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On the basis of intrinsic properties of the vector parameterization of rotational motions this
work presents an explicit solution of the problem of decomposition of any finite rotation into a
product of three successive finite rotations about prescribed axes.
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1. Introduction

The presentation of rigid body displacements is an old mechanical problem
which is of great importance for solving different real tasks. In geometrical and
computational mechanics the rigid body kinematics is considered in terms of vectors
and matrices. In this aspect the rotation group in a three-dimensional real space may
be described by combining our knowledge from analytical mechanics, vector analysis,
algebra and differential geometry. Here is the place to mention that the different
parameterizations of the rotation group SO(3) influence significantly the efficiency of
the kinematical and dynamical models of the rigid body and multibody mechanical
systems as well. Various analytical representations of rotations are obtained when
the rotation is expressed by defining its action on vectors, matrices, quaternions or
spinors [3]. This problem is considered in detail in the review papers [2, 15] and
[16]. Most frequently the parameterizations of rotations are expressed via Eulerian
angles as in the classical 3-1-3 case and all other combinations like 3-2-3, 2-1-2,
etc., and in the case of nonrepeating axes by the Bryant–Cardan–Krylov angles.
Alternatively, one can use the Euler–Rodrigues or Cayley–Klein parameters. All of
them have found a lot of applications in various scientific and technological areas.

[107]
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The numbers 1, 2, 3 appearing in the triples listed above mean rotations about the
axis OX, OY and OZ, respectively. For instance, the new frame F̃ is related to
the old one F (each of them is specified by three orthonormal vectors) through the
direction cosine matrix R,

F̃ = R(ψ, θ, φ)F , (1)

where ψ, θ and φ are the rotation angles. For definiteness, in the 3-2-1 case the
matrix R = R(ψ, θ, φ) is just the matrix product

R(ψ, θ, φ) = RX(φ)RY (θ)RZ(ψ). (2)

To find the resultant axis and the angle of rotation after two, three or more
finite successive rotations is an important and almost trivial problem in multibody
mechanics. The inverse problem however, namely to decompose a finite rotation into
three consecutive rotations about prescribed axes is a more difficult but quite important
problem for motion planning in the group of rotations and the inverse kinematic
problem for manipulator systems. The present paper gives explicit formulae for this
problem using a vector-like parameterization of the rotation group. Its organization
is as follows.

In the first part the notion of vector-parameter is introduced and its properties
are given. After that the above-mentioned problem is solved and exemplified in
concrete settings. Actually, the method is realized as an analytical algorithm using
the computer algebra system Mathematica for symbolic calculations.

2. Vector representation of rotation motions

Let us consider the special orthogonal Lie group SO(3) presenting the rotational
motions

SO(3) = {R ∈ GL(3,R) ; RR
T = I, detR = 1} (3)

where GL(3,R) denotes the space of nonsingular 3 × 3 real matrices and “T ” is
the symbol for transposition of a matrix. The Lie algebra so(3) of SO(3) (i.e.
its infinitesimal generators) consists of all real skew-symmetric 3 × 3 matrices. If
a matrix A belongs to the Lie algebra so(3), the matrix I −A is invertible, and the
Cayley transformation making the connection between the algebra and the group
explicit is given by the formulae [19]

R = (I + A)(I − A)−1 = (2I − (I − A))(I − A)−1 = 2(I − A)−1 − I.

In the particular case of three-dimensional space, there exists a map between vectors
and the space A(3) of the three-dimensional skew-symmetric matrices, i.e. if c ∈ R

3,
we have

c ←→ c× =

⎡
⎢⎢⎣

0 −c3 c2

c3 0 −c1

−c2 c1 0

⎤
⎥⎥⎦ , c× ∈ A(3). (4)
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This isomorphism of vector spaces can be extended to isomorphism of Lie algebras
of vectors in R

3 equipped with the standard cross product of vectors (denoted
by ×) as a Lie algebra operation, and the algebra of antisymmetric matrices A(3)
in which the Lie bracket is just the commutator, i.e.

(R3,×)←→ (A(3), [· , ·]). (5)

This can be checked by performing the following computation:

a× c ←→ (a× c)× = [a×, c×] = a×c× − c×a×, a, c ∈ R
3, a×, c× ∈ A(3).

