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Abstract. The parametric equations of the plane curves determining the equilibrium shapes that a
uniform inextensible elastic ring could take subject to a uniform hydrostatic pressure are presented
in an explicit analytic form. The determination of the equilibrium shape of such a structure corre-
sponding to a given pressure is reduced to the solution of two transcendental equations. The shapes
with points of contact and the corresponding (contact) pressures are determined by the solutions of
three transcendental equations. The analytical results presented here confirm many of the previous
numerical results on this subject but the results concerning the shapes with lines of contact reported
up to now are revised.
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INTRODUCTION

The present paper addresses the problem for determination ofthe equilibrium shapes of
a circular inextensible elastic ring subject to a uniformly distributed external force that
acts normally to the ring in the ring plane.

Maurice Lévy [22] was the first who stated and studied the problem under considera-
tion and reduced the determination of the foregoing equilibrium shapes in polar coordi-
nates to two elliptic integrals for the arclength and polar angle regarded as functions of
the squared radial coordinate. He found also several remarkable properties of the equi-
librium ring shapes and concluded that if the pressurep is such thatp< (9/4)(D/ρ3),
whereD andρ are the ring bending rigidity and radius of the undeformed shape, respec-
tively, then the ring possesses only the circular equilibrium shape.

Later on, Halphen [17] and Greenhill [15] derived exact solutions to this problem in
terms of the Weierstrass elliptic functions on the ground of complicated analyses of the
properties of the aforementioned elliptic integrals. Halphen (see [17, p. 235]) found out
that non-circular shapes withn ≥ 2 axes of symmetry are possible only for pressures
greater thanpn = (n2

− 1)(D/ρ3). Halphen [17] and Greenhill [15] presented also
several examples of non-circular equilibrium ring shapes. It should be noted, however,
that the exact solutions reported in [17, 15], representing the polar angle as a function
of the radius, appeared to be intractable and many researchers continued searching
exact solutions [4–10], while others used various approximations [24, 13] on the way
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to determine the equilibrium shapes of the ring.
Carrier [6] was the first who reconsidered the foregoing problem for the buckling of

an elastic ring about half a century after the works by Lévy, Halphen and Greenhill. He
expressed the curvature of the deformed ring in terms of the Jacobi cosine function [14–
17] involving several unknown parameters to be determined by a system of algebraic
equations. However, he succeeded to find approximate solutions to this system only for
small deflections from the undeformed circular ring shape (see the analysis provided
recently by Adams [1] who has criticized and developed Carrier’s work [6]).

Tadjbakhsh and Odeh [24] studied the boundary-value problem describing the buckled
shapes of the ring and the associated variational problem. They proved the existence
of solutions to the boundary-value problem in the case of small deflections from the
undeformed state and the existence of solutions of the associated variational problem
(week solutions to the foregoing boundary-value problem) describing buckled shapes of
an arbitrary deflection.

Watanabe and Takagi [27] thoroughly analyzed the variational problem for determina-
tion of the ring shapes stated by Tadjbakhsh and Odeh [24] and obtained analytic expres-
sions for the curvature of the ring (in terms of the Jacobi elliptic functions and Carrier’s
parameters [6]) and formulas for the slope angle at the points where the curvature has
extrema. They also proved that non-circular shapes withn≥ 2 axes of symmetry exist
for pressures greater thanpn = (n2

− 1)(D/ρ3), thus extending Halphen’s result, and
found out, moreover, that each such shape in unique. This paper completes the branch of
analysis of the considered problem that is based more or less on the approach suggested
more than half a century ago by Carrier [6].

In the recent papers [8–11], the present authors have studied the cylindrical equi-
librium shapes of lipid bilayer membranes and the governing equation in the case of
cylindrical shapes coincides with the differential equation for the curvature of the ring.
The determination of the analytic solutions of this equation reported in [26] does not fol-
low Carrier’s approach [6]. Instead of this, the explicit formulas for the curvature of the
buckled shapes are obtained in forms similar to those suggested by Zhang [28] for lipid
bilayer membranes and by Fukumoto [14] in the context of fluid mechanics. In [26],
the parametric equations of the directrices of the considered cylindrical surfaces are ex-
pressed in an explicit form, the necessary and sufficient conditions for such a surface to
be closed are derived and several sufficient conditions for its directrix to be simple or
self-intersecting are given.

