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Introduction
The vector nonlinear Schrödinger equation is associated with
symmetric space SU(n+ 1)/S(U(1)⊗ U(n)). The special case
n = 2 of such symmetric space is associated with the Manakov
system

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0, (1)

iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0. (2)

Geometrical equivalent counterpart of the Manakov system is the
coupled spin systems

At +A∧Axx + u1Ax + 2v1H∧A = 0, (3)

Bt +B∧Bxx + u2Bx + 2v2H∧B = 0, (4)

where spin vectors A = (A1,A2,A3) and B = (B1,B2,B3),
A2 = B2 = 1, H = (0, 0, 1)T is the constant magnetic field, uj
and vj are coupling potentials.

Akbota Myrzakul Geometry and Exact Soliton Solutions of the Integrable su(3)-Spin Systems



In matrix form the coupled spin systems (3)-(4)

iAt +
1

2
[A,Axx ] + iu1Ax + v1[σ3,A] = 0, (5)

iBt +
1

2
[B,Bxx ] + iu2Bx + v2[σ3,B ] = 0, (6)

where

A =

(
A3 A−

A+ −A3

)
, A2 = I = diag(1, 1), A± = A1 ± iA2. (7)

B =

(
B3 B−

B+ −B3

)
,B2 = I = diag(1, 1), B± = B1 ± iB2. (8)
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Lax representation of the coupled spin equation hierarchy
We present two possible versions of the Lax representation (LR) for
the coupled spin equation hierarchy.

LR type - I
The first type of LR for the coupled spin equation hierarchy reads
as

Yx = −iλPY , (9)

Yt =
N

∑
j=1

λjVjY , (10)

where λ is a spectral parameter and

P =
1

2 +K

 2A3 −K 2A− 2(1+A3)B−

1+B3

2A+ −(2A3 +K ) 2A+B−

1+B3
2(1+A3)B+

1+B3

2A−B+

1+B3
K − 2

 , (11)
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with K = (1 + A3)(1− B3)(1 + B3)−1. The compatibility
condition of this system gives the coupled spin equation hierarchy.
As the particular example, let us consider the case when N = 2.
Then the set of equations (9)-(10) takes the form

Yx = −iλPY , (12)

Yt =
(
λ2V2 + λV1

)
Y , (13)

where

V2 = −2iP, V1 = PPx . (14)

The compatibility condition of the equations (12)-(13) gives the
coupled spin equation (5)-(6).
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LR type - II
The second type of LR for the coupled spin equation hierarchy can
be written in the following form

Yx = −iλQY , (15)

Yt =
N

∑
j=1

λjWjY . (16)

Here

Q = Q1 +Q2, (17)
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where

Q1 =


0 A1 A2 A3

−A1 0 A3 −A2

−A2 −A3 0 A1

−A3 A2 −A1 0

 , (18)

Q2 =


0 B1 B2 −B3

−B1 0 B3 B2

−B2 −B3 0 −B1

B3 −B2 B1 0

 . (19)

From the compatibility condition of the set of equations (15)-(16)
Yxt = Ytx we obtain the coupled spin equation hierarchy.
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Relation between solutions of the coupled spin equation and
the Manakov system
Let Aj and Bj be the solution of the coupled spin equation (5)-(6).
Then the solution of the Manakov system (1)-(2) is given by

q1 =
Re2iν

W (1 + A3)
, (20)

q2 =
Ze2iν

W (1 + A3)
. (21)
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Here

W = 2 +
(1 + A3)(1− B3)

1 + B3
= 2 +K ,

R = WA−x −MA−,

Z = W [(1 + A3)(1 + B3)
−1B−]x −M [(1 + A3)(1 + B3)

−1B−].

M = A3x +
A+A−x
1 + A3

+
A3x (1− B3)

1 + B3
+

(1 + A3)B
+B−x

(1 + B3)2
−

− (1 + A3)(1− B3)B3x

(1 + B3)2
,

ν = ∂−1x

[
A1A2x − A1xA2

(1 + A3)W
− (1 + A3)(B1xB2 − B1B2x )

(1 + B3)2W

]
.
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Gauge equivalence between the Γ-spin system and the
Manakov system
In this section, we want to present the gauge equivalent
counterpart of the Manakov system when n = 3. The Lax
representation of the Manakov system (1)-(2) has the form

Φx = UΦ, (22)

Φt = VΦ. (23)

Here

U = −iλΣ + U0, V = −2iλ2Σ + 2λU0 + V0 (24)
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with

Σ =

 1 0 0
0 −1 0
0 0 −1

 , U0 =

 0 q1 q2
−q̄1 0 0
−q̄2 0 0

 , (25)

V0 = i

 |q1|2 + |q2|2 q1x q2x
q̄1x −|q1|2 −q̄1q2
q̄2x −q̄2q1 −|q2|2

 . (26)

Let us now consider the gauge transformation

Ψ = g−1Φ, g = Φλ=0. (27)

