Constant mean curvature surfaces with boundary

Rafael López

University of Granada, Spain
email: rcamino@ugr.es
http://www.ugr.es/local/rcamino

XXI International Conference on Geometry, Integrability and Quantization
June, 3–8, 2019, Varna (Bulgaria)
Lecture 1: Introduction and motivation

Question: What are the soap bubbles spanning a circle?
Lecture 1: Introduction and motivation

Question: What are the soap bubbles spanning a circle?
1. Introduction and motivation.
2. The tangency principle.
3. CMC compact surfaces with boundary.
4. The Dirichlet problem.
Introduction and motivation

- Classical Differential Geometry \rightarrow submanifolds theory in three-dimensional manifolds.
- Variational problems.
- Problems with a physical origin.
- Differential geometry \leftrightarrow PDEs
What is the curvature of a surface?

\[\lambda_1(p) = \max \{ \text{normal curvatures at } p \} \]
\[\lambda_2(p) = \min \{ \text{normal curvatures at } p \} . \]

\[\text{Gauss curvature: } K(p) = \lambda_1(p) \lambda_2(p). \]
\[\text{Mean curvature: } H(p) = \frac{\lambda_1(p) + \lambda_2(p)}{2}. \]

Constant Mean Curvature surfaces \(\equiv \) CMC surfaces
CMC surfaces...

... minimize the area respect to some conditions:

- a circular wire \rightarrow planar disc (the boundary).
- blowing air obtaining soap bubbles \rightarrow sphere (the volume).
- two coaxial circular wires \rightarrow catenoid (the boundary).
- two coaxial circular wires and blowing air \rightarrow rotational surfaces (boundary + volume).
CMC surfaces are models of interfaces

An *interface* is the boundary of two homogenous systems of different physical/chemical properties.
The energy E of this physical system consists of

i. an energy from the surface tension: E_S.

ii. an adhesion energy: E_A.

iii. a gravitational energy: E_G

$$E = E_S + E_A + E_G$$

Laplace-Young equation:

$$\left(P_L - P_A\right) + k \gamma = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)\gamma = 2H \gamma.$$

γ: surface tension coefficient.

R_1 and R_2 the principal curvatures of the interface S_{LA}.

$$H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right).$$
Under ideal conditions (no-gravity, constant pressures, ...)

In equilibrium, the interface is a surface with constant mean curvature (CMC surface).

- If $P_L - P_A = 0 \Rightarrow H = 0 \leadsto \text{soap film.}$
- If $P_L - P_A = c \neq 0 \Rightarrow H = ct: \leadsto \text{blowing air} \leadsto \text{soap bubble.}$
Solutions of a variational problem

Given a closed curve C...

Problem 1. Find the surface of least area spanning C.

Problem 2. Find the surface of least area spanning C enclosing a given volumen.

$$A'(0) = -2 \int_M H\langle N, \xi \rangle,$$

$$\xi(p) = \left. \frac{\partial X(p, t)}{\partial t} \right|_{t=0}$$

$$V'(0) = - \int_M \langle N, \xi \rangle$$
Problem 1. \(A'(0) = 0 \) for any variation \(\Leftrightarrow H = 0 \).

Problem 2. \(A'(0) + \lambda V'(0) = 0 \) for any variation

\[
0 = A'(0) + \lambda V'(0) = - \int_M (2H + \lambda) \langle N, \xi \rangle = 0.
\]

\(\Leftrightarrow \exists \lambda \)

\[
2H + \lambda = 0 \Rightarrow H = -\lambda/2 = c.
\]

CMC surfaces are critical points of the area with respect to local deformations that preserve the enclosed volume.
Closed surfaces

Preserving the boundary: \(\partial S(t) = \partial S := C \).

Keeping the boundary on a given support: \(\partial S(t) \subset P \).

The contact angle is constant.
Soap bubbles are round!

Soap bubbles minimize area enclosing a given volume: among all closed surfaces enclosing a given volume, S^2 is the only one with minimum area.

Problem: Given $C = S^1$, find surfaces spanning C minimizing area for a given volume \leadsto spherical caps
Examples of CMC surfaces

Rotational surfaces: \(M = \{ r(x) \cos \theta, r(x) \sin \theta, x : x \in I, \theta \in \mathbb{R} \} \)

\[
1 + r'^2 - r'' = 2H(1 + r'^2)^{3/2} \Rightarrow \frac{d}{dx} \left(Hr^2 - \frac{r}{\sqrt{1 + r'^2}} \right) = 0.
\]

\[
Hr^2 - \frac{r}{\sqrt{1 + r'^2}} = c, \quad c \in \mathbb{R}.
\]
Catenoid and Riemann examples

Catenoid is the only rotational minimal surface:

\[f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2} \]
Riemann examples: minimal surfaces constructed by a uniparametric family of circles.

1. If the boundary are two concentric curves \(\rightsquigarrow\) catenoid.

2. If the boundary are two non-coaxial circles in parallel planes \(\rightsquigarrow\) Riemann example.

\[H \neq 0 \rightsquigarrow \text{rotational surface.} \]
Translation surfaces: \(z = f(x) + g(y) \)

\[
H = 0 \Rightarrow (1 + g'^2)f'' + (1 + f'^2)g'' = 0
\]

\[
\Rightarrow \frac{f''}{1 + f'^2} = -\frac{g''}{1 + g'^2} = c.
\]

\[
z = \log |\cosh(y)| - \log |\cosh(x)| = \log \left| \frac{\cosh(y)}{\cosh(x)} \right| \quad (\text{Scherk surface})
\]

1. \(H = 0 \): plane and Scherk surface
2. \(H = c \neq 0 \): right circular cylinder
Ruled surfaces

1. $H = 0$: plane and helicoid
2. $H = c \neq 0$: right circular cylinder
CMC closed surfaces

Wente (1984): 1-genus surface immersed in \mathbb{R}^3 with CMC

closed and not closed CMC surfaces (Kapouleas, Korevaar, Bobenko,...)
In the family of closed CMC surfaces, sphere is the only
1. of genus 0 (Hopf, \(\sim 50\)).
2. without self-intersections (Alexandrov, \(\sim 60\)).
3. stable (Barbosa-do Carmo, 1984).
Compact surfaces with boundary:
The simplest case $\partial S = S^1$: discs and spherical caps.

Planar disks and spherical caps are the only compact rotational CMC surfaces spanning a circle.

Corollary

Planar discs and spherical caps are the only compact CMC surfaces with circular boundary that are

- Conjecture 1. topological discs
- Conjecture 2. embedded
- Conjecture 3. stable
Problems, questions, ...

Q1. Does the geometry of the boundary impose restrictions on the geometry of the surface?

Q2. Does the surface inherit the symmetry of its boundary?

Q3. (Plateau problem) Given a curve $C \subset \mathbb{R}^3$, $H \in \mathbb{R}$, does a surface S exist with $\partial S = C$ and (constant) mean curvature H?

Q4. (Dirichlet problem) Given a curve $C \subset \mathbb{R}^3$, $H \in \mathbb{R}$, does a graph S exist with $\partial S = C$ and (constant) mean curvature H?