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Abstract. The Gardner equation is well-known in the mathematical literature since the late sixties of 20th century. Initially,
it appeared in the context of the construction of local conservation laws admitted by the KdV equation. Later on, the Gardner
equation was generalized and found to be applicable in various branches of physics (solid-state and plasma physics, fluid
dynamics and quantum field theory). In this paper, we examine the travelling wave solutions of the Gardner equation and
derive the full set of solutions to the corresponding reduced equation in terms of Weierstrass and Jacobi elliptic functions.
Then, we use the travelling wave solutions of the focusing mKdV equation and obtain in explicit analytic form exact solutions
of a special type of plane curve flow, known as the mKdV flow.
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INTRODUCTION

The nonlinear evolution partial differential equation

ut +uux +
1
6

ε2u2ux +uxxx = 0, ε ∈ R (1)

usually referred to as the Gardner equation (see [1]), was introduced almost half a century ago in the fist one [2]
of a series of works (see also [3]) by Miura, Gardner, Kruskal and coauthors devoted to the study of properties and
solutions of the celebrated Korteweg-de Vries (KdV) equation [4]

ut +uux +uxxx = 0 (2)

and its simplest modification
ut +u2ux +uxxx = 0 (3)

currently known as the (focusing) modified Korteweg-de Vries (mKdV) equation. These equations have a great deal in
common with the Camassa-Holm equation, but there are significant differences as well [5]. Here and in what follows,
the subscripts denote partial differentiations of the dependent variable (unknown function) u = u(x, t) with respect to
the indicated independent variables x and t.

In the present paper, by “Gardner equation” we assume a combination of the aforementioned three equations of the
form

ut +α1uxxx +α2ux +α3uux +α4u2ux = 0, α1,α2,α3,α4 ∈ R. (4)

Thus, by setting α1 = α3 = 1, α2 = 0, α4 = (1/6)ε2 in Eq. (4) one obtains the genuine Gardner equation (1), the setting
α1 = 1, α2 = α4 = 0, α3 = 1 yields the KdV equation (2) and, finally, choosing α1 = 1, α2 = α3 = 0, α4 = 1 one gets
to the mKdV equation (3). It should be noted that equations of form (4) have attracted a lot of attention in recent years
being frequently called “extended KdV (mKdV) equations” (see, e.g., [6, 7, 8]) or “combined KdV–mKdV equations”,
see, e.g., [9, 10, 11, 12, 13].
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It is noteworthy that, in the most important case α1α4 6= 0, the simple invertible transformation of the variables [14]

t ′ = α1t, x′ = x− 4α2α4−α2
3

4α4
t, u =

√
6σα1

α4
u′− α3

2α4

where σ = sign(α1/α4), maps Eq. (4), omitting the primes, into the focusing (σ = 1) or defocussing (σ =−1) mKdV
equation

ut +6σu2ux +uxxx = 0.

Finally, let us remark that the Gardner equation was found to be applicable in various branches of solid-state and
plasma physics, fluid dynamics, quantum mechanics and quantum field theory (see, e.g., [6, 7, 9, 10, 11, 12, 13, 15,
16, 17, 18, 19] and references therein).

TRAVELLING WAVE SOLUTIONS

Being invariant under any translation of its independent variables x and t, the Gardner equation admits travelling wave
solutions of the form

u(x, t) = φ(ξ ), ξ = x− ct, c ∈ R (5)

provided that the function φ(ξ ) satisfies the following reduced nonlinear ordinary differential equation

φ ′′− 1
2

c1 +
α2− c

α1
φ +

α3

2α1
φ 2 +

α4

3α1
φ 3 = 0, c1 ∈ R. (6)

where the primes denote the derivatives with respect to the variable ξ (here and in what follows we assume α1α4 6= 0).
Indeed, substituting relations (5) into Eq. (4) and integrating once, we find Eq. (6) in which c1 is the constant of
integration.

