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Abstract 
The present chapter concerns the continuum modelling of the mechanical behaviour 
and equilibrium shapes of two types of nano-scale objects: fluid lipid bilayer 
membranes and carbon nano-structures. A unified continuum model is used to 
handle four different case studies. Two of them consist in representing in analytic 
form cylindrical and axisymmetric equilibrium configurations of single-wall carbon 
nanotubes and fluid lipid bilayer membranes subjected to uniform hydrostatic 
pressure. The third one is concerned with determination of possible shapes of 
junctions between a single-wall carbon nanotube and a flat graphene sheet or 
another single-wall carbon nanotube. The last one deals with the mechanical 
behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a flat 
homogeneous rigid substrate subjected to micro-injection and uniform hydrostatic 
pressure. 

 
Keywords: graphene, carbon nanotubes and nanostructures, junctions, bending energy,  natural 
boundary conditions, cell injection, adhesion, equilibrium shapes 
 
 
1. Introduction 

 
This chapter is concerned with the mechanical behaviour and shape analysis of two 

types of nano-scale objects of quite different physical and chemical nature: fluid 
membranes (FM’s) and carbon nanostructures (CNS’s). 

Here, by a fluid membrane we mean a membrane formed in aqueous solution by a 
bilayer of lipid molecules, which are in a fluid state, i.e. the molecules can move freely 
within the monolayer they belong to. The structure of the bilayer is such that the 
hydrophobic tails of the lipid molecules situated in different monolayers face one another 
to form a semi-permeable core, while their hydrophilic heads face the aqueous solutions 
on either side of the membrane. It is well-known that the lipid bilayer is the main 
structural component of all biological membranes, the closed lipid bilayer membranes 
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(vesicles) being thought of as the simplest model systems for studying basic physical 
properties of the more complex biological cells. 

By a carbon nanostructure we mean any stable configuration of the curved (bended 
and/or stretched) graphene such as: carbon nanotubes (CNT’s), nano-horns, nanotori, 
fullerenes, wormholes, schwartzites and so on. Some of these structures (especially 
CNT’s) are utilized as basic ingredients of nano-structured materials, such as nanotube-
based nanocomposites or functionalized CNT membranes used in water desalination, for 
instance. Others are basic building blocks of nanoelectromechanical systems (NEMS), 
nanosensors and other nano-devices. 

The underlying idea behind the present contribution is to combine the study of the 
mechanical behaviour of FM’s and CNS’s on the bases of a unified continuum mechanics 
model. In this way, we hope to achieve a significant transfer of knowledge between FM 
and CNS sciences and thus to accelerate the development of both fields. 

The idea for such a unification emerges in a natural way when one compares the 
known configurations of FM’s and CNS’s and realizes that their shapes are similar. This 
similarity is not accidental. It is intimately connected with the following observations: 

a) regardless of the particular chemical or physical structure, the geometry of both 
the foregoing types of objects is essentially two-dimensional and therefore it can be 
described in terms of the differential geometry of surfaces; 

b) both types of the considered objects exhibit elastic behaviour within a large 
scale, their elastic properties being characterized (in the simplest models) by a few 
parameters, and hence there is a good reason to believe that the fundamental principles of 
the two-dimensional elasticity are potentially applicable for the description of their 
mechanical behaviour; 

c) usually the equilibrium configurations observed in the nature can be viewed as 
local extrema of appropriate variational functionals subjected to various constraints and 
boundary conditions. 

To summarize, in the case of a curved two-dimensional elastic continuum, such as 
that required for FM’s and CNS’s according to the aforementioned observations a) – c), 
the geometry of the deformed atomic or molecular lattice is expressed in terms of the 
invariants of the strain (first fundamental form) and curvature (second fundamental form) 
of a surface embedded in the three-dimensional Euclidean space, which is supposed to 
provide a local extremum of an appropriate energy functional subjected to certain 
constraints and boundary conditions. 

The problems envisaged to be addressed in this article are concerned with the 
analytic description of cylindrical and axisymmetric equilibrium shapes of FM’s and 
CNT’s under uniform hydrostatic pressure, determination of junctions of CNT’s to a flat 
graphene sheet or to other CNT’s, deformation of cell membranes subjected to micro-
injection and adhesion of injected vesicles to flat rigid surfaces. 

 
2. Modelling 
 
2.1 Continuum modelling of the equilibrium shapes of FM’s 
 

The foundation of the current theoretical understanding of the shapes and 
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mechanical response of fluid membranes to different types of excitations can be traced 
more than thirty years back (see, e.g., [1–3]) to the works by Canham [4] and Helfrich [5] 
in which the first one of the so-called curvature models was introduced and developed. 

Besides, two other curvature models have also been developed. The first one, 
referred to as the bilayer-couple model, was suggested by Svetina and Žekš in [6] on the 
ground of the bilayer-couple hypothesis [7]. The second one is known as the area-
difference-elasticity model [8–10]. In all models of this kind, the vesicle’s membrane is 
regarded as a two-dimensional surface  embedded in the three-dimensional Euclidean 
space and assumed to exhibit purely elastic behaviour (elastic bending without stretching) 
described in terms of its mean 

S

H  and Gaussian  curvatures, and two material 
constants associated with the bending rigidity of the membrane. 

K

Within the Helfrich spontaneous curvature model [5], the two-dimensional surface 
 representing a fluid membrane in equilibrium is assumed to provide a local extremum 

of the elastic bending energy functional  
S
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under the constraints of fixed total membrane area A  and enclosed volume V  (if the 
membrane is subjected to a uniform hydrostatic pressure ). This functional is also 
called curvature or shape energy. Here ,  and  are three real constants 
representing the spontaneous curvature (a constant introduced by Helfrich to reflect a 
possible asymmetry of the membrane or its environment), bending and Gaussian rigidity 
of the membrane, respectively. 
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Using two Lagrange multipliers λ  and  to take into account the aforementioned 
constraints, this yields the functional  
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The Lagrange multiplier  corresponds to the constraint of fixed total area and can be 
interpreted as the tensile stress or chemical potential associated with the number of the 
lipid molecules located at the membrane surface, while the pressure  appearing as 
another Lagrange multiplier corresponds to the constraint of fixed enclosed volume V . 