Then Ψ obeys the equations

Ψx = U ′Ψ, (28)

Ψt = V ′Ψ, (29)
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where

U ′ = −iλΓ, V ′ = −2iλ2Γ +
1

2
λ[Γ, Γx ]. (30)

Here

Γ = g−1Σg , Γ2 = I (31)

and

Γ =

 Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

 ∈ su(3). (32)
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Elements of the Γ matrix satisfy some restrictions

Γ33 = −(1 + Γ11 + Γ22), Γij = Γ̄ji , (33)

and

ΓikΓkj + Γi(k+1)Γ(k+1)i + Γi(k+2)Γ(k+2)i = 0, (i 6= k 6= j),(34)

ΓikΓki + Γi(k+1)Γ(k+1)i + Γi(k+2)Γ(k+2)i = 1. (35)

The compatibility condition of the equations (28)-(29) gives

iΓt +
1

2
[Γ, Γxx ] = 0. (36)
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Relation between solutions of the coupled spin equation and
the Γ-spin system
In the previous sections we have shown that to the one and same
set of equations - the Manakov system (1)-(2), correspond two
spin systems: the coupled spin equation (5)-(6) and the Γ-spin
system (36). It tells us that between these two spin systems there
must be some exact relation/correspondence. In other words, the
2-layer spin equation (5)-(6) and the Γ-spin system (36) are
equivalent to each other by some exact transformations. Below we
will present these transformations.
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Direct transformation
According to the transformation, in terms of the spin vectors A
and B, the elements of the Γ-spin system are expressed as

Γ =
1

2 +K

 2A3 −K 2A− 2(1+A3)B−

1+B3

2A+ −(2A3 +K ) 2A+B−

1+B3
2(1+A3)B+

1+B3

2A−B+

1+B3
K − 2

 , (37)

where

K =
(1 + A3)(1− B3)

1 + B3
. (38)

This is the direct transformation. This transformation allows us to
find solutions of the Γ-spin system (36) if we know the solutions of
the coupled spin equation (5)-(6).
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Inverse transformation
According to the inverse transformation, solutions of the coupled
spin equation can be expressed by the components of the Γ-spin
system as

A =
1

1− Γ33

(
Γ11 − Γ22 2Γ12

2Γ21 Γ22 − Γ11

)
, (39)

B =
1

1− Γ22

(
Γ11 − Γ33 2Γ13

2Γ31 Γ33 − Γ11

)
. (40)

The transformations (39)-(40) is called the inverse transformation.
Using the inverse transformation, we can find solutions of the
coupled spin equation (5)-(6), if we know the solutions of the
Γ-spin system (36).
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Darboux transformation and exact solutions of the Γ-spin
system
In this section, we construct the DT for the equation (36). To do
this, let us consider the following transformation of solutions of the
equations (28)-(29)

Φ′ = LΨ, (41)

where

L = λN − I . (42)

We require that Φ′ satisfies the same Lax representation as
(28)-(29) so that

Φ′x = U ′Φ′, (43)

Φ′t = V ′Φ′, (44)

where U ′ − V ′ depend on Γ′ as U − V on Γ.
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The matrix L obeys the following equations

Lx + LU = U ′L, (45)

Lt + LV = V ′L. (46)

These equations yield the following equations for N

Nx = iΓ
′ − iΓ, (47)

Nt = −Γ′Γ′x + ΓΓx (48)

and

Γ
′
= NΓN−1. (49)

Also we have the following useful second form of the DT for Γ
′
:

Γ
′
= Γ− iNx . (50)
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Let us consider the following set of equations

Hx = −iΓHΛ, (51)

Ht = −2iΓHΛ2 + ΓΓxHΛ, (52)

where

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 , (53)

det H 6= 0 and λk are complex constants. We now assume that
the matrix N can be written as:

N = HΛ−1H−1 =

n11 n12 n13
n21 n22 n23
n31 n32 n33

 . (54)
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The inverse matrix we write as

N−1 = HΛH−1 =
1

n

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (55)

or

N−1 =
1

n

 n22n33 − n23n32 −(n12n33 − n13n32) n12n23 − n13n22
−(n21n33 − n23n31) n11n33 − n31n13 −(n11n23 − n21n13)
n32n21 − n31n22 −(n11n32 − n31n12) n11n22 − n21n12

 , (56)

where n = detN and has the form

n = n11n22n33 + n12n23n31 + n13n32n21−

−n31n22n13 − n12n21n33 − n11n23n32.

