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Abstract. The work is concerned with the determination of explicit parametric equations of several
plane curves whose curvature depends solely on the distance from the origin. Here we suggest
and exemplify a simple scheme for reconstruction of a plane curve if its curvature belongs to the
above-mentioned class. Explicit parameterizations of generalized Cassinian ovals including also the
trajectories of a charged particle in the field of a magnetic dipole are derived in terms of Jacobian
elliptic functions and elliptic integrals.
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INTRODUCTION

Remarkably, the curvature of a lot of the famous plane curves (see [5, 14]), such as conic
sections, Bernoulli’s lemniscate, Cassinian ovals and many others, depends solely on the
distance from a certain point in the Euclidean plane, which may be chosen as its origin.

The most fundamental existence and uniqueness theorem in the theory of plane curves
states that a curve is uniquely determined (up to Euclidean motion) by its curvature given
as a function of its arc-length (see [3, p. 296] or [9, p. 37]). The simplicity of the situation
however is quite elusive because in many cases it is impossible to find the sought-
after curve explicitly. Having this in mind, it is clear that if the curvature is given by a
function of its position the situation is even more complicated. Viewing the Frenet-Serret
equations as a ficticious dynamical system it was proven in [11] that when the curvature
is given just as a function of the distance from the origin the problem can always be
reduced to quadratures. The cited result should not be considered as entirely new because
Singer [10] had already shown that in some cases it is possible that such curvature gets
an interpretation of a central potential in the plane and therefore the trajectories could be
found by the standard procedures in classical mechanics. The approach which we will
follow here, however is entirely different from the group-theoretical [11] or mechanical
[10] ones proposed in the aforementioned papers. The method is illustrated on a class of
curves whose curvature depend solely on the distance from the origin.
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THE FRENET-SERRET EQUATIONS

If x(s),z(s)and θ(s)denote the Cartesian coordinates of a curve in the planeXOZ and
the slope of the tangent to it with respect to theOX axis regarded as functions of the
arc-length parameters one has the following geometrical relations

dθ(s)
ds

= κ(s),
dx(s)

ds
= cosθ(s),

dz(s)
ds

= sinθ(s) (1)

which can be deduced from the Frenet-Serret equations

dx
ds

= T,
dT
ds

= κN,

dN
ds

=−κT (2)

as well (see also Fig. 1) in whichx= (x,z),T andN are respectively the position, tangent
and normal vectors to the curve. Let us recall that

T = (cosθ ,sinθ) , N = (−sinθ ,cosθ) . (3)

We will proceed (as suggested but not pursued in [10]) by going to the so-called co-
moving frame(T,N) associated with the curve in which

x = ξ T+ηN. (4)

According to the Frenet-Serret equations (2), the componentsξ (s) and η(s) of the
position vector with respect to the co-moving frame meet the following equations

ξ̇ = κη +1, η̇ =−κξ . (5)

Hereafter, the dot indicates differentiation with respect to the arc-length parameters.
Below, it is shown that in the cases when the curvature of a curve depends solely on the
distance from the origin, equations (5) allow the componentsξ andη of the position
vector and the slope angleθ to be expressed by quadratures.

FIGURE 1. Geometry of the plane curve.
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INTEGRATION

Multiplying the first equation in (5) byξ , the second one byη and summing the so
obtained expressions we find that

ξ = r ṙ (6)

since
ξ 2+η2 = r2 (7)

as follows by equation (4), wherer = |x| =
√

x2+z2. Substituting expression (6) back
into the second one of equations (5) and integrating we obtain

η = g(r)+c (8)

where
g(r) =−

∫

rκ(r)dr (9)

andc is the integration constant. In view of equations (6) and (8), relation (7) leads to
the following first-order ordinary differential equation

ṙ2 =
1
r2

[

r2
− (g(r)+c)2

]

(10)

for the radial coordinater.
Thus, given explicitly the curvatureκ of a plane curve as a function of the radial

coordinater, one can try to express the general solution of equation (10) in a suitable
explicit form. If such an attempt is successful, then the componentsξ and η of the
position vector can be found explicitly by equations (6), (8) – (10), while the expression
for the slope angleθ can be obtained by solving the integral in the right-hand-side of
the relation

θ(s) =
∫

κ(r(s))ds (11)

which is implied by the first of equations (1).

CASSINIAN OVALS

Let Γ be a plane curve given implicitly by the equation

F(x,z) =0.

