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Abstract

Here we consider new decompositions of the special orthogonal transfor-
mations in R3 into products of two rotations, one of them has a fixed scalar
parameter, and the other – a fixed axis. The obtained analytic solutions consti-
tute an alternative parametrization of the group SO(3) with charts in S2 × S1.
As it should be expected, from topological point of view, this map has singular-
ities – the number of images varies between zero, one, two and infinitely many.
The corresponding formulae become particularly simple in the cases involving
quarter turns and half turns, although in the latter additional geometric criteria
appear. Transferring the same construction to the universal cover SU(2) ∼= S3
via quaternion parametrization eliminates the problem with infinite scalar pa-
rameters. The so obtained map can also be seen as a realization of the Hopf
fibration S1 → S3 → S2.

Key words: decomposition, half turn, quarter turn, quaternion, vector-
parameter
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1. Introduction. It is well known (Euler’s theorem) that all three dimen-
sional rotations have an invariant axis which is unique except in the trivial case
(identity transformation) and can be specified by a unit vector n̂. In order to
describe the rotation itself, we need an extra parameter, usually chosen to be
the angular variable ϕ. Then we may construct the matrix of the transformation
using the famous Rodrigues’ formula

(1) R(n̂, ϕ) = cosϕ I + (1− cosϕ) n̂⊗ n̂t + sinϕ n̂×,
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where I is the identity matrix in R3, n̂⊗ n̂t is a projector along n̂ obtained by the
usual tensor or dyadic product of vectors and n̂× denotes the skew-symmetric
matrix associated with n̂ via the Hodge duality

R3 3 c→ c×,
(
c×
)
ij

= εiljcl ⇒ c×ξ = c× ξ, ξ ∈ R3.

In what follows we use special notations in the particular cases of half turns
(rotations by a straight angle):

(2) O(n̂) = R(n̂, π) = 2 n̂⊗ n̂t − I
and similarly for quarter turns (rotations by a right angle) which have the form

(3) Q(n̂) = R(n̂, π/2) = n̂⊗ n̂t + n̂×.

Moreover, we could obtain another representation ofR(n̂, ϕ) using the well known

trigonometric Euler substitution τ = tan
ϕ

2
. With its help equation (1) becomes

R(n̂, ϕ) =
(1− τ2) I + 2τ2 n̂⊗ n̂t + 2τ n̂×

1 + τ2

and once the vector parameter of the rotation is defined to be c = τ n̂, the
representation

(4) R(c) =
(1− c2) I + 2 c⊗ ct + 2 c×

1 + c2

is straightforward.

Note that we no longer need to write two arguments – the angle is param-
eterized by τ , which we refer to as scalar parameter and it is included in the
definition of c.

There is a natural composition law for the vector parameters that comes
quite handy for our considerations. Namely, from the group composition in
SO(3), it can be derived (see [3,7, 9]) that the vector parameter of the compo-
sition R(a)R(b) = R(〈a,b〉) = R(c) is

(5) c = 〈a,b〉 =
a + b + a× b

1− (a,b)
·

We refer to [3] for details regarding the derivation of (5) and to [7,8] for some 
mechanical  applications of the vector parametrization, while references  [1,10]
can be consulted for a thorough discussion of Euler’s invariant axis theorem
and Rodrigues’ formula (1).

2. Generic construction. In this section we consider the generic case in
which an Euclidean rotation R(c) can be decomposed into a pair of rotations

(6) R(c) = R(vĉ2)R(uĉ1)

for one of which we know to be the axis, determined by the unit vector ĉ1 or ĉ2
and for the other – the scalar parameter v or u respectively.

Case 1. If v and ĉ1 are given and u, ĉ2 are unknown, we multiply with
R(−uĉ1) = R−1(uĉ1) on the right and it is straightforward to express ĉ2 by
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means of (5)

(7) vĉ2 = 〈c,−uĉ1〉 =
τ n̂− uĉ1 + uτ ĉ1 × n̂

1 + uτ(n̂, ĉ1)
·

An additional requirement should hold in order to guarantee the existence of
such decomposition. Since ĉ1 and ĉ2 are eigenvectors of R(uĉ1) and R(vĉ2)
respectively, with the notation σij = (ĉi,R(c) ĉj) one has

(8) σ21 = (ĉ2,R(c) ĉ1) = (ĉ2, ĉ1) = cos γ,

where γ is the angle between ĉ1 and ĉ2.