Now, multiplying Eq. (6) by φ ′ and integrating again one obtains

(
φ ′

)2− c2− c1φ +
α2− c

α1
φ 2 +

α3

3α1
φ 3 +

α4

6α1
φ 4 = 0, c2 ∈ R (7)

where c2 is the constant of this second integration.
For the purposes of the present study it is convenient to rewrite Eq. (7) in the form

(
φ ′

)2 = a0φ 4 +4a1φ 3 +6a2φ 2 +4a3φ +a4 (8)

where
a0 =− α4

6α1
, a1 =− α3

12α1
, a2 =

c−α2

6α1
, a3 =

1
4

c1, a4 = c2.

Thus, Eq. (6) is reduced to its first integral (8) whose solutions, therefore, determine entirely all the travelling
waves inherent to the Gardner equation. Actually, as noticed in [20], travelling wave solutions of various nonlinear
partial differential equations are determined by ordinary differential equations of the form (8) with respective sets of
coefficients ai (i = 0, . . . ,4). Such an interesting case concerning the so-called Boussinesq paradigm equation [21] will
be considered by the present authors in a forthcoming paper.

It should be noted that quite an amount of papers have been published recently (see, e.g., [9, 10, 12, 22, 23, 24, 25])
in which one can find a lot of particular travelling wave solutions to equations of form (4) obtained by applying
different, let say, “ansatz methods” (such as the tanh [26] and extended tanh methods [27], Jacobi elliptic function
method [28, 29] and many others) to the respective ordinary differential equations, which, as it is shown above, can be
written in the form (8). Actually, there is no need to use any “ansatz method” in this case since the general solution of
Eq. (8) is readily obtainable in closed form. This will be shown in the next Section where, assuming that the polynomial

P(φ) = a0φ 4 +4a1φ 3 +6a2φ 2 +4a3φ +a4 (9)

appearing in the right hand side of Eq. (8) does not have multiple roots, the general solution of Eq. (8) will be given
in terms of Weierstrass and Jacobi elliptic functions using the classical result of Weierstrass [30, pp. 4–16] (see also
[31, 32]). In fact, it is relatively easy to analyse the cases in which the foregoing polynomial possesses multiple roots
and to write down the corresponding general solutions, see [33].
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GENERAL EXPRESSIONS FOR THE TRAVELLING WAVE SOLUTIONS

According to Eq. (9), the polynomial P(φ) appearing in the right-hand side of the first-order nonlinear ordinary
differential equation (8) is of fourth degree with respect to the variable φ . This allows, following [31, pp. 452–454], to
express the general solution of Eq. (8) in the form

φ (ξ ) = ρ +

√
P(ρ)℘ ′ (ξ ;g2,g3)+ 1

2 P1 (ρ)
(
℘(ξ ;g2,g3)− 1

24 P2 (ρ)
)
+ 1

24 P(ρ)P4 (ρ)

2
(
℘(ξ ;g2,g3)− 1

24 P2 (ρ)
)2− 1

48 P(ρ)P4 (ρ)
(10)

provided that the polynomial P(φ) does not have multiple roots. Here, ρ is an arbitrary constant, ℘(ξ ;g2,g3) is the
Weierstrass elliptic function, g2 and g3 are the invariants of the polynomial P(φ), which have the form

g2 = a0a4−4a1a3 +3a2
2, g3 = a0a2a4 +2a1a2a3−a3

2−a0a2
3−a2

1a4

and

P1 =
dP
dφ

, P2 =
d2P
dφ 2 , P4 =

d4P
dφ 4 ·

If φ0 is a simple root of the polynomial P(φ), then expression (10) takes the form

φ (ξ ) = φ0 +
1
4

P1(φ0)
℘(ξ ;g2,g3)− 1

24 P2(φ0)
· (11)

The knowledge of the sign of the discriminant

∆ = g3
2−27g2

3

of Weierstrass elliptic function ℘(ξ ;g2,g3), quartic P(φ) and cubic

R(ξ ) = 4ξ 3−g2ξ −g3

polynomials allows to express the solution of equation (8) in terms of Jacobi elliptic functions. First, let us remark that
the polynomials P(φ) and R(ξ ) do not have multiple roots if and only if ∆ 6= 0, see [34, p. 44]. In each such case the
Weierstrass elliptic function ℘(ξ ;g2,g3) appearing in the solution (11) to equation (8) can be expressed, cf. [35, pp.
633, 649–652], as follows:

(i) if ∆ > 0, then

℘(ξ ;g2,g3) = e3 +
e1− e3

sn2 (
√

e1− e3ξ ,m)
, m =

e2− e3

e1− e3
(12)

where e1 > e2 > e3 are the roots of the cubic polynomial R(ξ ), which, in this case, are real and sn(·, ·) is the Jacobi
sine function.

(ii) if ∆ < 0, then the polynomial R(ξ ) has one real root e2 as well as a couple of complex conjugated roots e1, e3
and

℘(ξ ;g2,g3) = e2 +H2
1+ cn

(
2ξ
√

H2,m
)

1− cn
(
2ξ
√

H2,m
) , m =

1
2
− 3e2

4H2
, H2 =

√
3e2

2−
g2

4
(13)

where cn(·, ·) is the Jacobi cosine function.
Actually, even if the polynomial P(φ) has a double root, that is ∆ = 0, formula (11) still remains to express the

general solution of the corresponding equation of form (8). In each such case, one can use formula (12) or (13) in
order to rewrite the solution under question in terms of Jacobi elliptic functions, which now reduce, however, to
elementary functions (see [32, 36, 37]).
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MOTION OF PLANE CURVES GOVERNED BY THE MKDV CURVE FLOW

Let a regular plane curve parametrized by its arc-length s evolves smoothly and without extension in time t according
to the curve flow equation

∂r(s, t)
∂ t

=−∂κ(s, t)
∂ s

n(s, t)− 1
2

κ2(s, t)t(s, t) (14)

where r(s, t) is the position vector of the curve, κ(s, t) is its curvature, t(s, t) and n(s, t) are the unit tangent and inward
unit normal vectors to the curve, respectively, defined in the usual way

t(s, t) =
∂r(s, t)

∂ s
=

(
∂x(s, t)

∂ s
,

∂ z(s, t)
∂ s

)
, n(s, t) =

(
−∂ z(s, t)

∂ s
,

∂x(s, t)
∂ s

)
(15)

where x(s, t) and z(s, t) are the components of the position vector r(s, t) with respect to a certain rectangular Cartesian
coordinate frame XOZ in the Euclidean plane. Note that in terms of the tangent (slope) angle ϕ(s, t) defined as follows

∂ϕ(s, t)
∂ s

= κ(s, t) (16)

one has the expressions
∂x(s, t)

∂ s
= cosϕ(s, t),

∂ z(s, t)
∂ s

= sinϕ(s, t). (17)

Let us recall also that the tangent t(s) and normal n(s) vectors to the curve are related to its curvature κ(s, t) through
the familiar Frenet-Serret equations

∂ t(s, t)
∂ s

= κ(s, t)n(s, t),
∂n(s, t)

∂ s
=−κ(s, t)t(s, t). (18)

Differentiating both sides of Eq. (14) with respect to the variable s and using the Frenet-Serret equations (18) we
have

∂ 2r(s, t)
∂ s∂ t

=−
(

∂ 2κ(s, t)
∂ s2 +

1
2

κ3(s, t)
)

n(s, t).

On account of Eqs. (15) and (17), this relation leads to the following expression for the time derivative of the slope
angle

∂ϕ(s, t)
∂ t

=−
(

∂ 2κ(s, t)
∂ s2 +

1
2

κ3(s, t)
)

(19)

which, upon a substitution according to Eq. (16) in its right-hand side, can be written in the form

∂ϕ(s, t)
∂ t

+
∂ 3ϕ(s, t)

∂ s3 +
1
2

(
∂ϕ(s, t)

∂ s

)3

= 0 (20)

known as the potential mKdV equation. Differentiating Eq. (20) with respect to the variable s and using again Eq. (16)
we arrive at the focusing mKdV equation