λ

p

The Euler-Lagrange equation associated with the functional , which is often 
referred to as the membrane shape equation, is derived by Ou-Yang and Helfrich in [11] 
and reads  
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where  is the Laplace-Beltrami operator on the surface . It is worth noting that the 
second term in the bending energy  does not effect equation (1) since its contribution 
to the overall Lagrangian density is a total divergence as follows from the Liouville’s 
form of Gauss’s Theorema Egregium (see, e.g., [12]). Actually, for closed membranes 
without edges the integral over the Gaussian curvature  is a topological invariant by 
virtue of the Gauss-Bonnet theorem and therefore it may be disregarded until the 

∆ S
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topology of the membrane remains unchanged. This term, however, plays an important 
role in the theory of fluid membranes with free edges (cf. [13–15]). It is worth noting also 
that in the case , equation (1) determines the so-called Willmore surfaces 
[16], which are of great interest for the conformal geometry. 

0=== 0cpλ

Let us remark also that both spontaneous curvature and bilayer-couple models lead 
to the same shape equation as pointed out by Svetina and Žekš in [6]. The same holds true 
for the area-difference-elasticity model, see [17]. 

The study of the equilibrium shapes of fluid membranes and the response of the 
latter to a uniform hydrostatic pressure and other types of excitations has attracted much 
attention in the past few decades due to the importance of this kind of research in biology 
and medicine. It should be noted that only a few exact analytic solutions to the shape 
equation (1) have been reported so far, which is not quite a surprise since this is a highly 
nonlinear partial differential equation. These are solutions determining: circular cylinders 
and spheres [11], circular biconcave discoids [21, 22], Clifford tori [18–20], Delaunay 
surfaces [23–25], nodoidlike and unduloidlike shapes [25], Dupin cyclides [2], several 
types of Willmore [16, 26] and constant squared mean curvature density surfaces [27], as 
well as cylindrical surfaces [2, 28, 29]. It should be noted, however, that leaving aside 
spheres, circular cylinders, Dupin cyclides and tori whose parametric equations are well 
known for many years, to the best of our knowledge explicit parametrizations of the rest 
of the foregoing surfaces are missing except for the Delaunay [23, 24], unduloidlike [30] 
and cylindrical surfaces [29]. 

 
2.2 Continuum modelling of the equilibrium shapes of CNS’s 

 
Nowadays, it is a common opinion among the scientists that the onset of the 

“carbon nano-research” was set by Kroto et al. [31] in 1985. Peculiar carbon nano-
structures were reported before 1985 (see [32–34]), but Kroto et al. [31] were the first 
who pointed out some extraordinary properties of the  fullerene – its remarkable 
stability and symmetry. It is this feature that attracted the attention of the scientific 
community to CNS’s and, since that time, the number of discovered CNS’s is rapidly 
increasing, an important milestone in this story being the experimental observation of 
carbon nanotubes by Iijima [35] in 1991. Today, one can find a vast amount of research 
articles by scientists from mathematics, chemistry, physics, as well as from 
interdisciplinary areas such as material science, nanotechnology, etc., in which the 
mechanical, electrical, optical, etc. properties of CNS’s are studied. As a consequence, 
materials, devices and technologies based on CNS’s are now distributed in a wide variety 
of human activities. 

60C

Shortly after the experimental discovery of multi-wall [35] and single-wall [36,37] 
carbon nanotubes and the reported progress in their large-scale synthesis [38], a 
remarkable mechanical behaviour of this carbon alotrops was observed. The findings 
provided by high-resolution transmission electron microscopy [39–42] demonstrated that 
these nanostructures can sustain large deformations of their initial circular-cylindrical 
shape without occurrence of irreversible atomic lattice defects. As noticed in [41]: “Thus, 
within a wide range of bending, the tube retains an all-hexagonal structure and 
reversibly returns to its initial straight geometry upon removal of the bending force.” 
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One of the most widely used approaches for determining the mechanical response 
of CNS’s is the molecular dynamic simulation. Within this approach, a CNS is considered 
as a multibody system in which the interaction of a given atom with the neighbouring 
ones is regarded. The energy of this interaction is modelled through certain empirical 
interatomic potentials. In 1988, Tersoff [43] suggested a general approach for derivation 
of such potentials and applied it to silicon. In 1990, Brenner [44]  adapted and modified 
Tersoff's results and suggested an interatomic potential for carbon atomic bonds. Another 
potential of such kind was introduced in 1992 by Lenosky et al. [45]. 

On the other hand, the observed elastic behaviour of the carbon nanotubes, their 
essentially two-dimensional atomic lattice structure and the intrinsic hexagonal symmetry 
of the latter gave firm arguments to Yakobson et al. [46] to develop a continuum 
mechanics approach, based on the classical theory of isotropic thin elastic shells [47], for 
explanation of the mechanical properties and exploration of the deformed configurations 
of these carbon molecules. 

The advantage of such an approach, in comparison with the ones based directly on 
the interatomic interactions, is that the continuum mechanics models are amenable to 
analytical calculations and allow efficient numeric simulations. Therefore, it is not 
surprising that since the pioneering work [46], the application of continuum mechanics to 
the study of mechanical behaviour of carbon nano-structures has become common 
practice although, as noted in [46]: “its relevance for a covalent-bonded system of only a 
few atoms in diameter is far from obvious”. 

The easiest way of introducing a continuum model of the regarded type of 
atomistic systems is to emulate the basic idea of the work by Yakobson et al. [46], that is 
to adopt a standard continuum theory (some of the well-known shell theories [48–50], for 
instance) and to adjust the material parameters (such as Young’s modulus, Poisson’s 
ratio, bending rigidity, shell thickness, etc.) to the data available by atomistic simulations. 
This approach has been used by various authors (see, e.g., [51–55]) and turned out to be 
quite successful. 

