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I Preliminary de�nitions

(C2n, φ) = T - twistor space, where φ is a hermitian form on C2n

of signature (+ . . .+︸ ︷︷ ︸
n

− . . .−︸ ︷︷ ︸
n

)

φ = φ+, φ2 = id, φ ∈Mat2n×2n(C)

The group of symmetry of the twistor space:

U(n, n) := {g ∈ GL(2n,C) : gφg+ = φ}
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I Preliminary de�nitions

We de�ne the complex vector bundle

N := {(Z, z) ∈ gl(2n,C)× Gr(n,C2n) : Im(Z) ⊂ z ⊂ Ker(Z)}
(1)

and involutions
I : gl(2n,C)→ gl(2n,C),
⊥ : Gr(n,C2n)→ Gr(n,C2n),
Ĩ : N → N
by

I(Z) := −φZ+φ, (2)

⊥(z) := z⊥, (3)

Ĩ(Z, z) := (I(Z), z⊥), (4)
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I Preliminary de�nitions

N N

Gr(n,C2n) Gr(n,C2n)

? ?

-

-

Ĩ

⊥

πN πN

(5)

By de�nition
Z ∈ u(n, n) iff I(Z) = Z
z ∈ Gr0(n,C2n) iff z = z⊥

(Z, z) ∈ N0 iff Ĩ(Z, z) = (Z, z)
By πN0 : N0 → Gr0(n,C2n) we denote the real vector bundle over
the Grassmannian Gr0(n,C2n) of complex n-dimensional subspaces
of C2n isotropic with respect to

〈v, w〉 := v+φw (6)

.
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I Preliminary de�nitions

Proposition

An element X ∈ u(n, n) belongs to pr1(N0) if and only if X2 = 0.

Taking the decomposition C2n = Cn ⊕ Cn we choose as φ the
Hermitian matrix

φd =

(
E 0
0 −E

)
, (7)

where E and 0 are unit and zero n× n-matrices
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I Preliminary de�nitions

There is a natural di�eomorphism of manifolds
U(n) ∼= Gr0(n,C2n) de�ned in the following way

I0 : U(n) 3 Z 7→ z :=

{(
Zξ
ξ

)
: ξ ∈ Cn

}
∈ Gr0(n,C2n). (8)

For φd the block matrix elements A,B,C,D ∈Matn×n(C) of

g =

(
A B
C D

)
∈ U(n, n) satisfy

A+A = E + C+C, D+D = E +B+B and D+C = B+A. (9)

From (8) one �nds that U(n, n) acts on U(n) as follows

Z ′ = σg(Z) = (AZ +B)(CZ +D)−1. (10)
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II T ∗U(n) as U(n, n)-Hamiltonian space

Proposition

(i) The map I0 : T ∗U(n) ∼= U(n)× iH(n)→ N0 de�ned by

I0(Z, ρ) :=

((
−ZρZ+ Zρ
(Zρ)+ ρ

)
,

{(
Zξ
ξ

)
: ξ ∈ Cn

})
∈ N0

(11)
is a U(n, n)-equivariant (i.e. I0 ◦ Λg = Σg ◦ I0) isomorphism of the
vector bundles. The action Σg : N0 → N0, g ∈ U(n, n), is a
restriction to U(n, n) and N0 ⊂ N of the action of the complex
linear group GL(2n,C) Σg(Z, z) := (gZg−1, σg(z)).
The action Λg : U(n)× iH(n)→ U(n)× iH(n) is de�ned by

Λg(Z, ρ) = ((AZ+B)(CZ+D)−1, (CZ+D)ρ(CZ+D)+), (12)

where g =

(
A B
C C

)
.
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II T ∗U(n) as U(n, n)-Hamiltonian space

Proposition

(ii) The canonical one-form γ0 on T ∗U(n) ∼= U(n)× iH(n) written
in the coordinates (Z, δ) ∈ U(n)× iH(n) assumes the form