The equilibrium shapes of closed planar elastic loops subject to the constraints of fixed
length and enclosed area are studied also in the works by Arreagaet al. [3], Capovillaet
al. [5] and Guven [16].

Flahertyet al. [13] presented a numerical determination of the equilibrium shapes
of elastic rings subject to uniform external pressure. They suggested a scenario for the
evolution of the equilibrium shape as the pressure increases, however, some stages of
this scenario are not confirmed here.

The aim of the present study is to provide an analytic description of the equilibrium
states of an elastic ring subject to a uniform hydrostatic pressure going as far as possible,
to develop efficient computational procedures completing this analytic description and
to re-examine some of the most important results obtained previously.
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DIFFERENTIAL EQUATIONS FOR THE EQUILIBRIUM STATES

Let us consider a ring made of a homogeneous isotropic linearly elastic material and
assume that it is represented by its middle axis. Suppose now that the ring is subject
to a uniform external pressurep acting along the normal vector to its stress-free con-
figuration. The analysis carried out in the present work is based on the following three
assumptions: (i) the ring axis is inextensible; (ii) the pressurep preserves its magnitude
and always acts as an external uniformly distributed force along the inward normal vec-
tor to the deformed ring axis, i.e., it is a uniform (simple) hydrostatic pressure; (iii) the
deformed ring axis is a regular closed plane curveΓ parametrized by its arclengths.

Next, let the curveΓ be given by means of the coordinatesx(s), z(s)of its position
vector r(s) with respect to a certain rectangular Cartesian coordinate frame in the
Euclidean plane, i.e.,r(s) = x(s)i + z(s)j, wherei and j are the unit vectors along the
coordinate axesOX andOZ, respectively. Consequently, the unit tangent vectort(s) and
the unit inward normal vectorn(s) to the curveΓ are given as follows

t(s) = x′(s)i+z′(s)j, n(s) =−z′(s)i+x′(s)j. (1)

Here and throughout this paper primes denote derivatives with respect to the arclength
s. Recall that the foregoing unit tangent and normal vectors are related to the curvature
κ(s)of the curveΓ through the Frenet-Serret formulas [8]

t′(s) =κ(s)n(s), n′(s) =−κ(s)t(s). (2)

Finally, let M(s), N(s) andQ(s)denote the bending moment and the components of
the stress resultant forceF(s)along the tangent and normal vectors to the curveΓ, i.e.,

F(s) =N(s)t(s)+Q(s)n(s). (3)

Then, the particular constitutive equation relating the momentM(s)with the curvature
κ(s)and the form of the stress-free configuration of the ring together with the system of
differential equations

F′(s) =−pn(s), M′(s) =−F(s)·n(s) (4)

representing the local balances of the force and moment, respectively, in accordance
with the assumption (ii), and the closure conditions following from the assumption (iii),
which, without loss of generality, may be written in the form

r(L) = r(0), t(L) = t(0) (5)

whereL is the length of the deformed ring, determine entirely the equilibrium state of the
ring under consideration (see, e.g., [2, Ch. 4)]). Here and throughout this paper the dot
stands for dot (scalar) product of two vectors. Let us remark also that using equation (3)
and the Frenet-Serret formulas (2) one can represent the system of differential equations
(4) in the scalar form

N′(s) =Q(s)κ(s) (6)
Q′(s) =−N(s)κ(s)− p (7)
M′(s) =−Q(s). (8)
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PARAMETRIC EQUATIONS FOR THE EQUILIBRIUM SHAPES

The aim of this Section is to prove the most important facts concerning the problem
under consideration established by Maurice Lévy in his memoir [22] and to derive the
parametric equations of the equilibrium ring shapes.

Using the expression for the normal vector, see equations (1), one can integrate the
equilibrium condition (4) and express the force vector in the form

F(s) = pz(s)i− px(s)j (9)

omitting the constant of integration since it is always possible to eliminate it by choosing
the origin of the coordinate frame at a certain privileged point which, actually, is the one
that Lévy called “centre of the elastic forces”, cf. [22, 1◦ (p. 9)]. equation (9) implies
that at each point of the deformed ring configuration the magnitude of the force vector
F(s) = |F(s)| is proportional to the magnitude of the position vectorr(s) = |r(s)|, the
magnitude of the pressure|p|being the coefficient of proportionality (cf. [22, 2◦ (p. 9)]),
i.e.,

F(s) = |p| r(s). (10)

Next, taking the dot product of both sides of equation (9) with the normal vector one
gets, bearing in mind the second one of equations (1), the relation

F(s)·n(s) =−p[x(s)x′(s)+z(s)z′(s)]

which allows to integrate the balance of moment equation (42) and to obtain

M(s) =
p
2
(r2(s)+c) (11)

wherec is an arbitrary constant of integration, cf. [22, 3◦ (p. 9)]. It is noteworthy that the
relations (9) – (11) hold regardless of the particular material properties of the ring and
the form of its stress-free configuration.