Linearity is obvious and that the Jacobi identities are satisfied in both spaces is
also a matter of straightforward calculations.

All this allows to write down the SO(3) matrix in the form

R = R(c) = Rc = (I + c×)(I − c×)−1 =
(1− c2)I + 2 c⊗ c+ 2 c×

1+ c2
(6)

and to consider it as a mapping from R
3 to SO(3) for which the smooth inverse

is given by the formula

c× =
R−RT

1+ tr(R)
· (7)

Here I is a 3× 3 identity matrix, c2 = c.c and c⊗ c denote the dot, respectively
the diadic product of the vector c with itself, and tr(R) is the trace of R. The
formula above provides us with an explicit parameterization of SO(3). The vector c
is called the vector-parameter. It is parallel to the axis of rotation and its modulus
‖c‖ is equal to tan(α/2) where α is the angle of rotation about the same axis. The
so defined vector-parameters form a Lie group with the following composition law

c = 〈c1, c2〉 =
c1 + c2 + c1×c2

1− c1. c2
· (8)

Every component of c can take all real values from −∞ to +∞ without any
restrictions, which is a great advantage compared with the obvious asymmetry in
the Eulerian parameterization (see e.g. [8, 10, 18]). The vector c ≡ 0 corresponds
to the identity matrix R(0) ≡ I and the opposite vector − c produces the inverse
rotation R(−c) ≡ R−1(c). The operation of conjugation in SO(3) leads to linear
transformations in the vector-parameter space

R(c)R(c′)R−1(c) = R(c′′)

where c′′ = R(c) c′ = Rc c′. Such a parameterization in the theory of Lie groups
is called a natural one. It is worth mentioning also that no other parameterization
possesses either this property or a manageable superposition law. The exceptional
case in (8), i.e. when c1. c2 = 1 means that the resultant vector c produces a rotation
at 180◦ and may be treated by replacing c with a vector d from another chart of
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the SO(3) group manifold using the relation

d =
c

1+ c2
(9)

and

R(c) = R
′(d) = I + 2(

√
1− d2 + d×)d×. (10)

The direction of d coincides with that of c and ‖d‖ = sin(α/2). The composition
law in this exceptional case is

d = 〈d1 , d2〉 =

√
1− d2

2 d1 +

√
1− d2

1 d2 + d1× d2. (11)

The vector-parameter is known also as the Gibbs or Rodrigues vector. Some authors
call it also a vector of finite rotations. Nice discussions and historical facts on the
problem of orientation mapping are given in [7]. Vector representation of rotations in
three-dimensional space R

3 is a principal subject of consideration in many papers and
by no means exhaustive list includes [1, 2, 4, 9, 20], and references therein. It should
be mentioned however that after Fedorov [6] who uses the vector-parameterization
in problems related to the Lorentz group, the present authors are among the first
who make use of it in the classical [12] and quantum mechanics [11]. Later on the
vector-parameter was applied also in modeling and control of open-loop mechanical
systems like manipulators [13, 14], vehicle devices and biomechanical systems [15].

The most important properties of the vector-parameterization of the rotation group
and its composition law are presented in a nutshell below:

〈c, c′〉 = c′′ =
c+ c′ + c× c′

1− c.c′
,

〈c, 0〉 = 〈0, c〉 = c,

〈c,−c〉 = 0, (12)

〈c′, c〉 = 〈c, c′〉, c′ = λc, λ ∈ R
∗ = R \{0},

〈〈a, b〉, c〉 = 〈a, 〈b, c〉〉 = 〈a, b, c〉,

−〈a, b〉 = 〈−b, −a〉.

From the alternative expression of the Cayley formula

R = (I − A)(I + A)−1 (13)

one can obtain the composition law in the case when the first rotation is generated
by c1, i.e.

c̃ = 〈c2, c1〉 =
c2 + c1 + c2 × c1

1− c2.c1
=

c1 + c2 − c1 × c2

1− c1.c2
· (14)

Generally speaking, we have

c+ =
c1 + c2 + c1 × c2

1− c1.c2
, c− =

c1 + c2 − c1 × c2

1− c1.c2
· (15)
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Both vector-parameters c+ and c− correspond to the composition of two vectors
in the reverse order, and they are situated symmetrically with respect to the plane
defined by c1 and c2.

