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| Preliminary definitions

(C?", ¢) = T - twistor space, where ¢ is a hermitian form on C?"
of signature (+...+—...—)
S———

n n

p=0¢",  #*=id, ¢ € Matamyon(C)

Perturbed (2n — 1)-dimensional Kepler problem...



| Preliminary definitions

(C?", ¢) = T - twistor space, where ¢ is a hermitian form on C?"
of signature (+...+—...—)
S———

n n

p=0¢",  #*=id, ¢ € Matamyon(C)

The group of symmetry of the twistor space:

U(n,n) :={g € GL(2n,C) : gpg* = ¢}
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| Preliminary definitions

We define the complex vector bundle

N :={(2,2) €gl(2n,C) x Gr(n,C*"): Im(Z) C 2z C Ker(2)}

(1)
and involutions
I:gl(2n,C) — gl(2n,C),
1L : Gr(n,C?") — Gr(n,C?"),
I NN
by
1(2) = —62+0, (2)
L(z) =2, (3)
I(Z,2) = (I(2),2"), (4)
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| Preliminary definitions

N d N
WN\ N
Gr(n,C?) = Gr(n,C?") (5)

By definition
Zeuln,n) iff I(Z2)=2Z2
2 € Gro(n,C*) iff z=2zt
(Z,2) €Ny iff 1(Z2,2)=(2,2)
By ma;, : Mo — Grg(n, C?") we denote the real vector bundle over

the Grassmannian Grg(n, C?") of complex n-dimensional subspaces
of C?" isotropic with respect to

(v, w) == v pw (6)
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| Preliminary definitions

Proposition

An element X € u(n, n) belongs to pri(Np) if and only if X2 = 0.
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| Preliminary definitions

Proposition

An element X € u(n, n) belongs to pri(Np) if and only if X2 = 0.

Taking the decomposition C?” = C" @ C" we choose as ¢ the

Hermitian matrix
E 0
=0 %) ™)

where E and 0 are unit and zero n X n-matrices
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| Preliminary definitions

There is a natural diffeomorphism of manifolds
U(n) = Grg(n, C?") defined in the following way

To:Um)s Z s 2= {( Z; > :56@"} € Gro(n,C2"). (8)
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| Preliminary definitions

There is a natural diffeomorphism of manifolds
U(n) = Grg(n, C?") defined in the following way

To:Um)s Z s 2= {( Z; > :56@"} € Gro(n,C2"). (8)

For ¢4 the block matrix elements A, B,C, D € Mat, «x,(C) of

A B :
g= ( c D > € U(n,n) satisfy
ATA=FE+C'C, D'D=E+B"Band DYC =B%A. (9)

From (8) one finds that U(n,n) acts on U(n) as follows

7' =0,Z)=(AZ + B)(CZ + D). (10)
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Il 7*U(n) as U(n,n)-Hamiltonian space

(i) The map lg : T*U(n) 2 U(n) x iH(n) — Np defined by

wan=(( D)o
11

is a U(n,n)-equivariant (i.e. lpo Ay =X, 0 ly) isomorphism of the
vector bundles. The action X, : Ny = Ny, g € U(n,n), is a
restriction to U(n,n) and Ny C N of the action of the complex
linear group GL(2n,C) $4(Z,2) = (92971, 04(2)).

The action Ay : U(n) x iH(n) = U(n) x iH(n) is defined by

Ay(Z,p) = ((AZ+B)(CZ+ D)™, (CZ+D)p(CZ+D)"), (12)

(¢ ¢)
where g = c c |

Perturbed (2n — 1)-dimensional Kepler problem...



