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Bending Energy

• 1691: J. Bernoulli.
Proposed the problem of determining the shape of elastic rods
(bending deformation of rods).

• 1742: D. Bernoulli.
In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy.

• 1744: L. Euler.
Described the shape of planar elasticae (partially solved by J.
Bernoulli 1692-1694).

• 1986: R. Bryant & P. Griffiths.
Different approach to extend the notion of elasticae to
Riemannian manifolds.

• Many others....
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Willmore Energy

• 1811: S. Germain. First considered

W(S) =

∫
S
H2dA

to study elastic plates.

• 1920’s: Blaschke’s School. W is conformally invariant.
Thomsen: First Variation Formula.

• 1960’s: T. Willmore. Reintroduced W and proposed the
Willmore Conjecture (Marques & Neves, 2014).

• 1974: B.-Y. Chen. Chen-Willmore energy (conformally
invariant in Riemannian manifolds).

1985: U. Pinkall

Link between Willmore surfaces and elastica.
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Willmore-Like Energies in 3-Spaces

Let M be a 3-dimensional Riemannian manifold, Φ ∈ C∞(M) a
smooth function and S a compact surface with no boundary. In
I(S ,M), we define the Willmore-like energy

WΦ(S) =

∫
S

(
H2 + Φ

)
dA .

Euler-Lagrange Equation

Extremals of WΦ are characterized by the equation

∆H + H(2H2 − 2KS + 2R + Ric (N,N)− 2Φ) + N(Φ) = 0.

• We are mainly interested in isometrically immersed surfaces
on total spaces of Killing submersions.
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Killing Submersions

A Riemannian submersion π : M → B of a 3-dimensional
Riemannian manifold M over a surface B will be called a Killing
submersion it if fibers are the trajectories of a complete unit Killing
vector field, ξ.
• Most of the geometry is encoded in the pair of functions KB

(Gaussian curvature of B) and τπ (bundle curvature).
• Theorem (Barros, Garay & — , 2018) For any KB and τπ, there

exists a Killing submersion. It can be chosen with compact
fibers.

• For the simply connected case, we have uniqueness. (Manzano,

2014)

Bianchi-Cartan-Vranceanu Spaces

They are the canonical models with constant KB and τπ.

• They include all 3-dimensional homogeneous spaces with
group of isometries of dimension 4.
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Vertical Lifts in Killing Submersions

Let γ be an immersed curve in B.

• The surface Sγ = π−1(γ) is an isometrically immersed surface
in M.

• Moreover, Sγ is invariant under the flow of the vertical Killing
vector field, ξ.

• It is usually called vertical tube shaped on γ.

• In fact, all ξ-invariant surfaces of M can be seen as vertical
lifts of curves.

• The mean curvature of these surfaces is (Barros, 1997)

H =
1

2
(κ ◦ π) ,

κ denoting the geodesic curvature of γ in B.
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Link with Elasticae with Potential

Let Φ ∈ C∞(M) be an invariant potential, that is, Φ = Φ̄ ◦ π, and
consider the Willmore-like energy

WΦ(N2) =

∫
N2

(
H2 + Φ

)
dA

defined on the space of surface immersions in a total space of a
Killing submersion with compact fibers, Imm(N2,M).

Main Theorem (Barros, Garay & — , 2018)

If γ is a closed curve in B, then Sγ is a Willmore-like torus, if and
only if, γ is an extremal of

Θ4Φ̄(γ) =

∫
γ

(
κ2 + 4Φ̄

)
ds.
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Invariant Willmore Tori

Now, for φ ∈ Imm(N2,M), we consider the Chen-Willmore energy

CW(N2) =

∫
N2

(
H2
φ + R

)
dAφ

where R denotes the extrinsic Gaussian curvature.

• Extremals of CW are called Willmore surfaces.

• In general, CW 6=WΦ. However, if M = M3(ρ), then
CW =WΦ for Φ = ρ.

Theorem (Barros, Garay & — , 2018)

A vertical torus Sγ is Willmore in M, if and only if, it is extremal of

Wτ2
π

(N2) =

∫
N2

(
H2 + τ2

π

)
dA.

• That is, if and only if, γ is an elastica with potential 4τ2
π in B.
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Willmore Tori Foliations of Total Spaces

1. Orthonormal Frame Bundles

Proposition (Barros, Garay & — , 2018)

Orthonormal frame bundles of compact rotational surfaces in R3

admit a foliation by minimal Willmore tori.

In order to get foliations by non-minimal Willmore tori,

• Consider Sf = I ×f S1 such that all fibers, δ, are extremals of

ΘK2
Sf

(δ) =

∫
δ

(
κ2 + K 2

Sf

)
dt.

• This completely determines f (s).

• These Sf give rise to orthonormal frame bundles admitting
foliations by Willmore tori with CMC.
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Willmore Tori Foliations of Total Spaces

2. General Killing Submersions

• Let γ be a (proper) elastic curve in a surface B.

• Define Φ̄(s, t) = exp (κ(s) t +$(s)) + λ for an arbitrary
function $(s) along γ.

• Consider π : M(KB , τπ)→ B a Killing submersion with closed
fibers for 4τ2

π = Φ̄(s, t).

Theorem (Barros, Garay & — , 2018)

The vertical lift Sγ = π−1(γ) is a Willmore tori in M(KB , τπ).

As an illustration, take B = R2 − {(0, 0)} and {Ct , t ∈ R}.
• The potentials Φ̄(s, t) = f̃ (s) t + 1

3t2 , f̃ ∈ C∞(S1) make the
whole family of circles elasticae with potential.

• Corollary. There exists a Killing submersion admitting a
foliation by Willmore tori with CMC.
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