γ0 = iT r(ρZ+dZ) (13)

and it is invariant with respect to the action (12).
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II T ∗U(n) as U(n, n)-Hamiltonian space

Proposition

(iii) The map J0 : T ∗U(n)→ u(n, n) de�ned by

J0(Z, ρ) := (pr1 ◦ I0)(Z, ρ) =

(
−ZρZ+ Zρ
(Zρ)+ ρ

)
is the momentum map for symplectic form dγ0, i.e. it is a
U(n, n)-equivariant Poisson map of symplectic manifold
(T ∗U(n), dγ0) into Lie-Poisson space (u(n, n)∼=u(n, n)∗,{·,·}L−P )

{f, g}
L−P

(α, δ, β, β+) = Tr

(
α
([

∂f
∂α ,

∂g
∂β

]
+ ∂f

∂β
∂g
∂β+ − ∂g

∂β
∂f
∂β+

)
+β
(
∂f
∂β+

∂g
∂α + ∂f

∂δ
∂g
∂β+ − ∂g

∂β+
∂f
∂α −

∂g
∂δ

∂f
∂β+

)
+β+

(
∂f
∂α

∂g
∂β + ∂f

∂β
∂g
∂δ −

∂g
∂α

∂f
∂β −

∂g
∂β

∂f
∂δ

)
+δ
([

∂f
∂δ ,

∂g
∂δ

]
+ ∂f

∂β+
∂g
∂β −

∂g
∂β+

∂f
∂β

))
for f, g ∈ C∞(u(n, n),R).
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II T ∗U(n) as U(n, n)-Hamiltonian space

Proposition

(i) Any Λ(U(n, n))-orbit Ok,l in T ∗U(n) = U(n)× iH(n) is
univocally generated from the element (E, ρk,l) ∈ U(n)× iH(n),
where

ρk,l := i diag(1, . . . , 1︸ ︷︷ ︸
k

−1, . . . ,−1︸ ︷︷ ︸
l

0, . . . , 0︸ ︷︷ ︸
n−k−l

) (14)

and has structure of a trivial bundle Ok,l → U(n) over U(n), i.e.
Ok,l ∼= U(n)×∆k,l, where ∆k,l := {Fρk,lF+ : F ∈ GL(n,C)}.

(ii) The momentum map (12) gives one-to-one correspondence
Ok,l ↔ J0(Ok,l) = Nk,l ⊂ pr1(N0) = {X ∈ u(n, n) : X2 = 0}
between Λ(U(n, n))-orbits in T ∗U(n) and Ad(U(n, n))-orbits in
pr1(N0), where Nkl = {AdgI0(E, ρk,l) : g ∈ U(n, n)}.
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III (C2n, φ) as U(n, n)-Hamiltonian space

Let us de�ne a U(n, n)-invariant di�erential one-form

γ+− := i(η+dη − ξ+dξ) (15)

on C2n = Cn ⊕ Cn. The Poisson bracket {f, g}+− corresponding
to the symplectic form dγ+− is given by

{f, g}+− := i

(
∂f

∂η+
∂g

∂η
− ∂g

∂η+
∂f

∂η
−
(
∂f

∂ξ+
∂g

∂ξ
− ∂g

∂ξ+
∂f

∂ξ

))
(16)
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III (C2n, φ) as U(n, n)-Hamiltonian space

and momentum map J+− : C2n → u(n, n) by

J+−(η, ξ) := i

(
−ηη+ ηξ+

−ξη+ ξξ+

)
, (17)

where η, ξ ∈ Cn and f, g ∈ C∞(Cn ⊕ Cn). One has the following
identify

J+−(η, ξ)2 = (η+η − ξ+ξ) · J+−(η, ξ) (18)

for this momentum map.
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III (C2n, φ) as U(n, n)-Hamiltonian space

Hence, J+− maps the space of null-twistors T 0
+− := I−1+−(0), where

I+− := η+η − ξ+ξ, (19)

onto the nilpotent coadjoint orbit N10 = J0(O10) corresponding to
k = 1 and l = 0. The Hamiltonian �ow
σt+− : Cn ⊕ Cn → Cn ⊕ Cn, t ∈ R, de�ned by I+− is given by

σt+−

(
η
ξ

)
:= eit

(
η
ξ

)
. (20)
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III (C2n, φ) as U(n, n)-Hamiltonian space

Proposition

(i) Nilpotent orbit N10 is the total space of the �bre bundle

S2n−1 N10

Ċn/U(1)

?