3. Statement of the problem

For a given vector-parameter c (i.e. its direction and rotation angle are known),
and arbitrarily chosen directions specified via three unit vectors ĉ1, ĉ2 and ĉ3, the
problem is to find the respective partial rotation angles about them which when
performed consecutively the rotation corresponding to c.

This problem is very important for many real tasks like: manipulator control,
spacecraft dynamics and control, rehabilitation procedures, etc. In pure technical
aspects the problem is connected with the choice of appropriate motors and safety
measures.

4. Solution

Introducing

c1 = u ĉ1, c2 = v ĉ2, c3 = w ĉ3 (16)

where ĉi , i = 1, 2, 3, are the unit vectors along the prescribed axes of rotations
makes obvious that the problem is reduced to finding the parameters u, v and w
because according to the very definition we have

R(c) = R(c1)R(c2)R(c3). (17)

Now, the appropriate multiplications of Eq. (17) give us the following relations,

(ĉ1, R(c)ĉ3)= (ĉ1,R(c1)R(c2)ĉ3) = (ĉ1, R(c2)ĉ3), (18)

(ĉ2, R(c)ĉ3)= (ĉ2, R(c1)R(c2)ĉ3) = (R
T (c1)ĉ2,R(c2)ĉ3), (19)

(ĉ1, R(c)ĉ2)= (ĉ1, R(c2)R(c3)ĉ2) = (R
T (c2)ĉ1, R(c3)ĉ2), (20)

(ĉ3, R(c)ĉ3)= (ĉ3, R(c1)R(c2)ĉ3) = (R
T (c1)ĉ3, R(c2)ĉ3), (21)

where (· , ·) denotes the dot product of vectors. For obtaining the above equations,
besides of (12), we used another very useful property of the vector-parameters,
namely

R(c) c = R
T (c) c = c, (22)

which is valid for any vector-parameter c. In this setting the solution of the problem
is almost immediate. First, one can find v = v(c, ĉ1, ĉ2, ĉ3) from Eq. (18). After
that, using either Eq. (19) or Eq. (21) one can determine u = u(v, c, ĉ1, ĉ2, ĉ3), and
finally Eq. (20) gives w = w(v, c, ĉ1, ĉ2, ĉ3). It is seen that the parameters u and
w are independent of each other. Actually, any of the unknown quantities u, v and
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w can be obtained by solving the respective quadratic equation given below,

A1 u
2 + B1 u+ C1= 0, (23)

A2 v
2 + B2 v + C2= 0, (24)

A3w
2 + B3w + C3= 0. (25)

Notice however that in order to find the parameters u and w one has to solve in
advance equation (24) for v.

5. Basic notation and algorithm

The proposed algorithm is realized by using of the following notation

Cij := (ĉi , ĉj ) = (ĉj , ĉi ) = Cji, i = j := 1, 2, 3,

C00 := (c, c), C0i = (c, ĉi ) = (ĉi , c) = Ci0,

Vijk := (ĉi , ĉj× ĉk),

V123 := (ĉ1, ĉ2× ĉ3) = V312 = −V321 = V, (26)

Vi0j := (ĉi , c× ĉj ) = Fij ,

H := (ĉ1× ĉ2, ĉ2× ĉ3),

where × means the cross product. The coefficients of the quadratic equations are
respectively

A1=
(
C23 + C02 C03 + (1+ C00) (C12 C13 − 2C2

12 C23)+ F23
)
v2

−2 (1+ C00) C12 V v + C23 + C02 C03 − C12 C13 − C00 C12 C13 + F23,

B1=− (1+ C00) (V v
2 − 2H v − V ), (27)

C1= (C02 C03 − C00 C23 + F23) (v
2 + 1),

A2=C13 + C01 C03 − C12 C23 − C00 C12 C23 + F13,

B2=− (1+ C00) V , (28)

C2=C01 C03 − C00 C13 + F13,

A3=
(
C12 + C01 C02 + (1+ C00) (C13 C23 − 2C12 C

2
23)+ F12

)
v2

−2 (1+ C00) C23 V v + C12 + C01 C02 − C13 C23 − C00 C13 C23 + F12,

B3=− (1+ C00) (V v
2 − 2H v − V ), (29)

C3= (C01 C02 − C00 C12 + F12) (v
2 + 1).