Actually, even without explicitly formulating a consistent theory, recourse to 
continuum and structural mechanics concepts, such as those mentioned above is 
ubiquitous in the nanotube literature (see, e.g., [56–58]). 

The more sophisticated attempts at deriving continuum theories for CNS’s 
incorporate the specific atomic lattice structure and use interatomic interaction potentials 
of Tersoff-Brenner [43, 44, 59] or Lenosky [45] type, for instance. The essential idea 
behind this kind of theories is to express the deformation of the atomic lattice in terms of 
the geometric quantities characterizing the deformation of the continuum using an 
appropriate continuum limit [60–62] or kinematic assumption, such as the Cauchy-Born 
rule or some of its modifications [63–69]. 

In the case of a curved two-dimensional continuum, such as that required within 
the continuum modelling of the carbon nanostructures, the geometry of the deformed 
lattice is expressed in terms of the invariants of the strain (first fundamental form) and 
curvature (second fundamental form) of the deformed surface. 

In what follows, we have adopted the continuum theory developed by Ou-Yang et 
al. in [60–62], which is based on the continuum limit of the Lenosky potential [45], an 
extra term being added to the corresponding deformation energy to take into account the 
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screw dislocation core-like deformation, as it was suggested by Xie et al. in [70]. 
According to Lenosky et al. [45], the deformation energy of a single layer of 

curved graphite carbon has the form  

( )
( )

( )

2

1
2

00 2
1= ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+− ∑∑∑ ij

ji
ij

ij
rr uεεF  

 
( )
( )

( )
( )( ),1 3

2
2 jijiji

ij
ji

ij
ununnn ⋅⋅+⋅−+ ∑∑ εε  

where  is the bond length between atoms i  and  after deformation;  is the initial 

bond length of planar graphite;  is a unit vector pointing from carbon atom i  to its 

neighbor ;  is a unit vector normal to the plane determined by the three neighbors of 
atom ; 
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The continuum limit of the Lenosky potential F  yields the following expression 
for the deformation energy [61]  
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where  is the deformed surface; S H  and K  are its mean and Gaussian curvatures;  
is the area element on the surface ; 

Ad
S J  and Q  are the first and second invariants of the 

in-plane deformation tensor, which are often referred to as the “mean” and “Gaussian” 
strains, respectively, and the constants , ,  and ck Gk dk k~  are given through the bond-
bending parameters 0ε , 1ε , 2ε  and 3ε  by the expressions  
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where /433= 2
0rΩ  is the occupied area per atom. 

The values of the parameters 1ε , 2ε  and 3ε  were determined by Lenosky et al. 
[45] through a local density approximation, while the value of the parameter 0ε  was 
obtained by Zhou et al. in [71, 72] from the force-constant method. In both cases, it is 
assumed that  Å. These values are  1.42=0r

,eV0.05=,eV1.29=,eV0.96=,Å/eV57= 321
2

0 εεεε  
and consequently  

,eV0.75=,eV1.17= −Gc kk  
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.Å/eV16.87=~,Å/eV24.88= 22 kkd  
Recently, Tu and Ou-Yang [62] have revised the Lenosky potential in order to take 

into account that the energy costs due to the in-plane and out-of plane bond angle changes 
are quite different. In continuum limit, they have obtained the same expression for 
curvature energy , but now  clF

,eV0.72=,eV1.62= −Gc kk  

,Å/eV19.19=~,Å/eV22.97= 22 kkd  
1.41=0r  Å being the result for the initial bond length of planar graphite. These 

“material” parameters and the functional  describe the deformation of a single-wall 
carbon nanotube as that of a two-dimensional isotropic elastic continuous media. 

clF

Actually, the last two terms in the functional  accounting for the in-plane 
deformation can be neglected since the contribution of the bond stretching to the 
deformation energy is less than 1%, see [45]. Instead of this, the graphene sheet can be 
assumed to be inextensible under the bending related to the remaining two terms in the 
functional . If, in addition, it is assumed that a uniform hydrostatic pressure  is 
applied and the term accounting for the screw dislocation core-like deformation suggested 
in [70] is included, one arrives at the conclusion that the equilibrium shapes of a single-
wall carbon nanotube are determined, just as for a fluid membrane, by the extremals of 
the functional  in which, of course, the meaning and values of the constant , , 
and  are different. 

clF

clF p

bcF ck Gk

0c
To summarize, the extremals of the functional  determined by the 

corresponding Euler-Lagrange equation (1), that is the membrane shape equation, provide 
a unified continuum model for studying the equilibrium shapes of both FM’s and CNS’s 
subjected to uniform hydrostatic pressure. Of course, one should be aware that this model 
accounts for elastic bending only, the effects of the in-plane stretching being neglected. 

bcF

 
2.3 Shape equation for cylindrical FM’s and CNS’s 

 
Consider a cylindrical surfaces S  whose directrix is a plane curve , which is 

parametrized by its arclength , the corresponding generatrix being perpendicular to the 
plane the directrix  lies in (see Figure 1). For such a surface the shape equation (1) 
reduces to the ordinary differential equation  
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Figure 1. A slice of the infinite generalized cylinder (left) and its intersection with the 
plane  (right). Here, ,  and 0≡Y )(st )(sϕ )(sθ  are the tangent vector, slope angle and the 
angle between the position vectors  and , respectively. (0)x )(sx
 

Indeed, using the standard formulas from the textbooks on classical differential 
geometry (e.g., [12]) one can easily find that for a cylindrical surface parametrized in the 
above way )((1/2)= sH κ ,  and . Substituting the latter 
expressions in equation (1) one immediately obtains Eq. (2). 

22 d)/(d(1/2)= ssH κ∆ 0=K

Evidently, Eq. (2) possesses the following first integral  
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where ε  is an arbitrary real constant of integration, which allows its solutions to be 
expressed in analytic form by means of the roots of the polynomial )(κP , see [29, 73]. 