∂κ(s, t)
∂ t

+
∂ 3κ(s, t)

∂ s3 +
3
2

κ2(s, t)
∂κ(s, t)

∂ s
= 0. (21)

This confirms the well-known result of Goldstein and Petrich [38] and Nakayama et al. [39] that the plane curve flow
of the special form (14) is a mKdV flow, i.e., when a curve evolves according to Eq. (14), the curvature of this curve
satisfies the focusing mKdV equation (21).
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TRAVELLING WAVE SOLUTIONS OF THE MKDV CURVE FLOW

In what follows, revising the results presented in [40, 41] we will use the travelling wave solutions of the focusing
mKdV equation (21) to obtain exact solutions of the curve flow (14) in explicit analytic form. For that purpose, we
change to a moving coordinate frame

ξ = s− ct, τ = t (22)

and assume
κ(ξ ,τ) = κ̂(ξ ). (23)

Then, using the same procedure as in the second Section, from the mKdV equation (21) we find the curvature κ̂(ξ ) to
satisfy the corresponding reduced equation

d2κ̂
dξ 2 +

1
2

κ̂3− cκ̂− c1 = 0 (24)

and its first integral (
dκ̂
dξ

)2

= P̂(κ̂) , P̂(κ̂) =−1
4

κ̂4 + cκ̂2 +2c1κ̂ + c2 (25)

where c1 and c2 are the respective constants of integration. Note that Eq. (25) is of the form (8) and hence its general
solution is readily expressed in terms of Jacobi elliptic functions through the formulae (11)-(13), see [36, 37].

In terms of the moving coordinate frame (22), the first one of Eqs. (15) and the Frenet-Serret equations (18) read

∂r(ξ ,τ)
∂ξ

= t(ξ ,τ),
∂ t(ξ ,τ)

∂ξ
= κ̂(ξ )n(ξ ,τ),

∂n(ξ ,τ)
∂ξ

=−κ̂(ξ )t(ξ ,τ) (26)

while the curve flow equation (14) takes the form

∂r(ξ ,τ)
∂τ

=−dκ̂(ξ )
dξ

n(ξ ,τ)− 1
2

(
κ̂2(ξ )−2c

)
t(ξ ,τ) (27)

the assumption (23) and the first one of Eqs. (26) being taken into account.
In the same frame, expressions (16) and (19) for the derivatives of the tangent angle become

∂ϕ(ξ ,τ)
∂ξ

= κ̂(ξ ),
∂ϕ(ξ ,τ)

∂τ
=−c1

provided that Eqs. (23) and (24) hold. From the above two equations we obtain

ϕ(ξ ,τ) = ϕ̂(ξ )− c1τ,
dϕ̂(ξ )

dξ
= κ̂(ξ ). (28)

In the case c1 6= 0, using expressions (28) for the tangent angle one can easily see that
∫

cos(ϕ̂ (ξ )− c1τ)dτ =− 1
c1

sin(ϕ̂ (ξ )− c1τ) ,
∫

sin(ϕ̂ (ξ )− c1τ)dτ =
1
c1

cos(ϕ̂ (ξ )− c1τ)

and hence ∫
n(ξ ,τ)dτ =− 1

c1
t(ξ ,τ),

∫
t(ξ ,τ)dτ =

1
c1

n(ξ ,τ)

which allows to integrate Eq. (27) with respect to time τ and obtain

r(ξ ,τ) =
1
c1

dκ̂(ξ )
dξ

t(ξ ,τ)− 1
2c1

(
κ̂2(ξ )−2c

)
n(ξ ,τ)+ r0(ξ ) (29)

where r0(ξ ) is an arbitrary vector function. Finally, substituting this in the first one of Eqs. (26) and using the rest of
them as well as Eq. (24), we find that the necessary and sufficient condition for a curve of position vector given by
Eqs. (29) to evolve according to the curve flow equation (27) is r0 to be a constant vector.
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To summarize, going back to the initial variables s and t, the components of the position vector of a plane curve of
curvature κ̂(ξ ), which evolves according to the curve flow equation (14) can by expressed in the form