Akbota Myrzakul Geometry and Exact Soliton Solutions of the Integrable su(3)-Spin Systems



From these equations follow that N obeys the equations

Nx = iNΓN−1 − iΓ, (57)

Nt = ΓΓx −NΓΓxN
−1, (58)

which are equivalent to Eqs.(57)-(58) as we expected. The Γ and
matrix solutions of the system (28)-(29) obey the condition

Φ† = Φ−1, Γ† = Γ, (59)

which follow from the equations

Φ†
x = iλΦ†Γ†, (Φ−1)x = iλΦ−1Γ−1. (60)
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Here † denote an Hermitian conjugate. After some calculations we
came to the formulas

H =

ψ1(λ1; t, x , y) ψ̄2(λ1; t, x , y) ψ̄3(λ1; t, x , y)
ψ2(λ1; t, x , y) −ψ̄1(λ1; t, x , y) 0
ψ3(λ1; t, x , y) 0 −ψ̄1(λ1; t, x , y)

 , (61)

where λ2 = λ3 = λ̄1,

H−1 =
1

�ψ̄1

 ψ̄2
1 ψ̄1ψ̄2 ψ̄1ψ̄3

ψ̄1ψ2 −(|ψ̄1|2 + |ψ2|2) ψ2ψ̄3

ψ̄1ψ3 ψ̄2ψ3 −(|ψ̄1|2 + |ψ2|2

 , (62)

where

� = |ψ1|2 + |ψ2|2 + |ψ3|2. (63)
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So finally for the matrix N we get the following expression

N =
1

�

 n11� n12� n13�

ψ̄1ψ2ε12
|ψ2|2

λ1
+ |ψ̄1|2+|ψ3|2

λ2
ψ2ψ̄3ε12

ψ̄1ψ3ε13 ψ̄2ψ3ε13
|ψ3|2

λ1
+ |ψ1|2+|ψ2|2

λ3

 , (64)

where εij = λ−1i − λ−1j ,

n11� =
|ψ1|2

λ1
+
|ψ2|2

λ2
+
|ψ3|2

λ3
, (65)

n12� =
ψ1ψ̄2

λ1
− ψ1ψ̄2

λ2
+

ψ2|ψ3|2
ψ̄1

(λ−13 − λ−12 ), (66)

n13� =
ψ1ψ̄3

λ1
− ψ1ψ̄3

λ3
+
|ψ2|2ψ̄3

ψ̄1
(λ−12 − λ−13 ). (67)
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Hence we can write the DT in terms of the eigenfunctions of the Lax
representations (28)-(29) as

Γ[1] =

1

n

n11m11 − n12m21 − n13m31 n11m12 − n12m22 − n13m32 n11m13 − n12m23 − n13m33

n21m11 − n22m21 − n23m31 n21m12 − n22m22 − n23m32 n21m13 − n22m23 − n23m33

n31m11 − n32m21 − n33m31 n31m12 − n32m22 − n33m32 n31m13 − n32m23 − n33m33

 (68)
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To construct the 1-soliton solution of the Γ-spin system (36), now
we consider a seed solution

Γ[0] = Σ. (69)

In our case the eigenfunctions are given by

ψ
[0]
1 = e−θ+iδ1 , ψ

[0]
2 = eθ+iδ2 , ψ

[0]
3 = eθ+iδ3 , (70)

where δi are complex constants and

θ = θ1 + iθ2 = −iλ1x − 2iλ2
1t. (71)

Then we get

Γ[1] =

 Γ[1]
11 Γ[1]

12 Γ[1]
13

Γ[1]
21 Γ[1]

22 Γ[1]
23

Γ[1]
31 Γ[1]

32 Γ[1]
33

 , (72)

where nij and mij are given by the equations (65)-(67).
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The 1-soliton solutions of the coupled spin equation
Let us now we present the formulas for the 1-soliton solution of the
coupled spin equation (5)-(6). Its seed solution we write as

A[0] = σ3, B [0] = σ3. (73)

To find the 1-soliton solution of the coupled spin equation here we
use the inverse M-transformation . The inverse transformation
allows us to find solutions of the coupled spin equation (5)-(6), if
we know the solutions of the Γ-spin system (36). So the 1-soliton
solution of the coupled spin equation has the form
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A[1] =
1

1− Γ[1]
33

(
Γ[1]
11 − Γ[1]

22 2Γ[1]
12

2Γ[1]
21 Γ[1]

22 − Γ[1]
11

)
, (74)

B [1] =
1

1− Γ[1]
22

(
Γ[1]
11 − Γ[1]

33 2Γ[1]
13

2Γ[1]
31 Γ[1]

33 − Γ[1]
11

)
, (75)

where Γ[1]
ij are given by the formulas (72) and (68).
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Conclusion
In this paper we have presented the DT for the Γ-spin system
which is the integrable su(3)-valued spin system. In particular, we
have given the explicit formula for its 1-soliton solution. Then we
have shown how construct soliton solutions of the coupled spin
equation for the two coupled su(2) - valued spin systems. For this
purpose we have used the DT formulas of the Γ-spin system.
Also the Lax representation of the coupled spin equation is
presented. Using this Lax representation, the gauge equivalence
between the coupled spin equation and the Manakov system is
established. The results obtained in this paper will be useful in the
study of nonlinear dynamics of multilayer magnetic systems. Also
they will be useful in differential geometry of curves and surfaces to
find the integrable deformations of interacting curves and surfaces.
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