Then, using the geometrical relations  
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where ( )sϕ  is the tangent (slope) angle while  and  are the components of the 
position vector  of the curve 

)(sx )(sz
)(sx Γ  with respect to a certain rectangular Cartesian 

coordinate frame in the Euclidean plane, i.e., ,)()(=)( jix szsxs +  where i  and  are 
the unit vectors along the coordinate axes 

j
x  and z , respectively (see Figure 1), one can 

restore the curve (up to a rigid motion in the plane) expressing its parametric equations by 
the quadratures  

 ( ) ( )( ) ( ) ( )( ) ssszsssx dsin=,dcos= ϕϕ ∫∫  (5) 

where  
 ( ) ( ) .d= sss κϕ ∫  (6) 

 
 

2.4 Shape equation for axisymmetric FM’s and CNS’s 
 

An axisymmetric FM or CNS will be thought of as a surface of revolution obtained 
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by revolving around the Z -axis a plane curve Γ  laying in the -plane (see Figure 
2) usually referred to as its profile curve. 

XOZ

 

   
  

Figure 2. Geometry of the profile curve. 
 

If  denotes the arclength along the curve s Γ ,  and  are the components 
of the position vector  of the curve 

)(sx )(sz
( )(),(=)( szsxsx ) Γ  (see Figure 2) and )(sψ  

denotes the slope of the tangent to the curve with respect to the OX  axis measured 
counterclockwise, one has the following geometrical relations  
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which can be deduced either from Figure 2, or using the Frenet-Serret equations  
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in which T and N are the unit tangent and the inward unit normal vectors to the curve, 
respectively, and )(sκ  is its curvature. 

To obtain the shape equation for axisymmetric FM’s and CNS’s, one can represent 
the profile curve Γ  by the graph  of the function  (see Figure 2) and 
in this case the general shape equation (1) reduces to the following nonlinear third-order 
ordinary differential equation 
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(derived by Hu and Ou-Yang in [20]) where ψ  is again the angle between the X-axis and 
the tangent vector T but now considered as a function of the variable x . 

Going back to the arclength variable , one can, using the second one of relations 
(7), rewrite Eq. (9) in the form  
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Alternatively, following the approach first used by Seifert et al. [74], one can start 
directly from the bending energy functional , which in the case of an axisymmetric 
surface takes the form  
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where  is the total length of the profile curve, since the mean L H  and Gaussian  
curvatures of a surface in revolution are given by the expressions  
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Then, taking into account the work done by the hydrostatic pressure , the constraint of 
fixed total area of the membrane and the geometric relations (7) , (7)  by introducing 
three Lagrange multipliers , 
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where . Next, setting to zero the first variation of the functional ckpP /= A  one obtains 
the following system of Euler-Lagrange equations  
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and natural boundary conditions  
 [ ] 0,=ˆˆˆ

0
LszxM δδηδµλδαδψ H++++  (13) 

where  

 ,sin1
d
d=ˆ

0 xc
xk

k
s

M
c

G ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

ψψ
 (14) 

 ,
3
1=ˆ,

3
1=ˆ 2PxPxz +− ηηµµ  (15) 

 .sincossin
d
d

2
1=

2

0

2

ψηψµλψψ
+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ xxc

xs
H  (16) 

Actually,  is a conserved quantity on the smooth solutions of the Euler-
Lagrange equations (12) due to the invariance of the functional 

H
cA  under the translations 

of the independent variable . In [75], Jülicher and Seifert show that  is the 
necessary and sufficient condition for the shape equations (12) and (10) to be equivalent. 
Therefore, henceforward we assume . Moreover, 

s 0=H

0=H 0=(0)(0))()( δαλδαλ −LL  
because of the constraint of fixed total area and the fact that λ  turned out to be a 
constant. Therefore the natural boundary conditions (13) change to  
 [ ] 0.=ˆˆˆ

0
LzxM δηδµδψ ++  (17) 

The variations of the functions ψ , x  and z  at the contours  and  corresponding to 
the values  and 

0C LC
0=s Ls =  of the arclength variable  remain to be specified in a 

suitable manner depending on the particular problem considered. 
s

Observing the natural boundary conditions (17), one can immediately interpret  
  (18) MkM c

ˆ2= π
and  
  (19) jiFFF ηµπ ˆˆ=ˆ,ˆ2= +ck
where  and  denote the unit vectors along the coordinate axes  and i j X Z , as the 
bending moment (couple resultant) and force (stress resultant) at any contour of the 
membrane. 
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3 Case studies 
 

3.1 Cylindrical equilibrium shapes of FM’s and CNT’s under pressure 
  

The aim of this Section is to give, following [29, 73, 76], an exhaustive analytic 
description of the cylindrical equilibrium shapes of FM’s and CNT’s subjected to uniform 
hydrostatic pressure, i.e., to present all solutions of the membrane shape equation (2) 
determining such shapes, together with the expressions for the corresponding position 
vectors, in explicit analytic form. 

For that purpose, we are interested in real-valued solutions const)( ≠sκ  of 
equation (2) possessing smooth derivatives, which give rise to closed non-self-
intersecting (simple) curves . Once such a solution is known, it is possible to find the 
components  and  of the position vector 

Γ
)(sx )(sz ,)()(=)( jix sysxs +  of the 

corresponding directrix  (up to a rigid motion in the plane ) in the standard 
manner using quadratures (5) and (6). However, in what follows we will show that the 
specific differential structure of equation (2) allows to express the components of the 
position vector in terms of the curvature 

Γ XOZ

)(sκ , its derivative ss d)/(dκ  and its integral, 
that is the slope angle )(sϕ , as follows  
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First, let us recall that the unit tangent vector  and the unit inward normal 
vector  to the curve  are given as follows  
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and are related to the curvature )(sκ  of the curve Γ  through the Frenet-Serret formulas 
[12]  
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Then, using formulas (21), one can show by a direct computation that the following 
identity holds  
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Hence, taking into account the Frenet-Serret formulas (22), one can represent the position 
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vector  of a plane curve of curvature ( )sx )(sκ  in the form  

 ( ) ( ) ( ) ( ) Cntx +−− sss
s
ss )2)((

2
1

d
d1= 2 µκ

σ
κ

σ
 

where  is a constant vector, provided that C ( )sκ  is a solution of equation (2) with 

0≠σ . Then, translating the origin so that 0=tx ⋅  and ( )µκσ −−⋅ 21/=nx  when 
0=d/d sκ , which is always possible, one gets  and obtains expressions (20) for 

the components of the position vector taking into account the definitions of the tangent 
and normal vectors (21), as well as the second and third of relations (4). Note that 
formulas (3) and (20) lead to the remarkable relation  

0C =

 )(2=)( 2

2
2 ssr κ

σ
+

σ
µ+ε

 (24) 

for the magnitude )()(=)( 22 szsxsr +  of the position vector  rediscovered in 
[77] (see also [73, 78, 79]). 