Then the curvatureκ of the curveΓ is determined, see e.g. [6], by the well-known
relation

κ(x,z) =
|FxxF2

z −2FxzFxFz+FzzF2
x |

(F2
x +F2

z )
3/2 |F=0. (12)

A Cassinian Oval is a plane curve given by a quartic polynomial equation of the form

F(x,z) =
[

(x−a)2+z2
][

(x+a)2+z2
]

−b4 = 0 (13)
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wherea andb are real numbers, see, e.g., [14]. Hence, according to formulas (12) and
(13), the curvature of the Cassinian Oval has the form

κ =
a4

−b4

2b2r3 +
3r
2b2 · (14)

GENERALIZED CASSINIAN OVALS

One can generalize the expression for the curvature of the Cassinian oval by writing it
in the form

κ =
λ
r3 +3µr (15)

in which λ and µ are assumed to be real constants. Next, one can try to find the
respective parametric equations of the curves whose curvature is specified in (15) by
using the approach described in the previous section. It is easy to be seen that strongly
positive values of the parametersλ andµ reproduce exactly the Cassinian oval due to
the relations

b2 =
1

2µ
, a4 =

4λ µ +1
4µ2 · (16)

The above range of parameters could be easily extended by adding negative values ofλ
which fulfill together withµ the inequality

4λ µ +1> 0. (17)

However, for any other combination of their values one will get some curve which should
be considered as a deformation of the parent curve. In the present paper this idea is
traced in the following two cases: (I)λ ,µ 6= 0 and choosing the integration constantc in
equation (10) to be zero, (II)µ = 0, c< 0 and 0< λ < c2

/4.
In the first case, it is convenient to treat the problem in terms of the variableζ = r2,

which means, according to formulas (15), (6) and (8) – (10), that

κ =
λ

ζ 3/2
+3µ

√

ζ , g=
ζ 2µ −λ
√

ζ
, ξ =

1
2

ζ̇ , η = g (18)

and

ζ̇ 2 =
4µ2

ζ
R(ζ ) (19)

where

R(ζ ) =−

(

ζ 2+
1
µ

ζ −
λ
µ

)(

ζ 2
−

1
µ

ζ −
λ
µ

)

.

In terms of a new variableτ such that

dτ
ds

=
2µ

√

ζ (τ)
(20)
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as a consequence of relations (20), (18), (19), and (11) we have

ξ (τ) =
µ

√

ζ (τ)
dζ (τ)

dτ
, η(τ) =

λ −µζ 2(τ)
√

ζ (τ)
(21)

(

dζ
dτ

)2

= R(ζ ) (22)

and

θ(τ) =
∫

(

λ
2µ

1
ζ (τ)

+
3
2

ζ (τ)
)

dτ. (23)

Using the approach described in the Appendix one can obtain the general solution of
equation (22) in the form

ζ (τ) = α +
(δ −α)(γ −α)

(γ −α)+(δ − γ)sn2(ωτ,k)
(24)

whereα < β < γ < δ are the roots of the polynomialR(ζ ) and

k=

√

(β −α)(δ − γ)
(γ −α)(δ −β )

, ω =
1
2

√

(γ −α)(δ −β ).

Evidently, the roots of the polynomialR(ζ ) are

±
1

2µ

(

√

1+4µλ +1
)

, ±
1

2µ

(

√

1+4µλ −1
)

.

They should be real, otherwise equation (22) does not have real solutions, which implies
the restriction (17) on the values of the parametersµ andλ . Depending on the signs of
the foregoing parameters, one can denote properly each of the above expressions so as
α < β < γ < δ . For instance, whenµ > 0 andλ > 0 the roots can be chosen as follows

α =−δ =−
1

2µ

(

√

1+4µλ +1
)

, β =−γ =−
1

2µ

(

√

1+4µλ −1
)

.

Solving the integral in the right hand side of equation (23) one obtains the explicit
expression

θ(τ) =
3α2µ +λ

2αµ
τ +

λ (α −δ )
2αδ µω

Π1(τ)−
3(α −δ )

2ω
Π2(τ) (25)

for the slope angle, where

Π1(τ) = Π
(

α(δ − γ)
δ (α − γ)

,am(τω,k) ,k

)

, Π2(τ) = Π
(

δ − γ
α − γ

,am(τω,k) ,k

)

.

85



Here,Π(·, ·, ·) and am(·, ·) denote the incomplete elliptic integral of the third kind and
respectively the Jacobi amplitude (more details on the subject of elliptic functions and
integrals can be found in [1, 8] and [13]).

In this way, the parametric equations according to formulas (3) and (4) can be written
in the form

x(τ) = ξ (τ)cosθ(τ)−η(τ)sinθ(τ)

z(τ) = ξ (τ)sinθ(τ)+η(τ)cosθ(τ)
(26)

in which the necessary ingredients are specified by the equations (21), (24) and (25).
Actually, this is a new parametrization of the Cassinian ovals, which is different from
those obtained previously (see, e.g., [2, 7]).

In case (II), taking into account equations (15), (6) and (8) – (10), we have

κ =
λ
r3 , g=

λ
r
, ξ = r ṙ, η =

λ
r
+c (27)

and

ṙ2 =
1
r4P(r) , P(r) =

(

r2+cr+λ
)(

r2
−cr−λ

)

. (28)

In terms of a new variableτ such that

dτ
ds

=
1

r2(τ)
(29)

as a consequence of relations (29), (27), (28), and (11) we have

ξ (τ) =
1

r(τ)
dr(τ)

dτ
, η(τ) =

λ
r(τ)

+c (30)

(

dr
dτ

)2

= P(r) (31)

and

θ(τ) =
∫ λ

r(τ)
dτ. (32)

It should be noted that the polynomialP(r) has four real rootsα < β < γ < δ , which
read

α =−
1
2

(

√

c2+4λ −c
)

, β =
1
2

(

√

c2+4λ +c
)

γ =−
1
2

(

√

c2−4λ +c
)

, δ =
1
2

(

√

c2−4λ −c
)

.

