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I. Review
The nature of (1+1)-dimensional integrable systems is now well
understood [1].
Nonlinear Schrödinger equation (NLSE)

iϕt + ϕxx + 2|ϕ|2ϕ = 0 (1)

with boundary condition

ϕ(x , t)||x |→∞ → 0, (2)

where ϕ(x , t) is a complex-valued function (classical charged
field), subscripts mean the partial derivatives of the corresponding
variables.

[1] M.J. Ablowitz and P.A. Clarkson, Solitons, Non-linear Evolution
Equations and Inverse Scattering (Cambridge University Press,
Cambridge, 1992).
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The integrability of the NLSE (1) through the IST is realized by
the following Lax pair:

Φx = UΦ, (3a)

Φt = VΦ, (3b)

where
U = λU1 + U0. (4a)

Here

U1 =
1

2i

(
1 0
0 −1

)
, U0 =

(
0 i ϕ̄
iϕ 0

)
.

V = λ2V2 + λV1 + V0, (4b)

with

V2 = −U1, V1 = −U0, V0 =

(
−i |ϕ|2 ϕ̄x

−ϕx i |ϕ|2
)

.
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An interesting subclass of integrable systems, useful both from the
mathematical and physical points of view, is the set of integrable
spin systems.
(1+1)-dimensional isotropic classical continuous Heisenberg
ferromagnet model (HFM):

St = S× Sxx , (5)

with boundary condition

S(S1, S2,S3)|x→∞ → (0, 0,±1), (6)

where S(x , t) is a spin vector, × means a vector product. The
range of the value of S is a subset of the unit sphere in R3.
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The integrability of the HFM (5) using the IST problem is
associated with the compatibility condition of the system

Φx = UΦ, (7a)

Φt = VΦ, (7b)

where

U =
i

2
λS , V =

iλ2

2
S +

λ

4
[S ,Sx ]. (8)

Since the identification of the first integrable Heisenberg spin
systems [2,3], several other integrable spin systems in
(1+1)-dimensional have been identified and investigated through
geometrical and gauge equivalence concepts and its the IST
method.

[2] M. Lakshmanan, Phys. Lett. A 61 (1977) 53.
[3] L.A. Takhtajan, Phys. Lett. A 64 (1977) 235.
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Integrable spin systems in (2+1)-dimensions
The equation (5) admits a series of integrable (2+1)-dimensional
generalizations. One of them is the following equation:

St = S× Sxy + uSx , (9a)

ux = −S · (Sx × Sy ). (9b)

Line system for eq.(9)

Φ1x = U1Φ1, (10a)

Φ1t = βλΦ1y + V1Φ1, (10b)

where

U1 =
i

2
λS , (11a)

V1 = α

(
iλ2

2
S +

λ

4
[S , Sx ]

)
+ β

λ

4
([S ,Sy ] + 2iuS) . (11b)
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The integrable spin equation (9) is investigated in [4]. It is shown
that its geometrical and gauge equivalent counterparts are the
(2+1)-dimensional non-linear Schrödinger equation belonging to
the class of equations discovered by Calogero and then discussed
by Zakharov and studied by Strachan. It has the form

iqt − αqxx − βqxy − vq = 0, (12a)

ipt + αpxx + βpxy + vp = 0, (12b)

vx = 2[α(pq)x + β(pq)y ], (12c)

where α and β - real constants, q and p - complex-valued
functions, v is a potential.

[4] R. Myrzakulov, S. Vijayalakshmi, G. Nugmanova, M.
Lakshmanan. A (2+1)-dimensional integrable spin model:
Geometrical and gauge equivalent counterpart, solitons and
localized coherent structures. Phys. Lett. A 233 (1997) 391-396.
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[5] Chen Chi, Zhou Zi-Xiang. Darboux Transformation and Exact
Solutions of the Myrzakulov-I Equation, Chinese Physics Letters,
v26, N8, 080504 (2009)

[6] Chen Hai, Zhou Zi-Xiang. Darboux Transformation with a
Double Spectral Parameter for the Myrzakulov-I Equation, Chinese
Physics Letters., v31, N12, 120504 (2014)