On the other hand, considering the scalar product of (7) with ĉ1 one obtains

(9) v cos γ =
τρ1 − u
1 + uτρ1

with ρi = (n̂, ĉi) = cos](n̂, ĉi).

In order to determine the scalar parameter u, it suffices to consider another
matrix entry

(10) σ11 = (ĉ1,R(c) ĉ1) = (ĉ1,R(vĉ2) ĉ1) = cosψ2 + (1− cosψ2) cos2 γ,

where ψ2 = 2 arctan(v) is the generalized Euler angle of rotation about ĉ2 and
for the last equality we use the explicit form of R(vĉ2), given in (1).

Now it remains to substitute (10) in (9) and express cosψ2 in terms of u =

tan
ψ2

2
in order to obtain the two solutions for the scalar parameter u

(11) u± =
τρ1 − v cos γ±
1 + vτρ1 cos γ±

, v cos γ± = ± 1√
2

√
(v2 + 1)σ11 + v2 − 1 .

Note that the above formula gives rise to another condition: σ11 ≥ cosψ2 that
guarantees real solutions, since only they correspond to rotations.

These two solutions, substituted in (7), determine the two unit vectors ĉ±2 ,
or the two possible axes for the second rotation in the decomposition.

Obviously, in the case v = τ one of these solutions is trivial: u = 0, ĉ2 = n̂
and if, on the other hand, cos γ = 0 (σ11 = cosψ2), we end up with a double root
u+ = u− = τρ1. If ρ1 = 0 in particular, it is not difficult to assure ourselves by
a geometric argument that the only solution is the trivial one as long as τ = ±v
and for τ 6= ±v no solution exists.

Case 2. If u and ĉ2 are given, respectively v and ĉ1 are unknown, we multiply
with R(−vĉ2) = R−1(vĉ2) on the left and use (5) to obtain

(12) uĉ1 = 〈−vĉ2, c〉 =
τ n̂− vĉ2 + vτ n̂× ĉ2

1 + vτ(n̂, ĉ2)
·

Certainly, in this case (8) is still valid as a condition for the existence of (6).

On the other hand, the scalar product of (12) with ĉ2 yields

(13) u cos γ =
τρ2 − v
1 + vτρ2

·
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We proceed similarly to the previous case by calculating the matrix element

(14) σ22 = (ĉ2,R(c) ĉ2) = (ĉ2,R(uĉ1) ĉ2) = cosψ1 + (1− cosψ1) cos2 γ

with ψ1 = 2 arctan(u) representing the Euler angle of the first rotation, which
element is known. Substituting (14) into (13) leads to

(15) v± =
τρ2 − u cos γ±
1 + uτρ2 cos γ±

, u cos γ± = ± 1√
2

√
(u2 + 1)σ22 + u2 − 1

together with the condition σ22 ≥ cosψ1.

Here, similarly to the previous case, for cos γ = 0 (σ22 = cosψ1), we have
v+ = v− = τρ2.

3. Special cases. We consider separately the cases of half turns and quarter
turns. For the former it is a necessity due to the problem of divergent scalar
parameters, while for the latter, apart from its significance in various physical
applications, our main motive is simplicity of expressions.