Il 7*U(n) as U(n,n)-Hamiltonian space

Proposition
(ii) The canonical one-form g on T*U(n) = U(n) x iH (n) written
in the coordinates (Z,6) € U(n) x iH(n) assumes the form

Yo = iTr(pZtdZ) (13)

and it is invariant with respect to the action (12).
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Il 7*U(n) as U(n,n)-Hamiltonian space

(iii) The map Jo : T*U(n) — u(n,n) defined by

30(Z,p) = (pr1 °l0)(Z,p) = < _éZ)Z: pr )

is the momentum map for symplectic form dv, i.e. it is a

U(n,n)-equivariant Poisson map of symplectic manifold

(T*U(n),dvo) into Lie-Poisson space (u(n,n)=u(n,n)*,{;},_,)

of 0o of 0 dg O,

{f9}, p(@0,8,8%) =Tr (a ([3 %] + 5% - 28.:2%)
af dg , 9f O 8g 8f 8y Of

+6 (a;ﬁ% + 9595 — 357 9a a*gapﬁ)

48t <8f<9g + 809 _ 090f _ 393f)

9208 T 9685  9ad3 09885

+5 (|55, %8] + 2% - 8%;”)) for f,g € C*(u(n,n),R).

Perturbed (2n — 1)-dimensional Kepler problem...



Il 7*U(n) as U(n,n)-Hamiltonian space

(i) Any A(U(n,n))-orbit O in T*U(n [
univocally generated from the element (E, p;;) € U(n) x iH(n),
where

piy =1 diag(1,...,1-1,...,-10,...,0) (14)
—— —— —— ——
k l n—k—l

and has structure of a trivial bundle Oy ; — U(n) over U(n), i.e.
Ok,l = U(n) X Ak,l: where Ak,l = {Fpk,lFJ'_ : F e GL(n, C)}

Perturbed (2n — 1)-dimensional Kepler problem...




Il 7*U(n) as U(n,n)-Hamiltonian space

(i) Any A(U(n,n))-orbit O in T*U(n [
univocally generated from the element (E, p;;) € U(n) x iH(n),
where
piy =1 diag(1,...,1-1,...,-10,...,0) (14)
k l n—k—l

and has structure of a trivial bundle Oy ; — U(n) over U(n), i.e.
Ok,l = U(n) X Ak,l: where Ak,l = {Fpk,lFJ'_ : F e GL(n, C)}

(i) The momentum map (12) gives one-to-one correspondence
O, < JO(Ok,l) = Nk,l C pTl(No) ={X cu(n,n): ¥2 = 0}
between A(U(n,n))-orbits in T*U(n) and Ad(U(n,n))-orbits in
pri(No), where Ny = {Adglo(E, pi1) : g € U(n,n)}.
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Il (C?", ¢) as U(n, n)-Hamiltonian space

Let us define a U(n,n)-invariant differential one-form

Vi = i(nTdn — £7dE) (15)

on C?" = C" @ C". The Poisson bracket {f,g}._ corresponding
to the symplectic form dv, _ is given by

ghee = o(Z00_ 0000 (21000 51))
== ontan T onton - \9Et 98 aet o€
(16)
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Il (C?", ¢) as U(n, n)-Hamiltonian space

and momentum map J,_ : C** — u(n,n) by
+ +
(T g
J._(n,¢ = , 17
+-(n,8) Z( —entget > (17)

where ,£ € C" and f,g € C*°(C" @ C™). One has the following
identify

I, ==& - I—(0,9) (18)

for this momentum map.
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Il (C?", ¢) as U(n, n)-Hamiltonian space

Hence, J._ maps the space of null-twistors ’7]9_ = I;l(()) where
I =ntn—£7¢, (19)

onto the nilpotent coadjoint orbit N1g = Jo(O1p) corresponding to
k=1 and I = 0. The Hamiltonian flow
L :C"pC" = C"@C", t €R, defined by I, _ is given by

I+
()e(r)
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Il (C?", ¢) as U(n, n)-Hamiltonian space

(i) Nilpotent orbit N is the total space of the fibre bundle

Sanl

Nig

Cr/U(1) (21)

over C"/U(1) with S~ as a typical fibre. So, this bundle is a
bundle of (2n — 1)-dimensional spheres associated to U(1)-principal
bundle C* — C"/U(1).
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Il (C?", ¢) as U(n, n)-Hamiltonian space

(i) One can also consider Ny as the total space of the fibre bundle

Ccn Mo

CP(n —1) (22)

over complex projective space CP(n — 1) which is the base of Hopf
U (1)-principal bundle $?"~! — §2"=1/U(1) = CP(n — 1).
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Il (C?", ¢) as U(n, n)-Hamiltonian space

We also will use the anti-diagonal

oi=i( 3 3 ). (23)

realization of twistor form (6).