[7] Chen Hai, Zhou Zi-Xiang. Global explicit solutions with n
double spectral parameters for the Myrzakulov-I equation, Modern
Physics Letters B, v30, N29, 1650358 (2016)
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II. Results
Integrable spin system with self-consistent potentials

The integrable Heisenberg ferromagnetic equation reads as

iSt +
1

2
[S ,Sxx ] +

1

ω
[S ,W ] = 0, (1)

iWx + ω[S ,W ] = 0, (2)

where S = Siσi , W = Wiσi , S2 = I , W 2 = b(t)I , b(t) =
const(t), I = diag(1, 1), [A,B ] = AB − BA, ω is a real constant
and σi are Pauli matrices.
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The Lax representation can be written in the form

Φx = UΦ, (3)

Φt = VΦ, (4)

where the matrix operators U and V have the form

U = −iλS , (5)

V = λ2V2 + λV1 +

(
i

λ + ω
− i

ω

)
W . (6)

Here

V2 = −2iS , V1 = 0.5[S ,Sx ], (7)

S =

(
S3 S+

S− −S3

)
, W =

(
W3 W+

W− −W3

)
, (8)
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[a] [b] [c]

Figure: One-soliton solution
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[a] [b] [c]

Figure: The interaction of two solitons
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[a] [b] [c]

Figure: The interaction of three solitons
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Figure: The relationship between the spin vector and the vector potential
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1-layer spin system

Consider the spin vector A = (A1,A2,A3), where A2 = 1. Let this
spin vector obey the 1-layer spin system which reads as

At +A∧Axx + u1Ax + F = 0, (9)

where u1(x , t,Aj ,Ajx ) is the potential, F is some vector function.
The matrix form of the spin system looks like

iAt +
1

2
[A,Axx ] + iu1Ax + F = 0, (10)

where

A =

(
A3 A−

A+ −A3

)
, A2 = I = diag(1, 1), A± = A1 ± iA2. (11)

F =

(
F3 F−

F+ −F3

)
, F± = F1 ± iF2. (12)
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We consider the following particular case of the spin system

At +A∧Axx + u1Ax + v1H∧A = 0, (13)

where v1(x , t,Aj ,Ajx ) is the potential, H = (0, 0, 1) is the con-
stant magnetic field. It is interesting to note that the integrable
2-layer spin system contains constant magnetic field H. It seems
that this constant magnetic vector plays an important role in theory
of ”integrable multilayer spin system” and in nonlinear dynamics of
magnetic systems.
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Geometrical equivalent counterpart

Let us find the geometrical equivalent counterpart of the 1-layer spin
system (13). To do that, consider 3-dimensional curve in R3. This
curve is given by the following vectors ek . These vectors satisfy the
following equations e1

e2
e3


x

= C

 e1
e2
e3

 ,

 e1
e2
e3


t

= D

 e1
e2
e3

 . (14)

Here e1, e2 and e3 are the unit tangent, normal and binormal vectors
to the curve. The matrices C and G have the forms

C =

 0 k1 0
−k1 0 τ1

0 −τ1 0

 , G =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (15)
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The curvature and torsion of the curve are given by the following
formulas

k1 =
√

e21x , τ1 =
e1 · (e1x ∧ e1xx )

e21x
. (16)

The compatibility condition of the equations (14) is given by

Ct − Gx + [C ,G ] = 0, (17)

or in elements

k1t = ω3x + τ1ω2, (18)

τ1t = ω1x − k1ω2, (19)

ω2x = τ1ω3 − k1ω1. (20)
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Now we do the following identifications:

A ≡ e1, F = F1e1 + F2e2 + F3e3. (21)

Then we have

k21 = A2
x , (22)

τ1 =
A · (Ax ∧Axx )

A2
x

, (23)

and

ω1 = −k1xx + F2τ1 + F3x
k1

+ (τ1 − u1)τ1, (24)

ω2 = k1x + F3, (25)

ω3 = k1(τ1 − u1)− F2, (26)
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with F1 = E1 = 0. The equations for k1 and τ1 reads as

k1t = 2k1xτ1 + k1τ1x − (u1k1)x − F2x + F3τ1, (27)