)(sx

Thus, the first problem that we have to solve on the way to determine the 
cylindrical equilibrium shapes of fluid membranes or carbon nanostructures is to find the 
solutions of equation (2) in analytic form. For that purpose, we express the solutions of its 
first integral (3) in terms of Jacobi elliptic or elementary functions by means of the roots 
of the polynomial )(κP , the following observations being taken into account. 

Depending on the values of the parameters σ , µ  and ε , there exist two cases in 
which the polynomial )(κP  attains positive values and hence Eq. (3) has real-valued 
solutions: (I) the polynomial )(κP  has two simple real roots R∈βα , , βα < , and a 
pair of complex conjugate roots C∈δγ , , γδ = ; (II) the polynomial )(κP  has four 
simple real roots R∈δγβα <<< . In the first case, the polynomial )(κP  is 
nonnegative in the interval βκα ≤≤ , while in the second one it is nonnegative in the 
intervals βκα ≤≤  and δκγ ≤≤ . It should be noted that the roots of the polynomial 

)(κP  can be expressed explicitly through its coefficients and vice versa, see [29, 73]. 
According to [29, Corollary 1], only the solutions of the type (I) could give rise to 

non self-intersecting profile curves. 
Let the parameters σ , µ  and ε  be such that the polynomial )(κP  has roots as in 

case (I), namely, two of them are real ( βα < ) and the other two constitute a complex 
conjugate pair, which can be written in the form  

 ηβαδηβαγ i
2

=,i
2

= −
+

−+
+

−  

where η  is a nonnegative real number. In this case, equation (3) has periodic solutions if 
0≠η  or 0=η  and 0>)3)((3 βαβα ++ , see [29, Theorem 1]. 

Let 0≠η  and hence the roots of the polynomial )(κP  are simple. Denote  
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where  

 ( ) ( ) .34=,34= 2222 βαηβαη ++++ BA  
Evidently, , , 0>A 0>B 0>λ  and . In this case, each solution of Eq. (2) 
can be expressed by the function  

1<<0 k
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which takes real values for each R∈s  and is periodic with least period )(K)(4/= kT λ  
due to the periodicity of the Jacobi function ),(cn ksλ . Here, )(K ⋅  denotes the complete 
elliptic integral of the first kind. The corresponding slope angle can be written in the form  
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where  denotes the incomplete elliptic integral of the third kind. ),,(Π ⋅⋅⋅
Now, let 0=η  and 0>)3)((3 βαβα ++ . Then, the polynomial )(κP  has one 

double and two simple real roots. The expressions (25) and (26) for the curvature and 
slope angle, respectively, hold in this case as well, but now the eliptic functions and 
integrals appearing in these formulas reduce to elementary functions as follows  
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It should be remarked that the indefinite integrals )(sϕ  of the foregoing solutions )(sκ  
of Eq. (3) are chosen so that 0=(0)ϕ . Moreover, (0)κ  coincides with the root α  of the 
polynomial )(κP , i.e. ακ =(0) . 

Now, having obtained in explicit form the solutions of equation (2), i.e., the 
curvatures, and the corresponding slope angles, we have completely determined in 
analytic form the corresponding directrices Γ  (up to a rigid motion in the plane) through 
the parametric equations (20). The closed simple curves among them should meet (see 
[29, 73]) the transcendental equation (closure condition)  
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Given a closed curve , the geometrical meaning of the integer  appearing in 
the right-hand side of relation (27) is that it counts out the number of the symmetry axes 
of the curve , that is the number of the symmetry planes of the deformed fluid 
membrane or nanotube. 

Γ n

Γ

Examples of directrices of cylindrical equilibrium shapes corresponding to 
solutions to equation (2) of form (25) are presented in Figure 3. 

 

 
Figure 3. Directrices of some closed cylindrical equilibrium shapes whose curvatures are 
solutions to equation (2) of form (25) with: a) 1=σ , 0=µ , 0.422=ε ; b) , 1=σ 1/3=µ , 

; c) , , . d) 0.814=ε 1=σ 1/3=µ 1.126=ε 5.247=σ , 1/2=µ , 10.244=ε ; e) , 
, ; f) , 

21.650=σ
2.955=µ 117.421=ε 51.844=σ 6.712=µ , 471.91=ε .   

 
It is worth noting that Zang et al. [80, 81] have compared recently cross-sections of 

single-wall carbon nanotubes subjected to uniform hydrostatic pressure obtained by 
numerical solutions of equation (2) and molecular dynamics simulations. As a result, an 
excellent agreement was observed, see [81, Figure 3]. This observation justifies the 
applicability of the considered continuum model at least as far as the determination of the 
cylindrical equilibrium shapes of single-wall carbon nanotubes under hydrostatic pressure 
is concerned. 

 
3.2 Axially symmetric equilibrium shapes of FM’s and CNT’s under pressure 

 
This Section is concerned with the analytic representation of a class of axially 

symmetric surfaces which meet the membrane shape equation (9). 
Suppose that a part of an axisymmetric membrane of the considered type admits 

graph parametrization in a right-handed Cartesian coordinate system with origin O  and 
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axis lines x ,  and y z . By this we mean that it may be regarded as a surface of 
revolution obtained by revolving around the z -axis a plane curve  laying in the Γ
x O z -plane, which is determined by the graph  of a function , see 
Figure 2. For each such surface, the general shape equation (1) reduces to the nonlinear 
third-order ordinary differential equation (9). 