So the solutions of the quadratic equations (23) and (25)

v1 −→

⎧⎨
⎩
u1(v1), u2(v1),

w1(v1), w2(v1),
and v2 −→

⎧⎨
⎩
u1(v2), u2(v2),

w1(v2), w2(v2),
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depend on the solutions of Eq. (24) given by the formula

v1,2 =
−B2 ∓

√
B2

2 − 4A2 C2

2A2
(30)

and in the same manner

u1,2 (v1)=
−B1 ∓

√
B2

1 − 4A1 C1

2A1
|v=v1,

w1,2 (v1)=
−B3 ∓

√
B2

3 − 4A3 C3

2A3
|v=v1,

(31)

u1,2 (v2)=
−B1 ∓

√
B2

1 − 4A1 C1

2A1
|v=v2,

w1,2 (v2)=
−B3 ∓

√
B2

3 − 4A3 C3

2A3
|v=v2 ·

Let us remark that we will have real solution(s) of Eq. (30) provided that the
condition

B2
2 − 4A2C2 ≥ 0 (32)

is fulfilled and this means that inequality (32) is the necessary condition for the
start of the algorithm. In the most favorable case we will have eight solutions (i.e.
vectors) which are given below:

〈u1(v1)ĉ1, v1ĉ2, w1(v1)ĉ3〉, 〈u1(v2)ĉ1, v2ĉ2, w1(v2)ĉ3〉,

〈u2(v1)ĉ1, v1ĉ2, w1(v1)ĉ3〉, 〈u2(v2)ĉ1, v2ĉ2, w1(v2)ĉ3〉,

〈u2(v1)ĉ1, v1ĉ2, w2(v1)ĉ3〉, 〈u2(v2)ĉ1, v2ĉ2, w2(v2)ĉ3〉,

〈u1(v1)ĉ1, v1ĉ2, w2(v1)ĉ3〉, 〈u1(v2)ĉ1, v2ĉ2, w2(v2)ĉ3〉.

It turns out however that only two of the vectors in the above list are actually
solutions of the problem, i.e.

〈u ĉ1, v ĉ2, w ĉ3〉 ≡ c. (33)

The criteria by which one of them has to be selected is dictated by the energy
(time) consumption needed for the physical realization of the motion. It is clear
that neither energy nor time depend on the sign of the rotation angle and therefore
it should be an even function of the parameters u, v and w. As a penalty (cost)
function we propose

C(u, v,w) = u2 + v2 + w2 (34)
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as it meets the above requirement. Let us remark also that after solving the general
decomposition problem, we may consider the obtained parameters u, v, w as the
generalized Euler angles [5, 17].

6. Examples

6.1. Numerical tests

According to the authors knowledge the only published examples of numerical
decomposition of rotational matrices can be traced back to the paper by Wohlhart
[20] and it should be mentioned that the results there rely on an entirely different
algorithm. Translated into our notation the initial data used in [20] are as follows:

c := tan 300(cos 500 cos 250, cos 500 sin 250, sin 500),

ĉ1:= 800 cos 450, cos 800 sin 450, sin 800),

ĉ2:= (sin 600, cos 600, 0),

ĉ3:= (1, 0, 0).

(35)

The pair of solutions in this case is

u1 = −0.106955, v1 = 157.192, w1 = −2.73183,

u2 = 0.45189, v2 = −0.0392637, w2 = 0.303141.
(36)

Converted into radians these solutions reproduce the results presented in [20]. The
values of the penalty function (34) for the set of the above solutions are 24716.8
and 0.297641 respectively making clear that the second solution would be much
more easily effectuated by motors.