-

(21)

over Ċn/U(1) with S2n−1 as a typical �bre. So, this bundle is a
bundle of (2n− 1)-dimensional spheres associated to U(1)-principal
bundle Ċn → Ċn/U(1).
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III (C2n, φ) as U(n, n)-Hamiltonian space

Proposition

(ii) One can also consider N10 as the total space of the �bre bundle

Ċn N10

CP(n− 1)

?

-

(22)

over complex projective space CP(n− 1) which is the base of Hopf
U(1)-principal bundle S2n−1 → S2n−1/U(1) ∼= CP(n− 1).
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III (C2n, φ) as U(n, n)-Hamiltonian space

We also will use the anti-diagonal

φa := i

(
0 −E
E 0

)
, (23)

realization of twistor form (6).
Subsequently we will denote the realizations (C2n, φd) and
(C2n, φa) of twistor space by T and T̃ , respectively. The same
convention will be assumed for their groups of symmetry, i.e.

g =

(
A B
C D

)
∈ U(n, n) if and only if g+φdg = φd and

g̃ =

(
Ã B̃

C̃ D̃

)
∈ Ũ(n, n) if and only if g̃+φag̃ = φa. Hence, for

g̃ ∈ Ũ(n, n) one has

Ã+C̃ = C̃+Ã,

D̃+B̃ = B̃+D̃,

Ã+D̃ = E + C̃+B̃.

(24)
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III (C2n, φ) as U(n, n)-Hamiltonian space

The canonical one-form (15) and the momentum map (17) for T̃
are given by

γ̃+− = υ+dζ − ζ+dυ (25)

and by

J̃+−(υ, ζ) =

(
υζ+ −υυ+
ζζ+ −ζυ+

)
, (26)

where

(
υ
ζ

)
∈ T̃ . The null twistors space is de�ned as

T̃ 0
+− := Ĩ−1+−(0), where

Ĩ+−(υ, ζ) := i(ζ+υ − υ+ζ). (27)
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III (C2n, φ) as U(n, n)-Hamiltonian space

The Hamiltonian �ow on C2n generated by Ĩ+− is given by

σ̃t+−

(
υ
ζ

)
= eit

(
υ
ζ

)
∈ T̃ . (28)

Both realizations T and T̃ of the twistor space are related by the
following unitary transform of C2n:(

υ
ζ

)
= C+

(
η
ξ

)
and

(
η
ξ

)
= C

(
υ
ζ

)
, (29)

where

C :=
1√
2

(
E −iE
−iE E

)
. (30)
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IV Equivalent realization of the regularized Kepler problem

Now let us consider H(n)×H(n) with dγ̃0, where

γ̃0 := −Tr(XdY ) (31)

and (Y,X) ∈ H(n)×H(n), as a symplectic manifold. We de�ne

the symplectic action of g̃ =

(
Ã B̃

C̃ D̃

)
on H(n)×H(n) by

σ̃g̃(Y,X) := ((ÃY + B̃)(C̃Y + D̃)−1, (C̃Y + D̃)X(C̃Y + D̃)+).
(32)

We note that this action is not de�ned globally, i.e. the formula
(32) is valid only if det(C̃Y + D̃) 6= 0.

