (5), the

identity (9) becomes:

d · k =
〈
C1, C̃

〉
+

√〈
C̃, C̃

〉
, (10)

where k = 1√
〈C,C〉 is the coefficient in front of the quadratic term of

C1. The last identity is linear in terms of the coefficients of C1.
3Fillmore and Springer, “Determining Circles and Spheres Satisfying Conditions

Which Generalize Tangency”, 2000, § 1.1.



Ensembles of cycles: Poincaré extension
The Poincaré extension of Möbius transformations from the real line to
the upper half-plane of complex numbers is described by a triple of cycles
{C1,C2,C3} such that:4

1. C1 and C2 are orthogonal to the real line;

2. 〈C1,C2〉
2 6 〈C1,C1〉 〈C2,C2〉;

3. C3 is orthogonal to any cycle in the triple including itself.

A modification with ensembles of four cycles describes an extension from
the real line to the upper half-plane of complex, dual or double numbers.
The construction can be generalised to arbitrary dimensions.

x y

P

x′ y′ xy

P

x′y′

4Kisil, “Poincaré Extension of Möbius Transformations”, 2017.



Poincaré extension: parabolic and hyperbolic
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Figure: Poincaré extensions: first column presents points defined by the
intersecting intervals [x,y] and [x ′,y ′], the second column—by disjoint intervals.
Each row uses the same type of conic sections—circles, parabolas and
hyperbolas respectively.



Logarithmic spirals: a universal pattern

Figure: Natural logarithmic spirals: galaxies, traces of elementary particles,
seashells and sunflowers.



Logarithmic spirals and loxodromes
Logarithmic spirals are integral curves of the fundamental differential
equation ẏ = λy, λ ∈ C—a first approximation to many natural
processes. Thus, images of logarithmic spirals under FLT, called
loxodromes are not rare: from the stereographic projection of a rhumb
line to archetypal Carleson arc.5

(a) (b)

Figure: A logarithnic spiral (a) and its image under FLT—loxodrome (b).

5Böttcher and Karlovich, “Cauchy’s singular integral operator and its beautiful
spectrum”, 2001; Bishop et al., “Local Spectra and Index of Singular Integral
Operators with Piecewise Continuous Coefficients on Composed Curves”, 1999.



Ensembles of cycles: loxodromes
Loxodromes are parametrised by a triple of cycles {C1,C2,C3} s.t.:6

1. C1 is orthogonal to C2 and C3;
2. 〈C2,C3〉

2 > 〈C2,C2〉 〈C3,C3〉.
Then, main invariant properties of Möbius–Lie geometry, e.g. tangency of
loxodromes, can be expressed in terms of this parametrisation.

1
a

6Kisil and Reid, “Conformal Parametrisation of Loxodromes by Triples of Circles”,
2018.



Animated parametrisation of loxodromes



Continued fractions
Continued fractions are iterations of FLT—chains of tangent horocycles:7

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 + . . .

, π = 3 +
1

7 +
1

15 +
1

1 +
1

292 + . . .

.

R

a4

a0 a1

a3

a2

e
a2

R

a0 a1

π

7Beardon and Short, “A Geometric Representation of Continued Fractions”, 2014.



Continued fractions and FLT

Continued fractions are composition of specific FLT

S(n) =

(
Pn−1 Pn
Qn−1 Qn

)
= s1◦s2◦. . .◦sn, where sj(z) =

aj

bj + z
. (11)

Pn and Qn represents partial fractions:

Pn

Qn
= Sn(0),

Pn−1

Qn−1
= Sn(∞). (12)

Lemma 1.
The cycles (0, 0, 1,m) ( (k, 0, 1, 0) ) are the only cycles, such that their

images under the Möbius transformation

(
a b

c d

)
are independent from

the column

(
b

d

)
(

(
a

c

)
). The image associated to the column

(
a

c

)
(

(
b

d

)
) is the horocycle, which touches the real line at a

c (b
d ).



A continued fraction is described by an infinite ensemble of cycles (Ck):

1. All Ck are touching the real line (i.e. are horocycles);

2. (C1) is a horizontal line passing through (0, 1);

3. Ck+1 is tangent to Ck for all k > 1.

It was extended8 to similar ensembles to treat convergence.

8Kisil, “Remark on Continued Fractions, Möbius Transformations and Cycles”,
2016.



Spherical waves and their envelops

A physical example of an infinite ensemble: the representation of an
arbitrary wave as the envelope of a continuous family of spherical waves.9

A finite subset of spheres can be used as an approximation.