3.1. Half turns. If R(c) is a symmetric rotation of type (2), the expres-
sions (7), (11), (12) and (15) are ill defined since the scalar parameter τ diverges.
However, one may easily derive the corresponding expressions by considering the
limit τ →∞ and obtain for the first case

(16) vĉ2 = lim
τ→∞

〈c,−uĉ1〉 =
n̂ + uĉ1 × n̂

u(n̂, ĉ1)
,

where u should be substituted with the corresponding asymptotic solutions of (11)

u± =
1

v cos γ±
·

In this particular setting it is easy to see that the double root in the case
σ11 = cosψ2 corresponds to a half turn O(n̂) = R(vĉ2)O(ĉ1) and (16) should be
considered in the limit u→∞, namely

(17) vĉ2 = lim
u,τ→∞

〈c,−uĉ1〉 =
ĉ1 × n̂

(n̂, ĉ1)

that is only possible if v = ± tan](n̂, ĉ1) = ±(1 + ρ21)
−1/2 while the choice of the

sign depends on the orientation. In any other case, as long as cos γ 6= 0, we end
up with a pair of two equally valid solutions. In a similar way we obtain

(18) uĉ1 = lim
τ→∞
〈−vĉ2, c〉 =

n̂ + vn̂× ĉ2
v(n̂, ĉ2)

, v± =
1

u cos γ±
·

As for the case v, τ →∞, we have

(19) uĉ1 = lim
v,τ→∞

〈−vĉ2, c〉 =
n̂× ĉ2
(n̂, ĉ2)

, u = ± tan](n̂, ĉ2) = ±(1 + ρ22)
−1/2.

Another interesting case to investigate in this context is when τ is regular, but the
rotation with unknown axis is a half turn – then we consider the corresponding
limits to obtain u± = −(τρ1)

−1 for the first case and v± = −(τρ2)
−1 for the

second one, which fully complies with the results obtained in [1].
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Finally, the solutions in the cases u, τ → ∞ and v, τ → ∞ can be obtained
from (7), respectively (12) as

(20) vĉ2= lim
u→∞

〈c,−uĉ1〉=
τ ĉ1 × n̂− ĉ1
τ(n̂, ĉ1)

, uĉ1= lim
v→∞
〈−vĉ2, c〉=

τ n̂× ĉ2 − ĉ2
τ(n̂, ĉ2)

·

The conditions of vanishing denominators in (11) and (15), that may also be
retrieved from the above, we write in the form

(21) τ2ρ21
(
(1 + v2)σ11 + v2 − 1

)
= 2

and

(22) τ2ρ22
(
(1 + u2)σ22 + u2 − 1

)
= 2

respectively.

3.2. Degenerate solutions. If R(c) is a half turn itself, the condition
cos γ = 0 in the first case can be written as σ11 = cosψ2, while in the second one
we have σ22 = cosψ1. We have another geometric condition ρi = 0, i = 1, 2 for
Case 1 and Case 2 respectively, without that one only obtains the trivial solution.
This situation does not entirely fit our construction – even if the above conditions
are fulfilled, one still cannot determine the unknown axis of rotation due to the
zero denominators in (20) in the limit τ → ∞. Hence, the procedure we have
built here cannot be used for obtaining the value of the unknown scalar parameter
directly from (11) or (15). Instead, considering the limit τ → ∞ and properly
chosen scalar products which appear in (20), one obtains for the two cases

(23) u =
(ĉ1, n̂× ĉ2)

(n̂, ĉ2)
, v =

(ĉ2, n̂× ĉ1)

(n̂, ĉ1)
·

Note that the vector ĉ2 in the former case (respectively ĉ1 in the latter) cannot
be uniquely determined – it is only constrained to S1, since the two axes are
perpendicular: cos γ = (ĉ1, ĉ2) = 0 and their relative orientation with respect to
n̂ determines the value of u (respectively v), which gives rise to a one-parameter
set of solutions. Such degenerate solutions appear in the classical Euler decom-
position setting as well and the phenomenon, considered a serious obstruction in
engineering applications, is called gimbal lock. Although it is usually defined in a
slightly different context, the situation is quite similar to what we encounter here
and both phenomena can be explained with a singularity of a projection map –
the rank drops at the singular points, causing loss of a degree of freedom.

For the sake of brevity, however, we omit detailed discussions about the
topological aspects of the mappings, constructed in this paper, and concentrate
on explicit formulae instead.

3.3. Quarter turns. Here we apply the expressions derived in the previous
section to the particular case of quarter turns. More precisely, we are looking for
a decomposition of the type

(24) R(c) = Q(ĉ2)R(uĉ1)
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or, alternatively

(25) R(c) = R(vĉ2)Q(ĉ1).