))(,( xzx )(= xzz

In 1995, Naito  et al. [25] discovered (see also [2]) that the shape equation for 
axisymmetric fluid membranes (9) has the following class of exact solutions  
  (28) ,=sin 1−++ dxbaxψ
provided that , b  and  are real constants, which meet the conditions  a d
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 ( ) 0,=244 0

2 −−− dcadbb  (31) 
and  

 ( ) 0.=24 0
2 dcadbd −−  (32) 

Six types of solutions (28) to Eq. (9) can be distinguished on the ground of 
conditions (29) – (32) depending on the values of the constants , 0c λ  and . p

Case A. If , 0=0c 0=λ , , then the solutions to Eq. (9) of the form (28) are 0=p

ax=sinψ , 2=sin ±axψ  and , the respective surfaces being spheres, 
Clifford tori and catenoids. 

1=sin −dxψ

Case B. If , 0=0c 0≠λ , , then the solutions of the considered type reduce 

to  (catenoids). 

0=p
1=sin −dxψ

Case C. If , 0=0c 0≠λ , 0≠p  and λap 2= , then only one branch of the 
regarded solutions remains, namely ax=sinψ  (spheres). 

Case D. If , 00 ≠c 0=λ , , then one arrives at the whole family of Delaunay 
surfaces corresponding to the solutions of the form  

0=p

 ⋅+−
x
dxc02

1=sinψ  (33) 

Case E. If , 00 ≠c 0≠λ ,  and  0=p

( ),2
2
1= 00 cac

kc
+−

λ
 

one gets only solutions of the form ax=sinψ  (spheres). 
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Case F. If , 00 ≠c 0≠λ , 0≠p , then four different types of solutions of form 
(28) to Eq. (9) are encountered: (a) ax=sinψ  (spheres) if  
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(b) 2=sin ±axψ  (Clifford tori) if  
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(c) solutions of the form (33) (Delaunay surfaces) if  
 0;=0λcp +  (36) 

(d) solutions of the form  
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which take place provided that  
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Below, following [30], we derive the parametric equations of the surfaces 
corresponding to the solutions of form (37) to Eq. (9). 

First, it is clear that the variable x  must be strictly positive or negative, otherwise 
the right-hand side of Eq. (28) is both undefined and its absolute value is greater than one, 
which is in contradiction with the sin-function appearing in the left-hand side of this 
relation. 

Next, let us remark that the two last equations in (7) lead to the relation  
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 which for the foregoing class of solutions (37) implies  
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In terms of an appropriate new variable , relation (40) may be written in the form  t
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where  
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 It should be noticed that the roots of the polynomial  read  )()(=)( 21 xQxQxQ
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Hence, Eq. (41) has real-valued solutions if and only if at least two of these roots are real 
and different. Evidently, the roots γ  and δ  can not be real, but α  and β  are real 
provided that 1/2>b  as follows be relations (45) and (46). 

Now, using the standard procedure for handling elliptic integrals (see [82, 22.7]), 
one can express the solution  of equation (41) in the form  )(tx
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Consequently, using expressions (43) and (44), one can write down the solution  of 
equation (42) in the form  
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that is  
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where   is the incomplete elliptic integral of the second kind. ),(E ⋅⋅
Thus, for each couple of values of the parameters  and b , (47) and (49) are the 

sought parametric equations of the contour of an axially symmetric surfaces 
corresponding to the respective solution of the membrane shape equation (9) of form 
(37). 

0c

 
3.3 Junctions of CNT’s to a flat graphene sheet or to other CNT’s 

 
The idea of connecting carbon nanotubes can be traced back to the Dunlap’s paper 

[83]. Since then, this idea has attracted much attention due to its feasibility for 
constructing various nano and micro devices (NEMS and MEMS) that have stimulated 
theoretical and experimental studies of the junctions' exceptional properties. Three kinds 
of junctions have been considered: Y junctions, T junctions and junctions between 
parallel nanotubes (see, e.g., Saito et al. [84], Chernozatonskii [85] and the references 
therein). In the majority of the papers concerning junctions between CNT's, a discrete 
analysis is applied to determine the junction shapes. Continuum approach to the analysis 
of the joints between CNT's is presented in [86], and between nanotubes and nanocones – 
in [87]. 

The junctions between right circular cylindrical carbon nanotubes and planar 
graphene sheets are much rarely studied. To the best of our knowledge, this problem is 
addressed only in the recent papers [86,88,89]. The first paper represents a discrete 
analysis of the junction using least squares minimization of the difference between the 
carbon-carbon bond length  and the unknown distance of the sheet carbon atoms 
to the carbon atoms of the tube end. A continuum approach to the same problem is 
presented in Cox and Hill [89], where Euler's elastica solutions are applied. It should be 
noted that in the latter paper, the profile curve of the junction is determined extremizing 
its curvature energy. The suggestion in [89] is that the junction shape could be obtained 
rotating this curve about the tube axis. However, such an approach does not imply that the 
curvature energy of the whole junction attains an extremum. 

Å1.42

Continuum analysis of the junctions between right circular cylindrical carbon 
nanotubes and planar graphene sheets or between co-axial carbon nanotubes is presented 
in [86]. In that paper, the junction is regarded as a two-dimensional surface  embedded 
in the three-dimensional Euclidean space  and assumed to exhibit purely elastic 
bending described by its mean 

S
3R

H  and Gaussian  curvatures. Its equilibrium shapes are 
determined by the extremals of the bending energy functional 

K
cA  of Lagrangian density 

(11) where  and  are assumed. The main goal of [86] is to find approximate 
solutions to equation (10) determining axisymmetric surfaces that could be considered as 
possible shapes of the junctions between either two co-axial circular cylindrical carbon 
nanotubes or one such tube and a planar graphene sheet that is normal to the tube 

0=0c 0=p
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generatrix. 
In the case of a junction between a carbon nanotube and a flat graphene sheet, the 

value  of the contour corresponds to the points where the tube is attached to the 
junction and the value 

0=s
Ls =  corresponds to the points where the junction is attached to 

the graphene sheet. In the case of a junction between two co-axial carbon nanotubes, the 
values  and 0=s Ls =  of the contour correspond to the points where the tubes are 
attached to the junction. In both cases, the boundary conditions for the contour at  
are the same and read  

0=s

,=(0),
2

=(0),=(0),=(0) 111 µµπψzzxx  

where,  and  are coordinates of a tube endpoint. The conservation law (16) provides 
a boundary condition for 

1x 1z
sd/dψ  at  of form  0=s

 .2211=
d
d
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2
1

10=
xx

xs s
ηλψ

−−  (50) 

 
 

Figure 4. Profile curves and the corresponding junctions between a carbon nanotube and 
a flat graphene sheet with parameters 1=λ  and . The length of the profile curve is: 
(a) ; (b) ; (c) .  

