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Géométrie différentielle
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Abstract

The Sturm spirals which can be introduced as those plane curves whose
curvature radius is equal to the distance from the origin are embedded into one-
parameter family of curves. Explicit parametrization of the ordinary Sturmian
spirals along with that of a wider family of curves are found and depicted
graphically.
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1. Introduction. The fundamental existence and uniqueness theorem in
the theory of plane curves states that a curve is uniquely determined (up to
Euclidean motion) by its curvature given as a function of its arc-length (see
[1], p. 296 or [8], p. 37). The simplicity of the situation, however, is elusive
as in many cases it is impossible to find the curve explicitly. Having that in
mind, it is clear that if the curvature is given as a function of its position, the
situation is even more complicated. A nice exception is provided by the Euler’s
elastica curves [3,6, 7] whose curvature actually is a function of the distance from
a fixed line in the Euclidean plane. Viewing the Frenet-Serret equations as a
fictitious dynamical system, it was proven in [11] that when the curvature is
given just as a function of the distance from the origin the problem can always
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be reduced to quadratures. This last result is not entirely new as Singer [10]
has already shown that in some cases it is possible that such curvature gets an
interpretation of a central potential in the plane and, therefore, the trajectories
(the sought-after curves) can be found by the standard procedures in classical
mechanics. However, the approach which we will follow here is entirely different
from the group-theoretical [11] or mechanical [10] ones proposed in those papers.
The method is illustrated upon the most natural example in the class of curves
which curvatures are functions only of the distance from the origin. Here we
consider the case in which the function in question is inversely proportional,
namely,

(1) κ =
σ

|x|
=
σ

r
=

σ√
x2 + z2

, σ > 0,

where x, z are the Cartesian coordinates in the plane XOZ which have to be
considered as functions of the arc-length parameter s, and σ is assumed to be a
positive real constant.

2. The Frenet-Serret equations. If θ(s) denotes the slope of the tan-
gent to the curve with respect to the OX axis one has the following geometrical
relations:

(2)
dθ(s)

ds
= κ(s),

dx

ds
= cos θ(s),

dz

ds
= sin θ(s),

which can be deduced also from the Frenet-Serret equations (see also Fig. 1)

(3)
dx(s)

ds
= T(s),

dT

ds
= κN,

dN

ds
= −κT,

where T and N are the tangent and the normal vector to the curve respectively.
Combining (1) and (2) we receive

(4)
dθ(s)

ds
=

σ√
x2 + z2

Fig. 1. Geometry of the plane curve
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which is still a quite unpromising equation. We will proceed (as suggested but
not pursued in [10]) by going to the co-moving frame associated with the curve

(5) x = ξT + ηN

and accordingly the Frenet-Serret equations (3) now read

(6)
dξ

ds
= ξ̇ = κη + 1,

dη

ds
= η̇ = −κξ, κ =

σ√
ξ2 + η2

·

3. Integration. Multiplying the first equation in (6) by ξ, the second one
by η and summing the so obtained expressions, we find that

(7) ξ = rṙ,

where the dot means a differentiation with respect to the arc-length parameter.
Substituting this expression back into equation (6) and integrating we obtain

(8) η = −
∫
κ(r)rdr + c,

where c is the integration constant. One should notice, however (cf. equation (5)),
that the coordinates in the moving frame are not entirely independent but obey
to the constraint

(9) ξ2 + η2 = r2,

which in view of equations (7) and (8) presents an ordinary differential equation
for the radial coordinate.

4. Sturm spirals. By their very definition (cf. [13]) these plane curves pos-
sess the property that at each point their curvature radius R is equal to the
distance r from the origin. Formulated in curvature terms this means that their
curvature κ is given by formula (1) in which σ ≡ 1. Applying the scheme from
the previous section one easily gets

(10) η = −r + c

and

(11) ṙ =

√
2cr − c2
r

, c > 0.

It is convenient to perform the integration of the above equation by switching to
a new independent variable t defined by equation

(12)
ds

dt
= r.

This leads to the following results:

(13) r =
c

2

(
t2 + 1

)
, ξ = ct, η =

c

2

(
1− t2

)
.

Compt. rend. Acad. bulg. Sci., 64, No 5, 2011 635



Integration of the first equation in (2) gives us additionally that the new parameter
t coincides (up to a real constant) with the slope angle, i.e.,

(14) θ = t.