Note that each of the matrices R(c), R(uĉ1) and R(vĉ2) can be a half turn itself.
Such solutions are considered at the end of this section. At present, we focus our
attention to the “generic” case ϕ,ψ1,2 6= π.

The unknowns, or the “free parameters” in the decomposition are the axis
of the quarter turn and the scalar parameter of the remaining rotation for which
the axis is given. In other words, we map an element c ∈ RP3 with a pair
of parameters in S2 × S1, slightly different from the standard ones: (ĉ2, u) and
(ĉ1, v) respectively for the two cases.

Let us begin with R(c) = Q(ĉ2)R(uĉ1). Basically, we simply need to ap-
ply (7) and (11) with v = 1 in order to obtain

(26) ĉ2 = 〈c,−uĉ1〉 =
τ n̂− uĉ1 + uτ ĉ1 × n̂

1 + uτ(n̂, ĉ1)
and

(27) u± =
τρ1 ∓

√
σ11

1± τρ1
√
σ11
·

Note that the condition that guarantees real solutions is reduced in this case to
σ11 ≥ 0. The two solutions, substituted in (26), determine two unit vectors ĉ±2 ,
or two possible axes for the quarter turn solution.

Obviously, in the case R(c) = Q(n̂) one of these solutions is trivial: u = 0,
ĉ2 = n̂ and if σ11 = 0, we end up with a double root u+ = u− = ρ1.

Similarly, considering (12) and (15) for u = 1 one gets

(28) ĉ1 = 〈−vĉ2, c〉 =
τ n̂− vĉ2 + vτ n̂× ĉ2

1 + vτ(n̂, ĉ2)
and

(29) v± =
τρ2 ∓

√
σ22

1± τρ2
√
σ22
·

As for the asymptotic behaviour (the cases involving a half turn) from (16)
and (18) considered for v = 1, respectively u = 1, we easily obtain

(30) ĉ2 = lim
τ→∞
〈c,−uĉ1〉 =

n̂ + uĉ1 × n̂

u(n̂, ĉ1)
with the obvious solution for the scalar parameter

u± = ± 1
√
σ11

in the former case and similarly

(31) ĉ1 = lim
τ→∞
〈−vĉ2, c〉 =

n̂ + vn̂× ĉ2
v(n̂, ĉ2)

leading to

v± = ± 1
√
σ22

in the latter one.
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The conditions under which the unknown parameter tends to infinity can be
written here as τ2ρ2iσkk = 1, k = 1, 2 for the two cases under consideration.

We also note that degenerate solutions are not possible in this case, while
one may encounter double roots when the corresponding diagonal element of
σ vanishes. Moreover, these double roots correspond to half turns in the case
τ →∞, as it can be easily seen from the above.

4. Quaternion parametrization. We can make use of the well known local
isomorphism between SO(3) and SU(2) to obtain another interpretation of the
above relations. As it is usually being done (see [5,6, 11]), we represent SU(2) ∼= S3
as the group of quaternions with unit norm Sp(1)

S3 = {ζ = z + wj ; z, w ∈ C, j2 = −1, |ζ|2 = 1}
and let it act in its Lie algebra of skew-hermitian matrices via the adjoint repre-
sentation Adζ , which can be viewed as a norm-preserving automorphism of R3.
One may use the notation ζ ∈ R3 for the imaginary, or vector part of the quater-
nion ζ, i.e., the vector with Cartesian coordinates ζi, i = 1, 2, 3. Then we write
ζ = (ζ0, ζ) and refer to ζ0 as the real or scalar part of ζ. With these notations
the corresponding rotation matrix can be written as

(32) R(ζ) = (ζ20 − ζ2) I + 2 ζ ⊗ ζt + 2 ζ0 ζ
×.

Comparing the latter with (1), it is easy to conclude that if ζ acts as a
rotation by an angle ϕ about the unit vector n̂, then

(33) ζ0 = cos
ϕ

2
, ζ = sin

ϕ

2
n̂

and therefore R(ζ) is a half turn for a purely imaginary quaternion (ζ0 ≡ 0) and
the identity transformation in the scalar case (ζ0 ≡ 1).