0=1µ
2.053=L 5.043=L 8.076=L

 
To obtain numerical solutions of the foregoing system, a Mathematica  notebook 

is created using the routine NDSolve to solve numerically equations (12), and the 
routine ParametricPlot3D to plot the surface. In all results presented in this Section, 

®

0=η  in the boundary condition (50) is assumed. The length  of the contour is varied 
until a continuity of the tangent vector of the junction contour at 

L
Ls =  is achieved. Thus, 

the boundary condition at Ls =  is either  
0=)(Lψ  

for a junction between the nanotube and the graphene sheet or  

(0)=)( ψψ ±L  

in the case of a junction between two co-axial nanotubes. 
Using the aforementioned computational scheme, several examples of junction 

shapes are obtained. Two possible junctions between a carbon nanotube and a graphene 
sheet are given in Figure 4. It should be mentioned that two cases of junctions between 
co-axial carbon nanotubes are possible: either the tubes are on different sides of the 
junction, or the tubes are on the same side of the junction, see Figure 5. 
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Figure 5. Profile curves and junctions between co-axial nanotubes with parameters: (a) 

, , ; (b) , , ; (c) 1= −λ 4.04=1µ 0.860=L 1/11=λ 16=1 −µ 1.256=L 1=λ , , ; 
(d) , , . 

0=1µ 1.119=L
1=λ 67.5=1µ 0.981=L

  
To summarize, each of the surfaces on the figures presented herein may be thought 

of as a possible shape of a junction between a carbon nanotube and a flat graphene sheet 
or between co-axial carbon nanotubes. It should be noted, that computing the forces and 
momenta at the edges of the junctions as suggested in [90] we found that they are non-
zero, except for the moment at the points where the junction is connected to the graphene 
sheet. However, no experimental data exist in the literature by now to determine whether 
these theoretical predictions give realistic results. 

 
3.4 Deformation of injected vesicles adhering onto flat rigid substrates 

 
The success of cell manipulations depends mainly on the mechanical properties of 

the cell membrane and on the specific way of interaction between the membrane and the 
other devices. To this end, the determination of the mechanical behaviour of the cells is of 
primary interest. An apparent approach to this analysis is theoretical determination of 
certain cell equilibrium shapes and their comparison with experimental observations, 
typical example being presented by Lu et al. [91]. 

The choice of a model to study the equilibrium shapes of cells depends on the time 
scale of the phenomena due to the existence of active processes of permeation of matter 
through the cell membrane [92]. Phenomena that are much faster than the active transfer 
processes are reasonable to treat using models of deformation that maintain fixed cell 
volume. In this case, it is widely accepted that the deformation of the cell membrane is 
localized, the typical examples being Lu et al. [91], Boulbitch [93], Bo [94], Sun et al. 
[95], Tan et al. [96] and Wan et al. [97]). On the other hand, if a phenomenon is much 
slower that the permeation through the membrane it is reasonable to consider a model that 
maintains fixed membrane area. In the present study, we consider cells pressed against a 
rigid wall and are interested in equilibrium shapes that are attained after finishing of the 
transient transfer of matter through the cell membrane. For this purpose, we employ the 
simplest model of cells, i.e. closed fluid lipid bilayer membranes (vesicles). 

Here, the mechanical behaviour of a vesicle pressed against a rigid wall the vesicle 
adheres to is examined in the line of the Helfrich spontaneous curvature model. The 
vesicle membrane is supposed to be inextensible and axisymmetrically deformable. The 
main task consists in determination of the equilibrium shapes of an initially spherical 
vesicle adhering to a flat rigid plane subjected to a uniform hydrostatic pressure and a 
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force exerted onto a given contour. This force is supposed to act along the symmetry axis 
of the vesicle and to direct inward. Actually, the present model is an extension of the 
model proposed in [98] in which the cell adhesion has not been taken into account. This is 
done in the recent work [99]. 

 

 
Figure 6. Sketch of an initially spherical cell membrane of radius ρ  pressed against the 
wall. Here, -axis is the symmetry axis of the cell, Z ψ  is the slope angle of the profile 
curve, which is assumed to lie in the -plane, and  is the magnitude of the force 
(per unit contour length) acting at the contour .  

ROZ 0f
0=s

  
The membrane is supposed to adhere to a flat rigid plane and to be loaded by the 

distributed force  and the pressure difference 0f io ppp −=  , where  is the outer 
solution pressure and  is the inner pressure of the vesicle, as is shown in Figure 6. The 
value  of the arclength variable is assumed to correspond to the point at the profile 
curve where the external force acts on the cell membrane along the respective contour, 
which will be denoted by . The value 

op

ip
0=s

0C Ls =  is assumed to correspond to the border of 
the adhesion area . Denote the external distributed force along the contour  by 

 and the pressure on the adhering part of the membrane by . Let us point out 
that the adhering part of the membrane is flat, and hence  and  there. Then, 
the shape equation (1) implies 

LC 0C

00 = qkf c ap
0=H 0=K

0=ia pp −  at any point of the adhering part of the 
membrane. Therefore, the potential energy of the flat part of the membrane adhering to 
the plane (parametrized by sLLrsr −+)(=)( , , 0=)(sz πψ −=)(s ) is  