The momentum map J̃0 : H(n)×H(n)→ ũ(n, n) corresponding
to dγ̃0 and σ̃g̃ has the form

J̃0(Y,X) =

(
−Y X Y XY
−X XY

)
(33)

and it satis�es the equivariance property J̃ ◦ σ̃g̃ = Adg̃ ◦ J̃.
Perturbed (2n− 1)-dimensional Kepler problem...



IV Equivalent realization of the regularized Kepler problem

Proposition

All arrows in the above diagram are the U(n, n)-equivariant
Poisson maps:

T ∗U(n) u(n, n) T ,

T̃ũ(n, n)H(n)×H(n)

6 6 6

�

�-

-J0 J+−

J̃+−J̃0

T ∗C AdC C
∪

(34)

where by the de�nition one has AdC(X̃) := CXC+,

T ∗C (Y,X) = ((Y − iE)(−iY +E)−1,
i

2
(−iY +E)X(−iY +E)+),

for X̃ ∈ ũ(n, n) and (X,Y ) ∈ H(n)×H(n).
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IV Equivalent realization of the regularized Kepler problem

The component

Z = (Y − iE)(−iY + E)−1

is a smooth one-to-one map of H(n) into U(n), which is known as
Cayley transform. Hence, the unitary group U(n) could be
considered as a compacti�cation of H(n), Namely, in order to
obtain the full group U(n) one adds to Cayles image of H(n) such
unitary matrices Z, which satisfy the condition det(iZ + E) = 0.
Thus the inverse Cayley map is de�ned by

Y = (Z + iE)(iZ + E)−1, (35)

if det(iZ + E) 6= 0.
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IV Equivalent realization of the regularized Kepler problem

We complete the above commutative diagram by the following
U(n, n)-equivariant maps

U(n)× Ċn T ∗U(n)

H(n)× Ċn H(n)×H(n),

6 6

-

-

⊂

⊂

ι

ι̃

SC T ∗C

∪∪
(36)

where

SC(Y, ζ) := ((Y − iE)(−iY + E)−1,
1√
2

(−iY + E)ζ),

ι(Z, ξ) := (Z, iξξ+),

ι̃(Y, ζ) := (Y, ζζ+).
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IV Equivalent realization of the regularized Kepler problem

The following statements are valid:

ι(U(n)× Ċn) = O10, J0(O10) = N10 = J+−(T 0
+−),

˙̃O10 := ι̃(H(n)× Ċn) = {(Y,X) : dim(Im(X)) = 1 and X ≥ 0},

J̃0(
˙̃O10) ⊂ Ñ10 = J̃+−(T̃ 0

+−).

From above equalities one �nds the morphism of symplectic
manifolds

O10/∼ N10 T 0
+−/∼

T̃ 0
+−/∼,Ñ10

˙̃O10/∼

6 6 6

�

�-

-J0/∼ J+−/∼

J̃0/∼ J̃+−/∼⊂

T ∗C /∼ AdC/∼ C/∼
∪

(37)

which are symplectic isomorphisms (except of

T ∗C /∼ : ˙̃O10/∼ ↪→O10/∼ and J̃0/∼ : ˙̃O10/∼ ↪→Ñ10). The equivalence
relations ∼ are de�ned by the reductions of respective symplectic
structures from the previous diagram.

Perturbed (2n− 1)-dimensional Kepler problem...



IV Equivalent realization of the regularized Kepler problem

Any element X =

(
a b
b+ d

)
∈ u(n, n) de�nes the linear function

LX

(
α β
β+ δ

)
:= Tr

((
a b
b+ d

)(
α β
β+ δ

))
(38)

on the Lie-Poisson space (u(n, n), {·, ·}L−P ), where the Lie-Poisson
bracket {·, ·}L−P is de�ned in (12). These functions satisfy

{LX1 , LX2}L−P = L[X1,X2]. (39)

In the case X++ = i

(
E 0
0 E

)
and X+− = i

(
E 0
0 −E

)
one

obtains (
LX++ ◦ J+−

)
(η, ξ) = η+η − ξ+ξ = I+−, (40)(

LX++ ◦ J0
)