x(s, t) =
1
c1

dκ̂(ξ )
dξ

cos(ϕ̂ (ξ )− c1t)+
1

2c1

(
κ̂2(ξ )−2c

)
sin(ϕ̂ (ξ )− c1t)+ x0 (30)

z(s, t) =
1
c1

dκ̂(ξ )
dξ

sin(ϕ̂ (ξ )− c1t)− 1
2c1

(
κ̂2(ξ )−2c

)
cos(ϕ̂ (ξ )− c1t)+ z0 (31)

where c, c1, x0, z0 are arbitrary constants, ξ = s− ct, κ̂(ξ ) is an arbitrary solution of Eq. (24) and dϕ̂(ξ )/dξ = κ̂(ξ ).
The analytic expressions for the aforementioned functions κ̂(ξ ) and ϕ̂(ξ ) are known and can be found, for instance,

in the recent papers [33, 36, 37] where the present authors have studied the differential equations (24) and (25) for the
curvature κ̂(ξ ) with the aim to achieve an analytic description of the equilibrium shapes of cylindrical lipid bilayer
membranes, elastic rings and tubes under uniform hydrostatic pressure. A summary of these results is presented below.

Depending on the values of the parameters c, c1 and c2, there exist two cases in which the polynomial P̂(κ̂)
attains positive values and hence Eq. (25) has real-valued solutions: (I) the polynomial P̂(κ̂) has two simple real
roots α,β ∈ R, α < β , and a pair of complex conjugate roots γ,δ ∈ C, δ = γ̄; (II) the polynomial P̂(κ̂) has four
simple real roots α < β < γ < δ ∈ R. In the first case, the polynomial P̂(κ̂) is nonnegative in the interval α ≤ κ̂ ≤ β ,
while in the second one, it is nonnegative in the intervals α ≤ κ̂ ≤ β and γ ≤ κ̂ ≤ δ . It should be noted that the roots
of the polynomial P̂(κ̂) can be expressed explicitly through its coefficients and vice versa, see the Appendix.

Let the parameters c, c1 and c2 be such that the polynomial P̂(κ̂) has roots as in case (I), namely, two of them are
real (α < β ) and the other two constitute a complex conjugate pair which, in view of relation (32), can be written in
the form

γ =−α +β
2

+ iη , δ =−α +β
2

− iη

where η is a nonnegative real number. In this case, equation (25) has periodic solutions if η 6= 0 or η = 0 and
(3α +β )(α +3β ) > 0, see [36, Theorem 1].

Let η 6= 0 and hence the roots of the polynomial P̂(κ̂) are simple. Denote

λ1 =
1
4

√
AB, k1 =

√
1
2
− 4η2 +(3α +β )(α +3β )

2AB
where

A =
√

4η2 +(3α +β )2, B =
√

4η2 +(α +3β )2.

Evidently, A > 0, B > 0, λ1 > 0 and 0 < k1 < 1. In this case, each solution of Eq. (25) can be expressed by the function

κ̂1 (ξ ) =
(Aβ +Bα)− (Aβ −Bα)cn(λ1ξ ,k1)

(A+B)− (A−B)cn(λ1ξ ,k1)

which takes real values for each ξ ∈ R and is periodic with least period T1 = (4/λ1)K(k1) due to the periodicity of
the Jacobi function cn(λ1ξ ,k1). Here, K(·) denotes the complete elliptic integral of the first kind. The corresponding
slope angle (28) can be written in the form

ϕ̂1 (ξ ) =
Aβ −Bα

A−B
ξ +

α−β

2λ1

√
k2

1 + (A−B)2

4AB

arctan

(√
k2

1 +
(A−B)2

4AB
sn(λ1ξ ,k1)
dn(λ1ξ ,k1)

)

+
(A+B)(α−β )

2λ1 (A−B)
Π

(
− (A−B)2

4AB
,am(λ1ξ ,k1),k1

)

where Π(·, ·, ·) denotes the incomplete elliptic integral of the third kind.
Now, let η = 0 and (3α + β )(α + 3β ) > 0. Then, the polynomial P̂(κ̂) has one double and two simple real roots.