Wolhart [20] treated also the case when the same rotation is resolved into the
form of three successive rotations that are carried about the axes ĉ3, ĉ2 and again
about ĉ3, i.e.

c := tan 300(cos 500 cos 250, cos 500 sin 250, sin 500),

ĉ1 := (1, 0, 0),

ĉ2 := (sin 600, cos 600, 0),

ĉ3 := (1, 0, 0).

(37)

This time the pair of solutions is

u1 = −0.369392, v1 = −1.39519, w1 = 76.5567,

u2 = 0.350947, v2 = 1.39519, w2 = −1.24092
(38)

and the penalty function (cost time) for them amounts respectively to 5863.01 and
3.60958.
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6.2. Cardan angles

The proposed algorithm simplifies significantly when the prescribed axes are
specified by a system of three mutually orthogonal vectors c1, c2, c3 (this case
refers to a right-handed orthonormal triad). In these circumstances (known also as
the Cardan or Bryant parameterizations) we have Cij = 0, V = 1, H = 0. Then

A1= (C02 C03 + F23) (v
2 + 1),

B1=− (1+ C00) (v
2 − 1), (39)

C1= (C02 C03 + F23) (v
2 + 1),

A2=C01 C03 + F13,

B2=− (1+ C00), (40)

C2=C01 C03 + F13,

A3= (C01 C02 + F12) (v
2 + 1),

B3=− (1+ C00) (v
2 − 1), (41)

C3= (C01 C02 + F12) (v
2 + 1).

Any of the six sets of Euler angles sets which have nonrepeated indices (i.e. 1-2-3,
3-2-1, 2-3-1, 3-1-2, 2-1-3, 1-3-2) is covered by this specialization. In particular,
the 3-2-1 case could be found in the literature under different names like Cardan
angles, Bryant angles, or “yaw, pitch, roll” set. This kind of parameterization is
quite suitable for manipulator end-effector description, or in aircraft and spacecraft
applications.

6.3. Euler angles

This case was already considered numerically with concrete data but it deserves
more abstract treatment as well. More concretely, here we have in mind the
decomposition of the rotation into three consecutive rotations about axes which are
mutually orthogonal but this time with repeated indices (i.e. 1-2-1, 1-3-1, 2-1-2,
2-3-2, 3-1-3, 3-2-3). The most popular choice in mechanics is the 3-1-3 sequence
(the standard Euler angles) for which we have the following obvious reductions:
C13 = 1, C12 = C23 = V = F13 = 0 and H = −1.

Then, the corresponding coefficients Ai, Bi, Ci (i = 1, 2, 3) in the formulae (27),
(28) and (29) are reduced accordingly to

A1= (C02 C03 − F12) (v
2 + 1),

B1= 2 (1+ C00) v, (42)

C1= (C02 C03 − F12) (v
2 + 1),
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A2=C
2
01 + 1,

B2= 0, (43)

C2=C
2
01 − C00,

A3= (C
2
01 + F12) (v

2 + 1),

B3= 2 (1+ C00) v, (44)

C3= (C
2
01 + F12) (v

2 + 1).

A straightforward computation in this setting shows that the discriminant in (30)
amounts to

4(C2
01 + 1)(C00 − C

2
01) = 4((c.ĉ1)

2 + 1)
∥∥c× ĉ1

∥∥2
(45)

which is definitely positive and this ensures that any two orthogonal axes are enough
for Euler type decomposition of an arbitrary rotational matrix. This has already
been discussed in [4, 5, 17] but the proof here is based upon more elementary
techniques.

7. Conclusion

A method for analytical and numerical decomposition of finite rotations about
three vectors along prescribed axes is presented. It is valid in the cases when the
three axes of rotation are given in general form by their unit vectors. Two special
numerical cases are considered in some detail and two general cases associated
with Cardan and Euler angles are discussed as well. The proposed algorithm is
a definite procedure which is quite convenient for kinematical investigations in the
area of spacecraft dynamics, theory of mechanisms, robotics, biomechanics, etc.
In some sense the results of the paper confirm the usefulness of the idea of
introducing generalized Euler angles associated with three arbitrarily chosen axes
because it could be considered as a method for introducing such charts on the
manifold of the rotation group. The numerical and analytical algorithms are realized
as Mathematica routines.
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