(Z, ρ) = 0, (41)(
LX+− ◦ J+−

)
(η, ξ) = η+η + ξ+ξ =: I++, (42)(

LX+− ◦ J0
)

(Z, ρ) = −2iT rρ =: I0. (43)
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IV Equivalent realization of the regularized Kepler problem

Rewriting the above formula in the anti-diagonal realization, where

X̃++ = i

(
E 0
0 E

)
= CX++C+ and

X̃+− =

(
0 −E
E 0

)
= CX+−C+ we �nd

(
LX̃++

◦ J̃+−
)

(υ, ζ) = i(υζ+ − ζυ+), (44)(
LX̃++

◦ J̃0
)

(Y,X) = 0, (45)(
LX̃+−

◦ J̃+−
)

(υ, ζ) = υ+υ + ζ+ζ =: Ĩ++, (46)(
LX̃+−

◦ J̃0
)

(Y,X) = Tr(X(E + Y 2)) =: Ĩ0. (47)
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IV Equivalent realization of the regularized Kepler problem

The functions I++, I0, Ĩ++ and Ĩ0 are invariants of the Hamiltonian

�ows generated by i

(
E 0
0 −E

)
∈ u(n, n). So, they could be

considered as Hamiltonians (generators of Hamiltonian �ows) on
the reduced symplectic manifolds T 0

+−/∼, O10/∼, T̃ 0
+−/∼ and

˙̃O10/∼, respectively. Taking into account the symplectic manifolds
isomorphisms mentioned in the diagram (37) and the
commutativity of the Poisson maps from (34), we conclude that:

(i) the Hamiltonian systems: (T 0
+−/∼, I++), (T̃ 0

+−/∼, Ĩ++),
(O10/∼, I0) are isomorphic with the Hamiltonian system(
N10, LX+−

)
;

(ii) the Hamiltonian system ( ˙̃O10/∼, Ĩ0) is extended (regularized)

by symplectic map (T ∗C /∼) : ˙̃O10/∼ ↪→ O10/∼ to the Hamiltonian
system (O10/∼, I0).
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IV Equivalent realization of the regularized Kepler problem

The functions I++, I0, Ĩ++ and Ĩ0 are invariants of the Hamiltonian

�ows generated by i

(
E 0
0 −E

)
∈ u(n, n). So, they could be

considered as Hamiltonians (generators of Hamiltonian �ows) on
the reduced symplectic manifolds T 0

+−/∼, O10/∼, T̃ 0
+−/∼ and
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(O10/∼, I0) are isomorphic with the Hamiltonian system(
N10, LX+−

)
;

(ii) the Hamiltonian system ( ˙̃O10/∼, Ĩ0) is extended (regularized)
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IV Equivalent realization of the regularized Kepler problem

Integrals of motion M : H(n)×H(n)→ H(n) and
R : H(n)×H(n)→ H(n) for the Hamiltonian Ĩ0 are given in
matrix form by

M := i[X,Y ] and R := X + Y XY. (48)

The Hamilton equations de�ned by Ĩ0 are

d
dtY = E + Y 2,
d
dtX = −(XY − Y X),

(49)

i.e. they could be classi�ed as a matrix Riccati type equations.
In order to obtain the solution of (49) we note that after passing to
(T 0

+−/∼, I++) they asssume the form of a linear equations solved by

σt+−

(
η
ξ

)
=

(
eitE 0

0 e−itE

)(
η
ξ

)
, (50)

i.e. the Hamiltonian �ow is generated by X+− ∈ u(n, n).
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matrix form by

M := i[X,Y ] and R := X + Y XY. (48)

The Hamilton equations de�ned by Ĩ0 are
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IV Equivalent realization of the regularized Kepler problem

Therefore, going through the symplectic manifold isomorphism
presented in (37), we obtain the solution