By rewriting equation (5) in its components one has also the relations

(15) x = ξ cos θ − η sin θ, z = η cos θ + ξ sin θ,

which combined with the above findings provides the sought parameterization of
the Sturm spirals

(16) x = c

(
t cos t+

t2 − 1

2
sin t

)
, z = c

(
1− t2

2
cos t+ t sin t

)
.

Making use of the above formulas one easily finds also the arc-length as a function
of the parameter t, i.e.,

(17) s =
c

2

(
t3

3
+ t

)
.

By exchanging the numerical parameter c for 2ρ and taking into account the
fundamental for this curve relation R ≡ r, the above formula can be written into
the form, which is nothing else but the intrinsic equation of the Sturm spiral

(18) s =
R+ 2ρ

3

√
R− ρ
ρ
·

5. Generalized Sturm spirals. Due to the restriction on the allowed values
of σ one can consider as well the other two obvious possibilities, σ > 1 and
0 < σ < 1 which have to be viewed as a generalization of the ordinary Sturmian
spirals.

5.1. Case σ > 1. Here we will just outline the main ingredients of deriva-
tion (following again the scheme exposed in Section 3) starting with the equations

(19) η = −σr + c and
dr

ds
=

√
(1− σ2)r2 + 2cσr − c2

r
·

One easily concludes that the expression under the radical on the right-hand side
is positive provided that c > 0 and r belongs either to finite or infinite interval,
i.e.,

(20)
c

σ + 1
≤ r ≤ c

σ − 1
and σ > 1 or r >

c

σ + 1
and σ < 1.

As the subsection title suggests our immediate task is to consider the first of the
possibilities presented above.

Exchanging as before (cf. equation (12)) the arc-length parameter with t
leads to the formula

(21) r =
c

σ2 − 1
(σ + sin

√
σ2 − 1 t), t ∈

[
− π

2
√
σ2 − 1

,
π

2
√
σ2 − 1

]
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by which we find also

(22) ξ =
dr

dt
=

c√
σ2 − 1

cos
√
σ2 − 1 t, θ = σt.

Combining the above results with those from equation (21), the first equation
in (19) and the general relations (15) give

x = c

(
cos
√
σ2 − 1 t cosσt√
σ2 − 1

+
(σ sin

√
σ2 − 1 t+ 1) sinσt

σ2 − 1

)

z = c

cos
√
σ2 − 1 t sinσt√
σ2 − 1

−

(
σ sin

√
σ2 − 1 t+ 1

)
cosσt

σ2 − 1

 .

(23)

The expressions for the arc-length and the intrinsic equation in this case are

(24) s =
c

σ2 − 1

(
σt− cos

√
σ2 − 1 t√
σ2 − 1

+
σπ

2
√
σ2 − 1

)
and

(25) s =
c

σ2 − 1

[
σ√

σ2 − 1
arcsin

[σ
c

(
(σ2 − 1)R− c

)]
− 1

c

√
σ2(1− σ2)R2 + 2cσ2R− c2 +

σπ

2
√
σ2 − 1

]
,

where for the derivation of the last equation we have used the defining relation
for the spiral which in this case states that r = σR.

A few remarks are in order here. First, while r takes its values in the in-

terval (20) the variable t is running in the interval

[
− σπ

2
√
σ2 − 1

,
σπ

2
√
σ2 − 1

]
and

during this excursion the tangent to the curve turns to the angle
σπ√
σ2 − 1

. This

angle is greater than 2π for σ < 2/
√

3, equal to 2π for σ = 2/
√

3 and less than
2π for σ > 2/

√
3. All this is illustrated in Fig. 2.

5.2. Case 0 < σ < 1. The first steps of the scheme given as in the previous
case amounts to

(26) η = −σr + c and
dr

ds
=

√
(1− σ2)r2 + 2cσr − c2

r

but one should keep in mind that now r >
c

σ + 1
and σ < 1. It turns out also

more convenient to perform the integration of the equation on the right-hand side
in (26) by introducing the parameter τ via the equation

(27)
ds

dτ
= r2

Compt. rend. Acad. bulg. Sci., 64, No 5, 2011 637



Fig. 2. The standard Sturmian spiral generated by (16) with c = 0.25 (a) and the generalized
Sturmian spirals drawn via formulas in (23) with the following set of the parameters: (b) c = 1,