Using the approach described in the Appendix one can write down the general form
of a bounded solution to equation (31) as follows

r(τ) = β +
2
[

c3+
(

c2+2λ
)
√

c2+4λ +4cλ
]

sn2(ντ,k)

c2+
√

c4−16λ 2−2
(

c2+2λ +c
√

c2+4λ
)

sn2(ντ,k)
(33)
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where

ν =

√

c2+
√

c4−16λ 2

2
√

2
, k=

√

c2−
√

c4−16λ 2

c2+
√

c4−16λ 2
·

Solving the integral in the right hand side of equation (32) one obtains the explicit
expression

θ(τ) =
4
√

2
[

c3+
(

c2+2λ
)
√

c2+4λ +4cλ
]

Π3(τ)
(√

c2+4λ +c
)2√√

c4−16λ 2+c2
−

[

c
(√

c2+4λ +c
)

+2λ
]

τ
√

c2+4λ +c

(34)
for the slope angle, where

Π3(τ) = Π
(

−
4λ

c2+
√

c4−16λ 2
,am(ντ,k),k

)

.

In this way, the parametric equations of the considered type of curves, which are
of form (26), are obtained in an explicit form through the expressions (30), (33) and
(34). Several examples of curves of curvatureκ = λ/r3, which can be thought of as
trajectories of charged particles in the field of a magnetic dipole are drawn in Figure 2
using the foregoing parametric equations.

(a) (b) (c)

FIGURE 2. Closed plane curves of curvature (15) corresponding toµ = 0 andλ = 1 drawn using the
parametric equations (26), (30), (33), (34): (a)c=−2.00449; (b)c=−2.04563; (c)c=−2.17243.

APPENDIX

Consider the first-order nonlinear ordinary differential equation
(

dr
dτ

)2

= a0r4+4a1r3+6a2r2+4a3r +a4 (35)

whereai (i = 0, . . . ,4) are real constants. The polynomial

P(r) = a0r4+4a1r3+6a2r2+4a3r +a4

appearing on the right hand side of equation (35) is of fourth degree with respect to
the variabler, which allows, following [12, 13], to express the general solution of the
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foregoing nonlinear ordinary differential equation (provided that the polynomialP(r)
does not have multiple roots), in the form

r (τ) = ρ +

√

P(ρ)℘′ (τ,g2,g3)+
1
2P′ (ρ)

(

℘(τ,g2,g3)−
1
24P′′ (ρ)

)

+ 1
24P(ρ)P′′′′ (ρ)

2
(

℘(τ,g2,g3)−
1
24P′′ (ρ)

)2
−

1
48P(ρ)P′′′′ (ρ)

(36)
whereρ is a constant,℘(τ,g2,g3) is the Weierstrass elliptic function,τ is its argument
andg2 andg3 are the so called invariants of the polynomialP(r), which have the form

g2 = a0a4−4a1a3+3a2
2, g3 = a0a2a4+2a1a2a3−a3

2−a0a2
3−a2

1a4

and the primes indicate differentiations with respect to the arguments of the functions.
If r̊ is just a simple root of the polynomialP(r), then the expression (36) simplifies

significantly and takes the form

r (τ) = r̊ +
1
4

P′(r̊)

℘(z,g2,g3)−
1
24P′′(r̊)

· (37)

The knowledge of the sign of the discriminant

∆ = g3
2−27g2

3 (38)

of the Weierstrass elliptic function℘(τ,g2,g3), the quarticP(r) and the cubic polyno-
mial

R(τ) = 4τ3
−g2τ −g3

is enough to express the solution of equation (35) in terms of Jacobi elliptic functions.
First, let us remark that the polynomialsP(φ) andR(τ) do not have multiple roots if
and only if∆ 6= 0, see [4]. In each such case the Weierstrass elliptic function appearing
in the solution (37) to equation (35) can be expressed, cf. [1], as follows

(i) if ∆ > 0, then

℘(τ,g2,g3) = e3+
e1−e3

sn2(
√

e1−e3τ,m)
, m=

e2−e3

e1−e3
(39)

wheree1 > e2 > e3 are the roots of the cubic polynomialR(τ), which, in this case, are
real and sn(·, ·) is the Jacobi sine function.

(ii) if ∆ < 0, then the polynomialR(τ) has one real roote2 and a couple of complex
conjugated rootse1, e3 and

℘(τ,g2,g3) = e2+H2
1+cn

(

2τ
√

H2,m
)

1−cn
(

2τ
√

H2,m
) , m=

1
2
−

3e2

4H2
, H2 =

√

3e2
2−

g2

4
· (40)

where cn(·, ·) is the Jacobi cosine function.
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