Y (t) = (Y cosh t− iE sinh t)(iY sinh t+ E cosh t)−1

X(t) = (iY sinh t+ E cosh t)X(iY sinh t+ E cosh t)+
(51)

of (32), by specifying the transformation formula (29) to

g(t) = C+
(
etE 0
0 e−tE

)
C.
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V Generalization of Kuastaanheimo-Stiefel transformation

We consider the case n = 2 in details. Using the Poisson morphism
presented in the lower lines of (34) and (37) we �nd the following
relations

X = ζζ+, (52)

υ = Y ζ (53)

between (Y,X) ∈ H(n)×H(n) and

(
υ
ζ

)
∈ T̃ 0

+−. The equation

(52) is equivalent to the conditions detX = 0 and 0 6= X ≥ 0.
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V Generalization of Kuastaanheimo-Stiefel transformation

For �xed

(
υ
ζ

)
∈ T̃ 0

+− the two solutions Y1 and Y2 of the

equation (53) are related by

Y2 = Y1 + tεζ̄(εζ̄)+, (54)

where ε :=

(
0 1
−1 0

)
, ζ ∈ Ċn and t ∈ R. Expanding

(Y,X) ∈ H(2)×H(2) in Pauli matrices σ0 :=

(
1 0
0 1

)
,

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 i
−i 0

)
and σ3 :=

(
1 0
0 −1

)
, i.e.

Y = yµσµ and X = xµσµ, (55)

we �nd that
γ̃0 = 2yµdx

µ. (56)
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V Generalization of Kuastaanheimo-Stiefel transformation

The elements εζ̄(εζ̄)+, where ζ ∈ Ċn, spans the degeneracy
direction for symplectic form dγ̃0 restricted to submanifold of
H(2)×H(2) de�ned by the considtions detX = 0 and
0 6= X ≥ 0. Therefore, assuming in (54) t = − 1

ζ+ζ
Tr(Y1), we �nd

that equation (53) has unique solution Y ∈ H(2) such that
2y0 = Tr(Y ) = 0. From y0 = 0 and detX = x0 − ~x2 = 0 we see
that (~y, ~x) ∈ R3 × Ṙ3 can be considered as a canonical coordinates
on the reduced phase space

P0 := {(Y,X) ∈ H(2)× ˙H(2) : Tr(Y ) = 0 and detX = 0, 0 6= X ≥ 0},
(57)

where ˙H(2) := H(2)\{0} and Ṙ3 := R3\{0}. The above means
that P0 ∼= R3 × Ṙ3 and the canonical form γ̃0 after restriction to
P0 is given by

γ̃0|P0 = 2~yd · ~x = 2ykdx
k. (58)
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V Generalization of Kuastaanheimo-Stiefel transformation

Using the identity
σkσl + σlσk = 2δkl (59)

for Pauli matrices σk, k = 1, 2, 3, we �nd that the Hamiltonian Ĩ0,
de�ned in (47), after restriction to P0 assumes the following form

H0 = Ĩ0|P0 = ‖~x‖ (1 + ~y2). (60)

Let us note that ‖~x‖ = x0 = ζ+ζ > 0.
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V Generalization of Kuastaanheimo-Stiefel transformation

Summing up the above facts we state that the Hamiltonian system
(H(2)×H(2), dγ̃0, Ĩ0) after reduction to (P0, 2d~y ∧ d~x,H0) is
exactly the 3-dimensional Kepler system written in the "�ctitious
time"s which is related to the real time t via the rescaling

ds

dt
=

1

‖~x‖
. (61)
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V Generalization of Kuastaanheimo-Stiefel transformation

In order to express (~y, ~x) ∈ R3 × Ṙ3 by

(
υ
ζ

)
∈ T̃ 0

+− we put

Y = ~y~σ = ykσk and multiply the equation (53) by ζ+σl. Then,
using (59) and (52) we obtain the one-to-one map