Subsequently we will denote the realizations (C2", ¢4) and
(C2" ¢,) of twistor space by T and T, respectively. The same
convention will be assumed for their groups of symmetry, i.e.

g= < A B ) € U(n,n) if and only if gt 49 = ¢4 and

C D
_ A B — o, -
g=| = =~ ) €U(n,n)ifandonly if " ¢,g = ¢,. Hence, for
C D
g € U(n,n) one has
ATC =CtA,
DB B, (24)

A*D=FE+C*B.
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Il (C?", ¢) as U(n, n)-Hamiltonian space

The canonical one-form (15) and the momentum map (17) for 7

are given by
5o = vtdC — Ctv (25)
and by
w0 = (0 T, (20
where < Z ) € 7. The null twistors space is defined as
T2 == 1.1(0), where
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Il (C?", ¢) as U(n, n)-Hamiltonian space

The Hamiltonian flow on C2" generated by I _ is given by

51_(2):#(2)6’?. (28)

Both realizations 7 and T of the twistor space are related by the
following unitary transform of C?":

<E>ZC+<Z>a"d<Z>: (E) (29)

= \}5< _fE _éE ) (30)

where
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IV Equivalent realization of the regularized Kepler problem

Now let us consider H(n) x H(n) with d?¥g, where
30 = —Tr(XdY) (31)

and (Y, X) € H(n) x H(n), as a symplectic manifold. We define

the symplectic action of § = < g g ) on H(n) x H(n) by
5;(Y,X) := (AY + B)(CY + D)™}, (CY + D)X (CY + D)*).

(32)

We note that this action~is not Sieﬁned globally, i.e. the formula
(32) is valid only if det(CY + D) # 0.

The momentum map Jo : H(n) x H(n) — u(n,n) corresponding
to d7yo and 75 has the form

. ( -YX YXY )

and it satisfies the equivariance property J o 05 = Adgo J.
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IV Equivalent realization of the regularized Kepler problem

All arrows in the above diagram are the U(n, n)-equivariant
Poisson maps:

Jo

U () u(m.m) —H=—— T,

J T Ade @

i

H(n) x H(n) 20— () (34)

ll

where by the definition one has  Ad¢(X) := CXC™,

TE(Y,X) = (Y —iE)(—iY + B)7}, %(—iY + EYX(—iY + E)1),

for X € u(n,n) and (X,Y) € H(n) x H(n).
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IV Equivalent realization of the regularized Kepler problem

The component
Z =Y —iE)(—iY + E)7!

is a smooth one-to-one map of H(n) into U(n), which is known as
Cayley transform. Hence, the unitary group U(n) could be
considered as a compactification of H(n), Namely, in order to
obtain the full group U(n) one adds to Cayles image of H(n) such
unitary matrices Z, which satisfy the condition det(iZ + E) = 0.
Thus the inverse Cayley map is defined by

Y =(Z+4iE)(iZ + E)™, (35)

if det(iZ + E) # 0.
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IV Equivalent realization of the regularized Kepler problem

We complete the above commutative diagram by the following
U(n,n)-equivariant maps

Un) x " C—"— T*U(n)

JSC J T

Hn) x C* Y+ H(n) x H(n), (36)

where

Se(Y,¢) = (Y —iE)(—iY + E)~ !, —(—iY + E)(),

Sl

UZ,€) = (Z,ig&"),

(Y, ¢) = (¥,¢¢7).
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IV Equivalent realization of the regularized Kepler problem