σ = 1.02, (c) c = 5, σ = 2/
√

3 and (d) c = 100, σ = 5/3

and this produces

(28) r =
c

σ − sin cτ
, τ ∈

[
− π

2c
,
arcsinσ

c

]
and consequently
(29)

ξ = − c cos cτ

σ − sin cτ
, η = − c sin cτ

σ − sin cτ
, θ(τ) =

σ√
1− σ2

ln
σ tan cτ

2 −
√

1− σ2 − 1

σ tan cτ
2 +
√

1− σ2 − 1
·

Further, via equations (15) and (29) we obtain

x =
c

σ − sin cτ
cos

[
cτ − σ√

1− σ2
ln
σ tan cτ

2 −
√

1− σ2 − 1

σ tan cτ
2 +
√

1− σ2 − 1

]
,

z =
c

σ − sin cτ
sin

[
cτ − σ√

1− σ2
ln
σ tan cτ

2 −
√

1− σ2 − 1

σ tan cτ
2 +
√

1− σ2 − 1

]
,

(30)

and finally

(31) s =
cσ

(1− σ2)3/2
ln

[
σ + (1 +

√
1− σ2) tan

[
1
2 arcsin

(
c
r − σ

)]
1 +
√

1− σ2 + σ tan
[
1
2 arcsin

(
c
r − σ

)] ]

+

√
(1− σ2)r2 + 2cσr − c2

1− σ2
·

As before, one can easily obtain from the last expression the intrinsic equation of
the curve by replacing r with σR.

5.3. Subcase 0 < σ < 1 and c = 0. Just for completeness we will
consider the situation when the integration constant c in previous subsection is
zero. Obviously, the equations in (26) simplify to

(32) η = −σr and
dr

ds
=
√

1− σ2.

The integration of the second one is immediate and gives

(33) r =
√

1− σ2s+ a
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in which a denotes the integration constant that is necessarily positive. Applying
the scheme it leads to the following results:

(34) ξ =
(
1− σ2

)
s+ a

√
1− σ2, η = −σ

(√
1− σ2s+ a

)
and

(35) θ(s) =
σ√

1− σ2
ln(
√

1− σ2s+ a)

which allow to write down the explicit parametrization of the corresponding spiral

x = ((1− σ2)s+ a
√

1− σ2) cos θ(s) + σ(
√

1− σ2s+ a) sin θ(s),

z = ((1− σ2)s+ a
√

1− σ2) sin θ(s)− σ(
√

1− σ2s+ a) cos θ(s).
(36)
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Fig. 3. Sturmian spirals produced via formulas (30) with σ = 0.9, c = 1 (left) and formulas (36)
with σ = 0.9, a = 1 (right)

6. Concluding remarks. Among the principal motivations for writing this
paper we should mention the question by Professor S. Woronowicz (Warsaw Uni-
versity) who, during the conference talk of the first named author at Bialowieza
Conference (Poland), asked which is the curve whose curvature is σ/r? The an-
swer (which at that time was actually a guess) was that probably these curves
are spirals. It was a kind of surprise to learn that they do not coincide with any
of the famous spirals like those bearing the names of Archimedes, Cotes, Euler
(Cornu), Fermat, Galileo, Nielsens, Poinsot, etc. that are traditionally treated in
the textbooks on classical differential geometry [1,4, 5, 8, 9]. Only in the book by
Zwikker [13] we have found a short note about Norwich or Sturm spiral discussed
here in Section 4. More thorough search, however, clarifies that the equiangular
spiral

(37) x = meφ cotα cosφ, z = meφ cotα sinφ, m,α ∈ R+, φ ∈ R

discovered by Descartes and sometimes also called logarithmic spiral possesses a
curvature given by the formula κ = sinα/r and belongs to the class studied in the
last two sections. The name of the curve comes from its property to cut radius
vectors from the origin at a constant angle α. This seems to be also the reason
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excepting the fact that the insects approach the candle along this curve, thinking
perhaps they are flying in a straight line at a constant angle to the rays of the
light [2]. Among other interesting properties of this curve we will mention that
successive generation of its evolutes, pedal curves or inverses are still equiangular
spirals (for more details see [12]).

It was a challenging task to provide here a detailed description from the
first principles of the family of Sturm spirals having so nice geometrical charac-
teristic and to supply their explicit parameterizations.
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