τ1t =

[
−k1xx + F2τ1 + F3x

k1
+ (τ1 − u1)τ1 −

1

2
k21

]
x

− F3k1.(28)

Next we introduce a new complex function as

q1 =
κ1
2
e−i∂

−1
x τ1 . (29)

This function satisfies the following equation

iq1t + q1xx + 2|q1|2q1 + ... = 0. (30)

It is the desired geometrical equivalent counterpart of the spin sys-
tem (9). If u1 = v1 = 0, it turns to the NLSE

iq1t + q1xx + 2|q1|2q1 = 0. (31)
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2-layer spin system

Now we consider two spin vectors A = (A1,A2,A3) and B =
(B1,B2,B3), where A2 = B2 = 1. Let these spin vectors satisfy the
following 2-layer spin system or the coupled spin system

At +A∧Axx + u1Ax + 2v1H∧A = 0, (32)

Bt +B∧Bxx + u2Bx + 2v2H∧B = 0, (33)

or in matrix form

iAt +
1

2
[A,Axx ] + iu1Ax + v1[σ3,A] = 0, (34)

iBt +
1

2
[B,Bxx ] + iu2Bx + v2[σ3,B ] = 0, (35)

where H = (0, 0, 1)T is the constant magnetic field, uj and vj are
coupling potentials.
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The geometrical equivalent counterpart

In this subsection we present the geometrical equivalent counterpart
of the 2-layer spin systems (32)-(33). Now we consider two inter-
acting 3-dimensional curves in Rn. These curves are given by the
following two basic vectors ek and lk . The motion of these curves
is defined by the following equations e1

e2
e3


x

= C

 e1
e2
e3

 ,

 e1
e2
e3


t

= D

 e1
e2
e3

 , (36)

and  l1
l2
l3


x

= L

 l1
l2
l3

 ,

 l1
l2
l3


t

= N

 l1
l2
l3

 . (37)
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Here e1, e2 and e3 are the unit tangent, normal and binormal vectors
respectively to the first curve, l1, l2 and l3 are the unit tangent, nor-
mal and binormal vectors respectively to the second curve, x is the
arclength parametrising these both curves. The matrices C ,D, L,N
are given by

C =

 0 k1 0
−k1 0 τ1

0 −τ1 0

 , G =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , (38)

L =

 0 k2 0
−k2 0 τ2

0 −τ2 0

 , N =

 0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0

 . (39)
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For the curvatures and torsions of curves we obtain

k1 =
√

e21x , τ1 =
e1 · (e1x ∧ e1xx )

e21x
, (40)

k2 =
√

l21x , τ2 =
l1 · (l1x ∧ l1xx )

l21x
. (41)

The equations (36) and (37) are compatible if

Ct − Gx + [C ,G ] = 0, (42)

Lt −Nx + [L,N ] = 0. (43)
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In elements these equations take the form

k1t = ω3x + τ1ω2, (44)

τ1t = ω1x − k1ω2, (45)

ω2x = τ1ω3 − k1ω1, (46)

and

k2t = θ3x + τ2θ2, (47)

τ2t = θ1x − k2θ2, (48)

θ2x = τ2θ3 − k2θ1. (49)
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Our next step is the following identifications:

A ≡ e1, B ≡ l1. (50)

We also assume that

F = F1e1 + F2e2 + F3e3, E = E1l1 + E2l2 + E3l3, (51)

where

F = 2v1H∧A, E = 2v2H∧B. (52)

Then we obtain

k21 = A2
x , (53)

τ1 =
A · (Ax ∧Axx )

A2
x

, (54)

k22 = B2
x , (55)

τ2 =
B · (Bx ∧Bxx )

B2
x

, (56)
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and

ω1 = −k1xx + F2τ1 + F3x
k1

+ (τ1 − u1)τ1, (57)

ω2 = k1x + F3, (58)

ω3 = k1(τ1 − u1)− F2, (59)

θ1 = −k2xx + E2τ2 + E3x

k2
+ (τ2 − u2)τ2, (60)

θ2 = k2x + E3, (61)

θ3 = k2(τ2 − u2)− E2. (62)

with

F1 = E1 = 0. (63)
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We now can write the equations for kj and τj . They look like

k1t = 2k1xτ1 + k1τ1x − (u1k1)x − F2x + F3τ1, (64)