The following statements are valid:
WU(n) x C") = 019, Jo(O10) = Nio = J4—(T),
Oro := i(H(n) x C") = {(V, X) : dim(Im(X)) = 1 and X > 0},
30(610) C N = ]+7(7--E—)-

From above equalities one finds the morphism of symplectic

manifolds
Olo/w M /\/’10 ;’-i-_—L 7:97/N

jTC*/N Ade/~ C/~
ol Cdoley jpo demle g0, (37)

which are symplectic isomorphisms (except of
TC*/N:@IO/N‘_)OIO/N and jo/N : @10/~‘—>./\710). The equivalence
relations ~ are defined by the reductions of respective symplectic
structures from the previous diagram.
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IV Equivalent realization of the regularized Kepler problem

Any element X = < bi Z ) € u(n,n) defines the linear function

w2 (2 4)(52)

on the Lie-Poisson space (u(n,n),{-,-}r—p), where the Lie-Poisson
bracket {-,-}1_p is defined in (12). These functions satisfy

{L3€1aL3€2}L—P = L[%L%Q}‘ (39)

([ E 0 ([ E 0
Inthecase%++—z<0 E)and%Jr_—z(O _E)one
obtains
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IV Equivalent realization of the regularized Kepler problem

Rewriting the above formula in the anti-diagonal realization, where

:%++ :Z< E-0 > :C:{++C+ and

0 FE
X, = < % _OE > =CX,_C" we find
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IV Equivalent realization of the regularized Kepler problem

The functions I, Iy, I44 and Iy are invariants of the Hamiltonian
E 0

0 _E > € u(n,n). So, they could be
considered as Hamiltonians (generators of Hamiltonian flows) on
the reduced symplectic manifolds 7_/~, O10/~, T?_/~ and

(7)10/~, respectively. Taking into account the symplectic manifolds
isomorphisms mentioned in the diagram (37) and the
commutativity of the Poisson maps from (34), we conclude that:

flows generated by ¢ <
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IV Equivalent realization of the regularized Kepler problem

The functions I, Iy, I44 and Iy are invariants of the Hamiltonian
E 0

0 _E > € u(n,n). So, they could be
considered as Hamiltonians (generators of Hamiltonian flows) on
the reduced symplectic manifolds 7_/~, O10/~, T?_/~ and

(7)10/~, respectively. Taking into account the symplectic manifolds
isomorphisms mentioned in the diagram (37) and the
commutativity of the Poisson maps from (34), we conclude that:
(i) the Hamiltonian systems: (T0_/~, I14), (T2_/m, I44),
(O10/~,Ip) are isomorphic with the Hamiltonian system

(Mo, Lx, _);

flows generated by ¢ <

Perturbed (2n — 1)-dimensional Kepler problem...



IV Equivalent realization of the regularized Kepler problem

The functions I, Iy, I44 and Iy are invariants of the Hamiltonian

E 0
0 _E > € u(n,n). So, they could be
considered as Hamiltonians (generators of Hamiltonian flows) on

the reduced symplectic manifolds 7°_ /., O19/~, TX_/~ and
(7)10/~, respectively. Taking into account the symplectic manifolds
isomorphisms mentioned in the diagram (37) and the
commutativity of the Poisson maps from (34), we conclude that:
(i) the Hamiltonian systems: (T0_/~, I14), (T2_/m, I44),
(O10/~,Ip) are isomorphic with the Hamiltonian system

(Mo, Lx, _); '
(ii) the Hamiltonian system ((?10/N,f0) is extended (regularized)

flows generated by ¢ <

by symplectic map (T3 /~) : O19/~ < O19/~ to the Hamiltonian
system (Olo/w,fo).
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IV Equivalent realization of the regularized Kepler problem

Integrals of motion M : H(n) x H(n) — H(n) and
R: H(n) x H(n) — H(n) for the Hamiltonian I are given in
matrix form by

M:=i[X,Y] and R:=X+YXY. (48)
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IV Equivalent realization of the regularized Kepler problem

Integrals of motion M : H(n) x H(n) — H(n) and
R: H(n) x H(n) — H(n) for the Hamiltonian I are given in
matrix form by

M:=i[X,Y] and R:=X+YXY. (48)

The Hamilton equations defined by I are

d _ 2
dy —E+Y?