In terms of the slope angleϕ(s)one has the expressions

x′(s) =cosϕ(s), z′(s) =sinϕ(s) (12)

κ(s) =ϕ ′(s) (13)

and using equations (12) can rewrite equations (1) in the form

t(s) = cosϕ(s)i+sinϕ(s)j (14)
n(s) =−sinϕ(s)i+cosϕ(s)j. (15)

Then, combining equations (3), (9), (14) and (15) one obtains the parametric equations
of the deformed ring shape in the form

x(s) =−
1
p

Q(s)cosϕ(s)−
1
p

N(s)sinϕ(s)

(16)

z(s) =−
1
p

Q(s)sinϕ(s)+
1
p

N(s)cosϕ(s).
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Evidently, in view of equation (14), the second one of the closure conditions (5) implies
that the rotation number of the deformed ring axis is 2mπ, wherem is an integer, i.e.,

ϕ(L) = ϕ(0)+2mπ (17)

whereas the first one of them transforms, on account of equations (11), (17) and (17),
into the obvious conditions for periodicity of the forces and moment

N(L) = N(0), Q(L) = Q(0), M(L) = M(0). (18)

Again, neither the form of the parametric equations (17) nor the forms of the boundary
conditions (17) and (18) depend on the particular material properties or the stress-free
configuration of the ring.

Let us now assume that the constitutive equation of the ring is

M(s) =D(κ(s)−κ◦) (19)

whereD is its bending rigidity andκ◦ = 1/ρ is the curvature of its stress-free configu-
ration, which is supposed to be a circle of radiusρ. Using equation (19) and the Frenet-
Serret formulas (2) we can immediately integrate the system of differential equations (6)
– (8) obtaining the following expressions for the tangent and normal components of the
stress resultant forceF(s)

N(s) =−
D
2
(κ2(s)−2µ), Q(s) =−Dκ ′(s) (20)

and the single ordinary differential equation for the ring curvature

κ ′′(s)+
1
2

κ3(s)−µκ(s)−σ = 0 (21)

where σ = p/D and µ is an arbitrary constant of integration. On the other hand,
combining equations (10), (11) and (19) we obtain the relation

N2(s)+Q2(s) =2pD(κ(s)−κ◦)− p2c

which, in view of equations (20), implies

κ ′(s)2 = P(κ(s)) (22)

whereP(κ) is a fourth-order polynomial of the curvatureκ of the form

P(κ) =−
1
4

κ4+µκ2+2σκ + ε (23)

whose free termε = −2σκ◦
−σ2c− µ2 incorporates all constants of the integrations

introduced so far. Actually, equation (22) is a first integral of equation (21) (see [26,
Section 2] for more details). In this context,ε is viewed as an arbitrary constant of
integration.
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Each sufficiently smooth real-valued solutionκ(s)of an equation of form (22) corre-
sponding to a certain triple of given values of the parametersµ, ε andσ 6= 0 generates,
up to a rigid motion in the plane, a unique plane curveΓ of curvatureκ(s). The compo-
nents of the position vector of this curve can by expressed in the form

x(s) =
1
σ

κ ′(s)cosϕ(s)+
1

2σ
(κ 2(s)−2µ)sinϕ(s)

(24)

z(s) =
1
σ

κ ′(s)sinϕ(s)−
1

2σ
(κ 2(s)−2µ)cosϕ(s)

obtained by substituting equations (20) in the general formulas (17). However, the
parametric equations (25) describe a shape that a ring of bending rigidityD could
take being subject to pressurep = σD if and only if the regarded solutionκ(s) of the
respective equation of form (22) is such that the closure conditions (17) and (18) hold
for L = 2πρ; note that the latter equality follows from the assumption (i). If this is the
case, then the respective solutionκ(s), its first derivativeκ ′(s)and its indefinite integral

ϕ(s) =
∫

κ(s)ds (25)

cf. equation (13), determine entirely the equilibrium state of the pressurized ring. Indeed,
the shape of the ring is determined explicitly by equations (25) and the values of the
moment and forces acting along the ring axes are given by the formulas (19) and (20),
respectively.