Further ideas of physical applications of FLT-invariant ensembles.10

9Bateman, The mathematical analysis of electrical and optical wave-motion on the
basis of Maxwell’s equations, 1955.

10Kastrup, “On the Advancements of Conformal Transformations and Their
Associated Symmetries in Geometry and Theoretical Physics”, 2008.



Extend Möbius–Lie Geometry

Definition 1.
The extend Möbius–Lie geometry considers ensembles of cycles
interconnected through FLT-invariant relations.

Naturally, “old” objects—cycles—are represented by simplest
one-element ensembles without any relation.
Conceptual foundations11 of such extension and demonstrates its
practical implementation as a CPP library figure. Interestingly, the
development of this library shaped the general approach, which leads to
specific realisations.121314

11Kisil, “An Extension of Lie Spheres Geometry with Conformal Ensembles of
Cycles and Its Implementation in a GiNaC Library”, 2014–2018.

12Kisil, “Poincaré Extension of Möbius Transformations”, 2017.
13Kisil, “Remark on Continued Fractions, Möbius Transformations and Cycles”,

2016.
14Kisil and Reid, “Conformal Parametrisation of Loxodromes by Triples of Circles”,

2018.



Software implementation

The library figure (licensed under GNU GPLv315) manipulates
ensembles of cycles (quadrics) interrelated by certain FLT-invariant
geometric conditions. The code is build on top of the previous library
cycle,16 which manipulates individual cycles within the GiNaC17

computer algebra system.
It is important that both libraries are capable to work in spaces of any
dimensionality and metrics with an arbitrary signatures: Euclidean,
Minkowski and even degenerate. Parameters of objects can be symbolic
or numeric, the latter admit calculations with exact or approximate
arithmetic. Drawing routines work with any (elliptic, parabolic or
hyperbolic) metric in two dimensions and the euclidean metric in three
dimensions.

15GNU, General Public License (GPL), 2007.
16Kisil, “Fillmore-Springer-Cnops Construction Implemented in GiNaC”, 2007; Kisil,

Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of
SL2(R), 2012; Kisil, “Erlangen Program at Large–0: Starting with the Group
SL2(R)”, 2007.

17Bauer, Frink, and Kreckel, “Introduction to the GiNaC Framework for Symbolic
Computation within the C++ Programming Language”, 2002.



Software implementation: Illustration
Thinking an ensemble as a graph: the library cycle deals with individual
vertices (cycles), while figure considers edges (relations between pairs of
cycles) and the whole graph.
The library figure reminds compass-and-straightedge constructions: new
lines or circles are added to a drawing one-by-one through relations to
already presented objects (the line through two points, the intersection
point or the circle with given centre and a point).

F=f i g u r e ( )
a=F. add cyc l e ( cycle2D (1 , [ 0 , 0 ] , −1) , ” a ”)
l=symbol (” l ”)
C=symbol (”C”)
F . a dd c y c l e r e l ( [ i s t a n g e n t i ( a ) , i s o r t h o g ona l (F . g e t i n f i n i t y ( ) ) , \

o n l y r e a l s ( l ) ] , l )
F . a d d c y c l e r e l ( [ i s o r t h o g ona l (C) , i s o r t h o g ona l ( a ) , i s o r t h o g ona l ( l ) ,\

o n l y r e a l s (C) ] ,C)
r=F. a dd c y c l e r e l ( [ i s o r t h o g ona l (C) , i s o r t h o g ona l ( a ) ] , ” r ”)
Res=F. c h e c k r e l ( l , r , ” c y c l e o r thogona l ”)
f o r i in range ( l en (Res ) ) :

p r i n t ”Tangent and rad iu s are orthogona l : %s ” %\
bool (Res [ i ] . subs (pow( cos ( wi ld (0)) ,2)==1−pow( s i n ( wi ld ( 0 ) ) , 2 ) ) \
. normal ( ) )
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V. V. Kisil. Geometry of Möbius Transformations: Elliptic,
Parabolic and Hyperbolic Actions of SL2(R). Includes a live DVD.
Zbl1254.30001. London: Imperial College Press, 2012.

http://dx.doi.org/10.1007/s00006-006-0017-4
http://arXiv.org/abs/cs.MS/0512073
http://moebinv.sourceforge.net/
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=05134765&format=complete
http://arXiv.org/abs/math/0607387
http://www.ams.org/notices/200711/tx071101458p.pdf
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=1137.22006&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=1254.30001&format=complete


Bibliography V

V. V. Kisil. “Remark on Continued Fractions, Möbius
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