4x — (XY -YX), (49)

i.e. they could be classified as a matrix Riccati type equations.
In order to obtain the solution of (49) we note that after passing to
(TP2_/~,I4+) they asssume the form of a linear equations solved by

(D) () e

i.e. the Hamiltonian flow is generated by X,_ € u(n,n).
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IV Equivalent realization of the regularized Kepler problem

Therefore, going through the symplectic manifold isomorphism
presented in (37), we obtain the solution

Y(t) = (Y cosht—iEsinht)(iY sinht + Ecosht)~!

X(t) = (iY sinht + Ecosht)X (1Y sinht + F cosht)™ (51)

of (32), by specifying the transformation formula (29) to
eE 0
s=cr (0 S e
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\/ Generalization of Kuastaanheimo-Stiefel transformation

We consider the case n = 2 in details. Using the Poisson morphism

presented in the lower lines of (34) and (37) we find the following
relations

X = (¢, (52)
v=Y( (53)

between (Y, X) € H(n) x H(n) and ( Z

) € 739_. The equation
(52) is equivalent to the conditions det X =0 and 0 # X > 0.
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\/ Generalization of Kuastaanheimo-Stiefel transformation

v

For fixed < ¢
equation (53) are related by

€ TO_ the two solutions Y7 and Y of the

Yy = Y1 +te((e0)", (54)
0 1 : .
where ¢ := < 10 > ¢ € C" and t € R. Expanding

(Y, X) € H(2) x H(2) in Pauli matrices o¢ := ( 1.0 )

0 1
(01 (0 i g (10
o] ‘= 1 0 , 02 1= i 0 03 ‘= 0 —1 , 1€,
Y =yu0, and X = zto,, (55)
we find that
Yo = 2yudat. (56)
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\/ Generalization of Kuastaanheimo-Stiefel transformation

The elements e((¢)t, where ¢ € C™, spans the degeneracy
direction for symplectic form dA restricted to submanifold of
H(2) x H(2) defined by the considtions det X = 0 and

0 # X > 0. Therefore, assuming in (54) t = —ﬁTr(Yl), we find
that equation (53) has unique solution Y € H(2) such that

2yo = Tr(Y) = 0. From 39 = 0 and det X = 2° — &2 = 0 we see
that (7, Z) € R? x R3 can be considered as a canonical coordinates
on the reduced phase space

Po:={(Y,X)e H2)xH(2) : Tr(Y)=0and det X =0,0 # X > 0},
| | 57
where H(2) := H(2)\{0} and R3 := R3\{0}. The above means
that Py = R3 x R3 and the canonical form 7, after restriction to
Py is given by
:y()‘po = 2:17d SX = kadxk. (58)
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\/ Generalization of Kuastaanheimo-Stiefel transformation

Using the identity
oLo + o0 = 20y, (59)

for Pauli matrices oy, k = 1,2, 3, we find that the Hamiltonian I,
defined in (47), after restriction to Py assumes the following form

Ho = Iolp, = I|Z]| (1 + 7). (60)

Let us note that ||7|| = 2o = (T > 0.

Perturbed (2n — 1)-dimensional Kepler problem...