It should be remarked that each such solutionκ(s) is necessarily a periodic function
with periodL = 2πρ, due to the condition (18), and ifT is its least period, thenL = nT,
wheren is a positive integer. Sinceϕ(nT) = nϕ(T), as follows by formula (25), the
closure condition (17) takes the form

ϕ(T) =
1
n

ϕ(0)+
2mπ

n
· (26)

DETERMINATION OF THE EQUILIBRIUM SHAPES

In the present study, our primary interest is in the determination of the equilibrium ring
shapes that are curves without intersections, i.e., simple curves. Assumingϕ(0) =0, the
closure condition (26) for such a curve reads

ϕ (T) =±
2π
n

(27)

with n≥ 2 due to the four vertex theorem (see, e.g., [9]) andm=±1 since the rotation
number of a simple regular closed curve must be±2π, see [19]. Note, however, that
there exist regular closed curve with rotation number±2π, which are not simple.

Then, substituting the expressionT = (4/λ )K(k) for the least period of t he respective
solutions of equation (22) in the general formula [26, formula (23)] for the corresponding
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slope angleϕ(s)one can rewrite the closure condition (27) in the form

(A+B)(α −β )
2λ (A−B)

Π(−C,k)+
Aβ −Bα
λ (A−B)

K(k) =±
π
2n

(28)

where

α, β , γ =−
α +β

2
+ iη , δ =−

α +β
2

− iη , (α < β )

are the roots of the polynomial (23) and

A=

√

4η2+(3α +β )2
, B=

√

4η2+(α +3β )2

λ =
1
4

√

AB, k=

√

1
2
−

4η2+(3α +β )(α +3β )
2AB

·

Finally, substituting the same expression for the periodT in the relationL = nT in
order to take into account that the length of the ringL is fixed and does not change upon
deformation, see assumption (i), one obtains

1
λ

K(k) =
π
2n

· (29)

after setting for simplicity, without loss of generality,L = 2π, i.e.,κ◦ = ρ = 1.
The left-hand sides of equations (28) and (29) can be expressed as functions of the

positive parametersσ , η andq = β −α. Thus, given an integern ≥ 2 and a pressure
p by means of the parameterσ (called hereafter simply “pressure”) the problem for
the determination of the foregoing equilibrium shapes of the ring corresponding to this
pressure is reduced to the computation of the values ofη andq from the transcendental
equations (28) and (29).

a b c

FIGURE 1. Equilibrium ring shapes corresponding to: a)σ = 4.75 (2-fold symmetry); b)σ = 16.25
(3-fold symmetry); c)σ = 35.25 (4-fold symmetry).

It is important to notice that this problem has no nontrivial solution if 0< σ ≤ σbn
and has a unique nontrivial solution ifσ > σbn, see [27, Theorem 2]. Here,σbn= n2

−1
is the so-called buckling pressure and by a trivial solution we mean the one, which
corresponds to the ring shape that is a circle of radiusρ = 1.

Given an integern ≥ 2 and a pressureσ > σbn, the transcendental equations (28)
and (29) are solved numerically in two steps usingMathematicar. First, the two
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curves in the(η ,q) plane defined by equations (28) and (29) are plotted using the
routineContourPlot in order to identify roughly the values of the coordinates of
their intersection point. Then, these values are put as starting values in the routine
FindRoot, which is employed to obtain the solutionsη and q of the system of
equations (28), (29) with a sufficient accuracy. Once such a solution is determined,
formulas [12, (38), (39), (40), (44)] and the parametric equations (25) allow to depict
the corresponding equilibrium ring shapes using the routineParametricPlot. Three
examples of such shapes, which confirm the results presented in [13] are given in Fig. 1.

EQUILIBRIUM SHAPES WITH POINTS OF CONTACT

It is established in [24, 13] that for each moden= 2,3,4 there is a value of the pressure
σ , called contact pressure and denoted byσcn, at which some points of the respective
buckled ring shape ofn-fold symmetry come into contact. In the aforementioned works,
it is also observed that if the applied pressureσ is such thatσbn < σ < σcn, then the
corresponding buckled shape ofn mode is simple. It should be noted, that the values
for the contact pressures reported in [24, 13] are obtained solving numerically a rather
complicated nonlinear boundary-value problem.