The correspondence between vector and quaternion parameters is given by
the stereographic projection of S3 onto RP3

(34) ζ20 = 1− ζ2 =
1

1 + c2
, ζ = ζ0 c.

Note that whenever ζ is a solution, so is −ζ, since the quaternion correspon-
dence built here comes from a two-fold cover. In order to keep notations simple,
we choose to write only one of these solutions – usually the one with a positive
real part. The composition law of quaternion parameters is given by

(35) ζ = 〈η, ξ〉 = η ξ

in which we may use the multiplication table of su(2) (see [4,5]) and separate the
scalar and vector parts

(36) ζ = η ξ = (ζ0, ζ) = (η0ξ0 − (η, ξ), η0 ξ + ξ0 η + η × ξ) .

Notice also that one can easily derive (5) using stereographic projection. We
refer to [2] for generalizations and applications of quaternions to inertial naviga-
tion problems.
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5. Factorizations. Let ξ = (ξ0, ξ) be the quaternion parameter, correspond-
ing to R(uĉ1) and η = (η0,η) – the one corresponding to R(vĉ2). If v and ĉ1
are known and u, ĉ2 – to be determined, this means that we are given ξ̂ – the

unit vector, associated with ξ and v =
|η|
η0

, but need to determine η̂, ξ0 and

|ξ| =
√

1− ξ20 respectively.

For the former, as long as the generic case is concerned, we use the solutions
of (11) for the derivation of

(37) ξ±0 =
1 + vτρ1 cos γ±√

(1 + v2 cos2 γ±)(1 + τ2ρ21)
, ξ± =

τρ1 − v cos γ±√
(1 + v2 cos2 γ±)(1 + τ2ρ21)

ĉ1,

where v cos γ± is calculated according to (11). As for the latter, the unit vector
η̂ = ĉ2 is determined from (7) and then the quaternion η is fully restored by

(38) η0 = (1 + v2)−
1
2 , η± = η0v ĉ±2 =

v√
1 + v2

ĉ±2 .

In a similar way we find the corresponding solutions for the case when u =
|ξ|
ξ0

and ĉ2 = η̂ are given, and then use (15) to obtain

(39) η±0 =
1 + uτρ2 cos γ±√

(1 + u2 cos2 γ±)(1 + τ2ρ22)
, η± =

τρ2 − u cos γ±√
(1 + u2 cos2 γ±)(1 + τ2ρ22)

ĉ2

with u cos γ± determined by (15), and the solutions of (12) for

(40) ξ0 = (1 + u2)−
1
2 , ξ± = ξ0u ĉ±1 =

u√
1 + u2

ĉ±1 .

We may also obtain the quaternion representation for the cases described in Sub-
section 3.1 and Subsection 3.3 by substituting the corresponding solutions in the
above expressions for ξ and η. The cases, involving a half turn, may easily be
resolved by studying the asymptotic behaviour of the generic solutions.

If, on the other hand, η corresponds to a quarter turn, we have

η0 = |η| = 1√
2
, η± =

1√
2

ĉ±2 .

The full solutions in this case are given by

ξ±0 =
1± τρ1

√
σ11√

(1 + σ11)(1 + τ2ρ21)
, ξ± =

τρ1 ∓
√
σ11√

(1 + σ11)(1 + τ2ρ21)
ĉ1

for the decomposition (24) and

η±0 =
1± τρ2

√
σ22√

(1 + σ22)(1 + τ2ρ22)
, η± =

τρ2 ∓
√
σ22√

(1 + σ22)(1 + τ2ρ22)
ĉ2

respectively

ξ0 =
1√
2
, ξ± =

1√
2

ĉ±1

for the decomposition (25).
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The above expressions are reduced in the case τ →∞ to

ξ±0 = ±
√

σ11
1 + σ11

, ξ± =
sgn(ρ1)√
1 + σ11

ĉ1

and

η±0 = ±
√

σ22
1 + σ22

, η± =
sgn(ρ2)√
1 + σ22

ĉ2.