\/ Generalization of Kuastaanheimo-Stiefel transformation

Summing up the above facts we state that the Hamiltonian system
(H(2) x H(2),dA0, 1) after reduction to (Po, 2dy A dZ, Hy) is
exactly the 3-dimensional Kepler system written in the "fictitious
time's which is related to the real time ¢ via the rescaling

ds 1

it~ 117 (61
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\/ Generalization of Kuastaanheimo-Stiefel transformation

C)E’ﬂg_weput

Y = & = yro) and multiply the equation (53) by (*o;. Then,
using (59) and (52) we obtain the one-to-one map

In order to express (i/,7) € R? x R? by <

; vECH CTa), F= (T (62)

of 70 0_ /. onto Py, where T0_:=T%_\{(v,0)" €C2®C? : ve C%.
Th|s map is known in literature of celestlal mechanics as
Kuastaanheimo-Stiefel transformation.

Perturbed (2n — 1)-dimensional Kepler problem...



\/ Generalization of Kuastaanheimo-Stiefel transformation

Here this transformation  : T2_ /. — P is a restriction

%_E_/N Po = @10/~
G
jo . —Fh O/~ (63)

to T2_ of the symplectic diffeomorphism & : 70_ = O19/~.,
defined as the superposition of respective symplectic
diffeomorphisms from diagram (37).

Perturbed (2n — 1)-dimensional Kepler problem...



\/ Generalization of Kuastaanheimo-Stiefel transformation

e It is reasonable to interpret Hamiltonian systems (72_ /., I14),
(T2_ /s I4), O10/~, Ip) and (Nig, Ly, ) as the various
equivalent realizations of the regularized (2n — 1)-dimensional
Kepler system.

e In the particular case the symplectic diffeomorphism

K 710, 5 010/~ could be considered as a generalization of
Kuastaanheimo-Stiefel transformation for the arbitrary
dimension.
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VI Generalized (2n — 1)-dimensional Kepler problem

Assuming for z € C and [ € Z the convention

! {zl for [ >0

Y 2 fori<0 (64)

we define the following Hamiltonian

H=ho(Im . lnal* &% [al)
+ 90(|771|27 R ‘nn|27 ‘51’27 SRR |§n|2)
k el no =k —kp o1 —ln
X (€ e ), (65)
on the symplectic manifold (C?",dvyy_), where hq and go are
arbitrary smooth functions of 2n real variables and

ki,...kn,l1,..., 1, €Z, where k1 + ...+ k,=0=101 + ...+ [,.
Since {I;_, H} = 0 one can reduce this system to 7_/..
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VI Generalized (2n — 1)-dimensional Kepler problem

Ending, we write the Hamiltonian (65) in the more explicit form for
the case n = 2, i.e on (R3 x R3, 2dj A d).

In this case the integrals of motion M and R can be written in
terms of Pauli matrices

M=ME+M-& and R=RyE+R-3,
where My =0, Ry = 3||Z||(1 + ¢?) and
M:2gj><i:’
R=(1-§)&+ 27

are angular momentum and Runge-Lenz vector, respectively.

Perturbed (2n — 1)-dimensional Kepler problem...



VI Generalized (2n — 1)-dimensional Kepler problem

Using the linear relation

Im|? 1 1 -1 -1 Ry
> | 11 -1 -1 1 R3
G2 ) 211 11 My
& -1 1 -1 M;

and define My := My +iMy and M_ := My — iM>

Perturbed (2n — 1)-dimensional Kepler problem...



VI Generalized (2n — 1)-dimensional Kepler problem

Using the linear relation

Im|? 1 1 -1 -1 Ry
> | 11 -1 -1 1 R3
G2 ) 211 11 My
& -1 1 -1 M;

and define My := My 4+ iMs and M_ := My — i My we write the
Hamiltonian H as follows

H = ho(Ro, Rz, My, M3) + go(Ro, R3, Mo, M3) x

X((Ry = My)*(Ror + My)' + (Rg = M_o)*(R_gr + M_g1)"),

where 0,0’ =+, —, k,l e NU{0} and ho, Go are arbitrary smooth
functions. Let us note that Ry = %IO.

Perturbed (2n — 1)-dimensional Kepler problem...



THANK YOU FOR ATTENTION