In the present study, the determination of the non-circular equilibrium ring shapes
with points of contact and the respective contact pressures is reexamined being reduced
to the computation of the common solutions of the transcendental equations (28), (29)
and one more transcendental equation in the way described below.

Proceeding to the examination of this problem, let us first clarify, slightly extending
the definition used in [13], that ann-mode equilibrium ring shapeΓn is said to have a
point of contact if it is not self-intersecting, but there is at least one couple of valuess1
ands2 of the arclengths such that 0< s1 < s2 < L and

r(s2) = r(s1), t(s2) =−t(s1). (30)

This means that at the point of contactr(s2) = r(s1) the curveΓn is tangent to itself.
Such a double point on a curve is called acuspor tacnode, see [23]. The objective
now is to reformulate the above conditions in a form suitable for the developing of
an efficient procedure for computation of the contact pressures corresponding to the
foregoing equilibrium ring shapes.

For that purpose, it is convenient to use the relations

κ(s) =
σ
2

r2(s)−
µ2+ ε

2σ

and

r(s) · t(s) =
1
σ

κ ′(s), r(s) ·n(s) =−
1

2σ
(κ 2(s)−2µ)

which follow from equations (22) – (25) and allow, taking into account equations (14)
and (15), conditions (30) to be cast in the form

κ(s2) = κ(s1), κ ′(s2) =−κ ′(s1) (31)
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κ2(s2)−2µ = κ2(s1)−2µ = 0 (32)

ϕ(s2) = ϕ(s1)+(2l+1)π (33)

wherel is an integer.
It is shown in [12] that conditions (31) – (33) take the form

ϕ(s−1 ) =
π
n
−

π
2
, ϕ(s+1 ) =−

π
2

(34)

where

s±1 =
1
λ

F

(

arccos
Aβ +Bα ±

√
2µ(A+B)

Aβ −Bα ±
√

2µ(A−B)
,k

)

(35)

are the two solutions of the equationκ2(s) =2µ that belong to the interval[0,T/2], and
F(·, ·) is the incomplete elliptic integral of the first kind.

Thus, two triples of transcendental equations (28), (29) and (34)1 or (34)2 arise for
the determination of then-mode equilibrium ring shapes with points of contact. In
both cases, the respective transcendental equations involve as unknowns only the four
parametersσ , η , q andn since the arclengthss−1 ands+1 , which may correspond to points
of contact are determined explicitly in terms of these parameters by formulas (35), and
the same holds true for the left hand sides of equations (34)1 and (34)2 in view of the
general expression [26, (23)] for the slope angle. Of course, one should remember that
the sign of the right hand side of equation (27) is plus in this context.

To summarize: given an integern≥ 2, each solution of any one of the aforementioned
two triples of transcendental equations gives the value of the contact pressureσcn and
the values of the parametersη andq determining in this way an equilibrium ring shape
of n-fold symmetry with points of contact.

Solving numerically the foregoing two systems of transcendental equations using the
routineFindRoot in Mathematicar we have found that the system consisting of
equations (28), (29) and (34)2 does not have solutions for 2≤ n ≤ 15, but the system
of equations (28), (29) and (34)1 has a unique solution for each such moden. Our
conjecture is that this happens for all modes. The equilibrium ring shapes with points of
contact corresponding to the contact pressuresσc2, σc3 andσc4 are depicted in Fig. 2.

a b c

FIGURE 2. Ring shapes with points of contact: a)σ = 5.247; b)σ = 21.65; c)σ = 51.844.

The values of contact pressuresσcn obtained forn= 2,3,4 confirm exactly the results
presented in [13, formulas (2.11)], see also Fig. 2, but the latter are interpreted therein
as the lowest values of the pressures at which an isolated point of contact occurs. In
[13], it is claimed that for each moden there exists a continuous range of pressures,
from σcn up to a certain pressure denoted byσ0n, such that for eachσcn ≤ σ ≤ σ0n the
respective ring shape exhibits contacts at isolated points only. The pressureσ0n is set
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in [13] to be the one for which the curvature at the corresponding contact point is zero.
If so, however, then in view of equations (32)µ = 0 ands−1 = s+1 = s0. Therefore, the
equationκ(s)−2µ = 0 has exactly one solution fors∈ [0,T1/2]and hence, according to
[26, Theorem 3], the corresponding ring shape is self-intersecting. Thus, in this respect
the results of Flahertyet al. [13] turn out to be inaccurate in spite of the fact that they
are widely accepted and even confirmed numerically by other authors (see, e.g., [4]).