 
4

)(2=d2
22

0)( Lrcksk c
LrL

Lc ππ L∫
+

 (51) 

since along the adhering part of the membrane  

( ) ( ) ).(
2
1=)( 2 LrLLrL αα −+   



Part III, Chapter 3 175 

Apparently, the work done by the force  is  
 

0f
( )( ).02(0)2= 00 zfrW −ρπ  (52) 

 i ne 
tension  at the contour  due to the membrane 
line te

Taking expressions (51) and (52) nto account and accepting that there is a li
0σck – pipette interaction, as well as a 0C

nsion Lck σ  at the adhesion border LC , we arrive at the following expression for 
the energy stored in the deformed membrane  

 
4

)(2=
22

0 Lrckccca π+AA  

( )[ ])()((0)(0)2(0)2 2
00 LrLrrzrqk Lc ϖσσρπ −++−+   

where the adhesion energy per unit area [102, 103] is denoted by ϖck2 . Then, setting to 
zero the first variation of the functional caA  one obtains the system (12) as the Euler-

he forLagrange equations and the natural boundary conditions (17) take t m  
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(53) 

where  
 ( )[ ] (0)sin(0)(0)cos(0)2= 0000 ψψσρ rqzqQ −+−  

 ).(cos)(2
2
1= 2
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⎢
⎣
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⎞

⎜
⎝
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To analyse the force and momentum balance of the membrane consider its part 
corresponding to  where . The external loads applied to this part of 
the m

00 ss ≤≤  Ls <<0 0

embrane are the force jf0 0= f−  applied at 0=s  and the pressure difference P  
applied at 0<<0 s l force acting on this part of the membrane 
reads  

0s

s . He xterna

0
00 ssPkfs cm NjF ∫+−  

and since the unit normal vector  to the membrane is  

nce, the total e

,d)(=)(

)(sN

,
d

,0,
d

=)( ⎟
⎠

⎜
⎝
−

ss
s dd ⎞⎛ rzN  

the external force simplifies to  

( ) ( )[ ] .(0))()((0)=)( 0000 cm jiF rsrPkfszzPks c −+−+−  

Since the part  of the membrane is in equilibrium, this force is balanced by the  0<<0 ss
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membrane forces at the two ends, namely,  

 (0))( 0s FF ).(= 0smF−  (54) 

his formula gives the membrane force distribution at
 point

T  any point Ls <<0 . 0

Now, we are prepared to consider the force balance at the L s = . Observing 
the natural boundary conditions, one finds  

 =]][[ F .
)(cos= i

L
QL
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 (55) 

mple computation shows that the force within the adhesion area reads  A si
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since the solution of equations (12) in the adhering part of the membrane is  
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where 0µ  is a constant of integration. Computing the conserved quantity  given by 
th

 H
(16) at a point of the adhering part of the membrane and substituting it in e equality 

0=H , 0µ  is determined as  
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Then, substituting this expression and the limit at of the force (54) in the jump Ls =0  
condition (55), one finds the boundary conditions for the components of the membrane 
force of form  
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hese expressions in Eq. (54), one obtains the boundarySubstituting t  conditions at 0=s  
as well, namely  
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The point Ls =  is free of external momenta and hence a ju
 

mp condition of form  
0,=]][[ =LsM  (58) 
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h hering part of the membrane is  olds at this point. The moment (18) along the ad

 )],(,(),(2=)( 0 LrLLssrcksM ca +∈π  

since πψ −=)(s  there. Then, using expression (18) again to obtain the limit value of the 
g moment bendin at Ls → , Ls < , the jump (58) reads  
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and since 0)( ≠Lrkc  it vanishes if  
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We would like to point out the following observations. A boundary
form  

 condition of 

 πψ −=)(L  (60) 
is ness of the membrane shape. In this case,  suggested in [100, 101] to ensure the smoot
relations (59) – (60) imply another boundary condition of form  

 0.=dψ
d =Lss

 (61) 

Apparently, any ot e of sd/dψ  leads to a jump of the bending moment at Ls = .  her valu
 

 
Figure 7. Profile curve (a) and shape (b) of an axisymmetrically deformed initially 

 boundary condition at the adhesion edge of form  

spherical vesicle adhering to a flat rigid plane with length 1.58=L , pressure 50= −P  and 
spontaneous curvature 1=0c . 
 
A

,2=d ϖψ
  

d = cLs ks
(62) 

is suggested in [100]. However, one should be aware that such boundary condition means 
a jump in the bending moment at the adhesion border. 
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Figure 8. Profile curve (a) and shape (b) of an axisymmetrically deformed initially 
spherical vesicle adhering to a flat rigid plane with length , pressure  and 
spontaneous curvature . 

2.5=L 25=P
0=0c

 
Explicit analytic parametrization of certain axisymmetric surfaces whose curvature 

is a solution of the shape equation is presented recently (see [30]). However, it is difficult 
to find analytical solutions of the nonlinear system (12) due to the specific form of the 
boundary conditions (56), (57). For that reason, the boundary value problem (12), (56), 
(57), (60) and (61) is treated numerically using the routine NDSolve in 
Mathematica (see [102, Sec. 1.6.4]) which is combined with a Maple implementation of 
the shooting method (package shoot, see [103]). 

®

Typical examples of cell membrane shapes are displayed in Figures 7 and 8. The 
comparison of the membrane shapes in these figures shows up the effect of the external 
pressure P on the convexity of the equilibrium shape. The profile curves presented in 
Figure 9 clarify this effect, as well as the effect of the spontaneous curvature on the 
membrane shape. 

 

 
Figure 9. Profile curves of axisymmetrically deformed initially spherical vesicle with 
length of the great circle  adhering to a flat rigid plane (bottom) with diameter of the 
adhesion spot 0.6  and length of the profile curve  (a): ,  (solid line) and 

 (dashed line); (b) ,  (solid line) and  (dashed line). 

2.7
1=L 1=0c 100=P

100= −P 25=P 3=0c 3=0 −c
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