τ1t =
[
− k1xx+F2τ1+F3x

k1
+ (τ1 − u1)τ1 − 1

2k
2
1

]
x
−F3k1, (65)

k2t = 2k2xτ2+ k2τ2x − (u2k2)x −E2x +E3τ2, (66)

τ2t =
[
− k2xx+E2τ2+E3x

k2
+ (τ2 − u2)τ2 − 1

2k
2
2

]
x
−E3k2. (67)

Let us now introduce new four real functions αj and βj as

α1 = 0.5k1
√

1 + ζ1, (68)

β1 = τ1(1 + ξ1), (69)

α2 = 0.5k2
√

1 + ζ2, (70)

β2 = τ2(1 + ξ2), (71)
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where

ζ1 =
2|WA−x −MA−|2
W 2(1+A3)2A2

x
− 1, (72)

ζ2 =
2|W [(1+A3)(1+B3)−1B−]x−M [(1+A3)(1+B3)−1B−]|2

W 2(1+A3)2B2
x

− 1, (73)

ξ1 =
R̄xR−R̄Rx−4i |R |2νx
2iα2

1W
2(1+A3)2τ1

− 1, (74)

ξ2 =
Z̄xZ−Z̄Zx−4i |Z |2νx
2iα2

2W
2(1+A3)2τ2

− 1. (75)
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Here

W = 2 +
(1 + A3)(1− B3)

1 + B3
= 2 +K , (76)

M=A3x +
A+A−x
1+A3

+ A3x (1−B3)
1+B3

+ (1+A3)B+B−x
(1+B3)2

− (1+A3)(1−B3)B3x

(1+B3)2
, (77)

R=WA−x −MA−, (78)

Z=W[(1+A3)(1 + B3)−1B−]x −M [(1 + A3)(1 + B3)−1B−].(79)

ν = ∂−1x

[
A1A2x − A1xA2

(1 + A3)W
− (1 + A3)(B1xB2 − B1B2x )

(1 + B3)2W

]
.(80)
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We now ready to write the equations for the functions αi and βj .
They satisfy the following four equations

α1t − 2α1xβ1 − α1β1x = 0, (81)

β1t +

[
α1xx

α1
− β2

1 + 2(α2
1 + α2

2)

]
x

= 0, (82)

α2t − 2α2xβ2 − α2β2x = 0, (83)

β2t +

[
α2xx

α2
− β2

2 + 2(α2
1 + α2

2)

]
x

= 0. (84)

Gulgassyl Nugmanova Integrability of the Spin System



Let us now we introduce new two complex functions as

q1 = α1e
−i∂−1x β1 , (85)

q2 = α2e
−i∂−1x β2 . (86)

Sometime we use the following explicit form of the transformation
(85) and (86)

q1 = 0.5k1
√

1 + ζ1e
−i∂−1x [τ1(1+ξ1)], (87)

q2 = 0.5k2
√

1 + ζ2e
−i∂−1x [τ2(1+ξ2)]. (88)

It is not difficult to verify that these functions satisfy the following
Manakov system

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0, (89)

iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0. (90)
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The vector nonlinear Schrödinger equation is associated with sym-
metric space SU(n + 1)/S(U(1) ⊗ U(n)) [8]. The special case
n = 2 of such symmetric space is associated with the famous Man-
akov system.

[8] N.A. Kostov, R. Dandoloff, V.S. Gerdjikov and G.G. Grahovski.
The Manakov system as two moving interacting curves, arXiv:0707.0575v1
[nlin.SI] 4 Jul 2007.
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Conclusion

Thus we have shown that the Manakov system (89)-(90) is the ge-
ometrical equivalent counterpart of the 2-layer spin systems or, in
other terminology, the coupled spin systems (32)-(33). It is inter-
esting to understand the role of the constant magnetic field H. It
seems that this constant magnetic vector plays an important role in
our construction of integrable multilayer spin systems and in nonlin-
ear dynamics of multilayer magnetic systems.
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Thank you for attention!

Gulgassyl Nugmanova Integrability of the Spin System