Actually, for all modesn in the range 2≤ n≤ 15 our computations show that if the
applied pressureσ is such thatσbn< σ < σcn, then the corresponding buckled shape of
n mode is simple, while forσ > σcn this shape always has points of self-intersection.
Our conjecture is that this behaviour is inherent to all modes. Let us recall that for each
σ >σbn the corresponding ring shape ofn-fold symmetry is unique, see [27, Theorem 2].

EQUILIBRIUM SHAPES WITH LINES OF CONTACT

Apparently, for rings of finite thickness self-intersectingshapes are not possible because
they are not planar, nevertheless for a very thin ring such a shape may be considered as a
good approximation of its equilibrium state. There is a good reason to expect that rings
of finite thickness subject to sufficiently high pressure posses equilibrium shapes with
lines of contact.

Flahertyet al.[13] suggest similarity transformations to be used for the determination
of such shapes, but realize this idea in a very complicated way. Moreover, the construc-
tion developed in [13] for the said purpose makes use of the curvesΓ0n corresponding to
the pressuresσ0n, which are wrongly regarded as curves with isolated points of contact
as it was noted and discussed above.

Below, an alternative approach is presented for constructing equilibrium ring shapes
with lines of contact based on the same “similarity” idea that actually arises out of the
following property of equations (21) and (22).

Under the transformation(s,κ) 7−→ (s/τ,τκ), whereτ is an arbitrary real number,
each equation of form (21) corresponding to certain constantsµ andσ transforms into
an equation of the same form but with new coefficients:µ 7−→ τ2µ, σ 7−→ τ3σ . The
same holds true for equation (22) ifε 7−→ τ4ε in addition. In other words, equations (21)
and (22) are invariant with respect to the similarity transformationΛ : (s,κ; µ,σ ,ε) 7−→
(s/τ,τκ;τ2µ,τ3σ ,τ4ε). Consequently, the parametric equations (25) imply that the
shapes whose parameters are related by such a transformationΛ are similar, the re-
spective scaling factor being 1/τ. Accordingly, if a closed curveΓ is scaled in this way,
then its lengthL and areaA change toL/τ andA/τ2, respectively.

Thus, givenn≥ 2, let the curveΓcn of lengthLcn= 2π be the equilibrium shape with
points of contact corresponding to the contact pressureσcn and letΓ̂ be the shape (of the
same length) with lines of contact corresponding to a pressureσ̂ > σcn. The curveΓ̂ is
constructed in two steps. First, scaling the curveΓcn with a factor(σ̂/σcn)

1/3 one obtains
another curvêΓcn which has the same number of contact points because it is similar to
the curveΓcn but corresponds to the pressureσ̂ and its length iŝLcn = 2π(σcn/σ̂)1/3

<

Lcn. Then, the curvêΓ is obtained by substituting each point of contact of the curveΓ̂cn

by a line segment of length 2π(1− (σcn/σ̂)1/3)/n along the respective symmetry axis
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of the curveΓ̂cn so as its total length to become 2π. Examples of shapes with lines of
contact are presented in Fig. 3 and Fig. 4.

It is clear that the tangent, normal and position vectors of a shapeΓ̂ with lines of
contact constructed in the foregoing way are continuous at each point of the curve
Γ̂. However, its curvature suffers jumps at the end points of the line segments used
to substitute the contact points of the respective auxiliary curveΓ̂cn because the limit
values of the curvature from the bent parts of the curve and from the line segments
are−

√
2µ 6= 0 and zero, respectively. Consequently, the moment and force also suffer

jumps at the aforementioned points since their limit values from the bent parts of the
curve are

Mb =−D
(

√

2µ +κ◦

)

, Nb = 0, Qb =±D

√

P
(

−

√

2µ
)

(36)

while along each line of contact the resultant pressure is zero and

Ml =−Dκ◦
, Nl = 0, Ql = 0. (37)

Equations (36) and (37) are consequences of the constitutive equation (19), the general
solution (20) of equations (6) – (8) and equation (22).

a b c

FIGURE 3. Shapes with lines of contact corresponding to: a)σ = 10.34 (2-fold symmetry); b)
σ = 81.81 (3-fold symmetry); c)σ = 207.2 (4-fold symmetry).

a b c

FIGURE 4. Shapes with lines of contact corresponding to: a)σ = 400 (6-fold symmetry); b)σ = 800
(9-fold symmetry); c)σ = 1500 (12-fold symmetry).