Note that we can omit the factors sgn(ρi) since the quaternion corresponding to
a given rotation is determined up to a sign anyway – for the same reason we may
choose the scalar part to be positive and leave the factor “±” for the vector one.

The expressions for the generic case can be obtained from the above by
replacing σ11, σ22 with v2 cos2 γ± and u2 cos2 γ± respectively.

In order to have the full quaternion correspondence, however, we need to
express the solutions u± ĉ±2 and v±, ĉ±1 in terms of ζ. Using (32) and (34), we
easily obtain

(41) u± =
(ζ, ĉ1)− ζ0v cos γ±
ζ0 + (ζ, ĉ1) v cos γ±

, vĉ±2 =
ζ − ζ0u±ĉ1 + u±ĉ1 × ζ

ζ0 + u±(ζ, ĉ1)

and

(42) v± =
(ζ, ĉ2)− ζ0u cos γ±
ζ0 + (ζ, ĉ2)u cos γ±

, uĉ±1 =
ζ − ζ0v±ĉ2 + v±ζ × ĉ2

ζ0 + v±(ζ, ĉ2)
,

where c1 = uĉ1, c2 = vĉ2, while v cos γ±, u cos γ± are calculated according to (11)
and (15) respectively, and the matrix entry there is given by

σkk = ζ20 − ζ2 + 2(ζ, ĉk)
2, k = 1, 2.

In particular, for a quarter turn we have |v cos γ| =
√
σ11 in the first case, and

|u cos γ| = √σ22 in the second one.
On the other hand, with the help of (36), we may easily write the corre-

sponding expressions for ξ and η in terms of ζ. This can be viewed as a double
valued map S3 → S2 × S1, ζ → (η̂±, ξ±0 ), respectively ζ → (ξ̂±, η±0 ). The explicit
formulas are

ξ±0 =
ζ0η0 ± (ζ, ξ̂)

√
ζ20 + (ζ, ξ̂)2 − η20

ζ20 + (ζ, ξ̂)2
,

η± = ξ±0 ζ − ζ0ξ
± + ξ± × ζ, ξ± =

√
1− ξ±0

2
ξ̂

(43)

for the decomposition (24) and for (25) we obtain in a similar way

η±0 =
ζ0ξ0 ± (ζ, η̂)

√
ζ20 + (ζ, η̂)2 − ξ20

ζ20 + (ζ, η̂)2
,

ξ± = η±0 ζ − ζ0η
± + ζ × η±, η± =

√
1− η±0

2
η̂.

(44)

Concerning the solutions, corresponding to quarter turns, we only substitute

η0 =
1√
2

or ξ0 =
1√
2

, while the rest of the expressions remain the same.
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Note that the presence of half turns in this representation does not constitute
any obstruction – it merely makes a certain coordinate to vanish. Nevertheless,
the degenerate solutions, described in Section 3, may still appear: setting ζ0 =
η0 = 0 and (ζ, ξ̂) = 0 in (43) lead to indeterminacy for ξ0, so η̂ is an arbitrary
unit vector in the plane normal to ξ and ξ0 = (ζ, η̂) = ρ2 is its projection along
ζ. Similarly, whenever ζ0 = ξ0 = 0 and (ζ, η̂) = 0 in (44), the unknown scalar
part of the quaternion in the decomposition is determined through the projection
of an arbitrary (within the plane, perpendicular to η) unit vector ξ̂, namely
η0 = −(ζ, ξ̂) = −ρ1.

6. Final remarks. There are many possible extensions and generalizations
of the main construction explored in this article. For instance, one may inves-
tigate the applications to hyperbolic geometry given by the standard Lie group
homomorphisms and isomorphisms [4]. Another route is to consider decompo-
sitions of the three-dimensional rotations or Lorentz transformations into three
factors, in which the unknowns are not necessarily the angles or scalar parame-
ters as in the classical Euler setting, but using more complicated combinations of
geometrical data for both the axes and the angles.
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