~y =
1

ζ+ζ

1

2
(υ+~σζ + ζ+~συ), ~x = ζ+~σζ, (62)

of ˙̃T 0
+−/∼ onto P0, where ˙̃T 0

+− := T̃0+−\{(v, 0)T ∈C2⊕C2 : v∈C2}.
This map is known in literature of celestial mechanics as
Kuastaanheimo-Stiefel transformation.
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V Generalization of Kuastaanheimo-Stiefel transformation

Here this transformation κ : ˙̃T 0
+−/∼ → P0 is a restriction

˙̃T 0
+−/∼ P0 ∼= Õ10/∼

T̃ 0
+−/∼ O10/∼

? ?

-

-

∩∩

κ

κ̃

T ∗C /∼

(63)

to ˙̃T 0
+− of the symplectic di�eomorphism κ̃ : T̃ 0

+−
∼→ O10/∼,

de�ned as the superposition of respective symplectic
di�eomorphisms from diagram (37).
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V Generalization of Kuastaanheimo-Stiefel transformation

• It is reasonable to interpret Hamiltonian systems (T 0
+−/∼, I++),

(T̃ 0
+−/∼, Ĩ++), O10/∼, I0) and (N10, LX+−) as the various

equivalent realizations of the regularized (2n− 1)-dimensional

Kepler system.

• In the particular case the symplectic di�eomorphism
κ̃ : T̃ 0

+−
∼→ O10/∼ could be considered as a generalization of

Kuastaanheimo-Stiefel transformation for the arbitrary
dimension.
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VI Generalized (2n− 1)-dimensional Kepler problem

Assuming for z ∈ C and l ∈ Z the convention

zl :=

{
zl for l ≥ 0
z̄−l for l < 0

(64)

we de�ne the following Hamiltonian

H = h0(|η1|2, . . . , |ηn|2, |ξ1|2, . . . , |ξn|2)
+ g0(|η1|2, . . . , |ηn|2, |ξ1|2, . . . , |ξn|2)

× (ηk11 . . . ηknn ξl11 . . . ξ
ln
n + η−k11 . . . η−knn ξ−l11 . . . ξ−lnn ), (65)

on the symplectic manifold (C2n, dγ+−), where h0 and g0 are
arbitrary smooth functions of 2n real variables and
k1, . . . kn, l1, . . . , ln ∈ Z, where k1 + . . .+ kn = 0 = l1 + . . .+ ln.
Since {I+−, H} = 0 one can reduce this system to T 0

+−/∼.
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VI Generalized (2n− 1)-dimensional Kepler problem

Ending, we write the Hamiltonian (65) in the more explicit form for
the case n = 2, i.e on (R3 × Ṙ3, 2d~y ∧ d~x).
In this case the integrals of motion M and R can be written in
terms of Pauli matrices

M = M0E + ~M · ~σ and R = R0E + ~R · ~σ,

where M0 = 0, R0 = 1
2 ||~x||(1 + ~y2) and

~M = 2~y × ~x

~R = (1− ~y2)~x+ 2~y(~x · ~y)

are angular momentum and Runge-Lenz vector, respectively.
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VI Generalized (2n− 1)-dimensional Kepler problem

Using the linear relation
|η1|2
|η2|2
|ξ1|2
|ξ2|2

 =
1

2


1 1 −1 −1
1 −1 −1 1
1 1 1 1
1 −1 1 −1




R0

R3

M0

M3


and de�ne M+ := M1 + iM2 and M− := M1 − iM2

we write the
Hamiltonian H as follows

H̃ = h̃0(R0, R3,M0,M3) + g̃0(R0, R3,M0,M3)×

×((Rσ −Mσ)k(Rσ′ +Mσ′)
l + (R−σ −M−σ)k(R−σ′ +M−σ′)

l),

where σ, σ′ = +,−, k, l ∈ N ∪ {0} and h̃0, g̃0 are arbitrary smooth
functions. Let us note that R0 = 1

2I0.
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