Thus, the local balances (4) of the force and moment are violated for the shapes with
lines of contact. Fortunately, however, the total balances

∮

Γ̂
F′(s)ds=−

∮

Γ̂
pn(s)ds,

∮

Γ̂
M′(s)ds=−

∮

Γ̂
F(s)·n(s)ds (38)

of these quantities are satisfied. Indeed, equations (38) hold on the curveΓ̂cn since it cor-
responds to an equilibrium shape without jump discontinuities of the force and moment.
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On the other hand,̂Γ = Γ̂cn ∪ {Line segments} and the integrals in equations (38) taken
along the line segments are equal to zero becausep= 0, M′(s) =0 andF(s) =0 there.

In our opinion, this property of the constructed curvesΓ̂ allows these shapes to be
regarded as equilibrium ring shapes with lines of contact at least in the week sense
discussed above.

CONCLUDING REMARKS

In the present study, the problem for determination of the equilibrium shapes of a circular
inextensible elastic ring subject to a uniform hydrostatic pressure is reexamined. This
problem was stated and studied by Maurice Lévy in his memoir [22] more than a century
ago. Here, a concise derivation of the most important facts established in [22], see 1◦

– 3◦ (p. 9), concerning the existence of a “centre of the elastic forces”, following by
equation (9), and the properties reflected by equations (10) and (11) is given in Section
3. Then, the parametric equations of the equilibrium shapes are expressed through the
forces and slope angle, see equations (17). It is noteworthy that neither the relations (9)
– (11) nor the forms of the parametric equations (17) or boundary conditions (17) and
(18) depend on the particular material properties or stress-free configuration of the ring.

Further, assuming that the stress-free configuration of the ring is a circle of radiusρ,
the case of a linear constitutive equation of form (19) is considered. In this case, the
equilibrium state of the ring is determined by the periodic solutions of the nonlinear or-
dinary differential equation (22) for the ring curvature, which meet the closure condition
(26). In fact, the shape of the ring is given explicitly by the parametric equations (25)
and the values of the moment and forces acting along the ring axes are obtained by equa-
tions (19) and (20), respectively, using the explicit analytic expressions for all periodic
solutions of equation (22) and for the corresponding slope angles presented in [26].

With these results, the determination of the equilibrium shapes corresponding to
a given pressureσ is reduced to the computation of the common solutions of two
transcendental equations (28) and (29). It is also shown that the pressures at which
the ring attains a shape with isolated points of contact can be obtained computing the
common solutions of three transcendental equations (28), (29) and (34)1. In contrast to
the assertion in [13] that for each moden there exists a range of pressures for which
the respective ring shape has only isolated points of contact, we found, that for each
mode 2≤ n≤ 15 there is a unique such pressure, namelyσcn. Moreover, for all modes
in the range 2≤ n ≤ 15 our computations show that if the applied pressureσ is such
that σbn < σ < σcn, then the corresponding buckled shape ofn mode is simple, while
for σ > σcn this shape always has points of self-intersection. Our conjecture is that this
behaviour is inherent to all modes.

Section 8 concerns the equilibrium ring shapes with lines of contact that are expected
to occur for pressures greater than the respective contact pressure instead of the self-
intersecting shapes (unnatural for planar rings) predicted by the considered model. Here,
the construction of these shapes is based on the similarity properties of equations (22)
and (25) following in general outline the idea suggested by Flahertyet al. in [13], but the
uniqueness of the contact pressuresσcn is taken into account. The shapes obtained in this
way are shown to satisfy the total balances (38) of the respective forces and moments,
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which is a good reason to consider them as equilibrium shapes.
The interested reader can find theMathematicar notebooks developed for the

solution of the transcendental equations (28), (29) and (34)1 as well as the note-
books developed for the construction of the shapes with lines of contact by visiting
http://www.bio21.bas.bg/ibf/dpb_files/mfiles/.
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