The curvature and the slope angle (28) are expressed in terms of elementary functions as follows

κ̂2 (ξ ) =
(Aβ +Bα)− (Aβ −Bα)cos(λ1ξ )

(A+B)− (A−B)cos(λ1ξ )

ϕ̂2 (s) =
Aβ −Bα

A−B
ξ +

8(α−β )
A−B

arctan

(√
A
B

tan
(

1
2

λ1ξ
))

.
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Let the parameters c, c1 and c2 be such that the polynomial P̂(κ̂) has roots as in case (II), that is α < β < γ < δ ∈R.
Denote

λ2 =
1
4

√
(γ−α)(δ −β ), k2 =

√
(β −α)(δ − γ)
(γ−α)(δ −β )

·

Since γ−α > β −α > 0 and δ −β > δ − γ > 0, it is seen that λ2 > 0 and 0 < k2 < 1. In this case, each solution of
Eq. (25) can be expressed by one of the following functions

κ̂3(ξ ) = δ − (δ −α)(δ −β )
(δ −β )+(β −α)sn2(λ2ξ ,k2)

, κ̂4(ξ ) = β +
(γ−β )(δ −β )

(δ −β )− (δ − γ)sn2(λ2ξ ,k2)

see [36, Theorem 2]. The functions κ̂3(ξ ) and κ̂4(ξ ) take real values for each ξ ∈R and are periodic with least period
T2 = (2/λ2)K(k2) because of the periodicity of the function sn2(λ2ξ ,k2). Their indefinite integrals (28) can be written
respectively as

ϕ̂3(ξ ) = δξ − δ −α
λ2

Π
(

β −α
β −δ

,am(λ2ξ ,k2),k2

)
, ϕ̂4(ξ ) = βξ − β − γ

λ2
Π

(
δ − γ
δ −β

,am(λ2ξ ,k2),k2

)
.

It should be remarked, that the indefinite integrals ϕ̂ j(ξ ), j = 1, . . . ,4, of the foregoing solutions κ̂ j(ξ ) of Eq. (25)
are chosen so that ϕ̂ j(0) = 0. Moreover, κ̂ j(0) always coincides with a certain root of the polynomial P̂(κ̂) (actually,
κ̂ j(0) = α for j = 1,2,3 and κ̂4(0) = γ) and hence dκ̂/dξ = 0 at ξ = 0, according to Eq. (25).

The evolution of a closed plane curve obtained through the expressions (30) and (31) for the coordinates of its
position vectors is depicted in Figure 1.

FIGURE 1. Evolution of a closed plane curves of curvature κ̂ (ξ ) = κ̂1 (ξ ) and tangent angle ϕ̂ (ξ ) = ϕ̂1 (ξ ) drawn via the
expressions (30) and (31) with x0 = z0 = 0, c =−1.018, c1 = 4 and c2 = 4.66383 at time (a) t = π/12, (b) t = π/8, (c) t = π/6

APPENDIX

After some standard algebraic manipulations (see, e.g., [42]), one can find the following expressions for the roots of
the polynomial P̂(κ̂)

−√ω±
√

2c− 2c1√
ω
−ω,

√
ω±

√
2c+

2c1√
ω
−ω

where

ω =
(2c+ 3

√
223

(
32c2

1 +
√χ

)−23c(c2 +32c2))2−223c2

6 3
√

223
(
32c2

1 +
√χ

)−23c(c2 +32c2)
, χ = 223c2

[(
c2 + c2

)2−32c2
1c

]
−3c2

1
(
22c3−33c2

1
)
.
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Then, one can denote properly each of the above expressions for the roots in accordance with the notation introduced
in the cases (I) and (II), respectively. Simultaneously, by Vieta’s formulas one obtains

α +β + γ +δ = 0 (32)

due to the absence of a term with κ̂3 in the polynomial P̂(κ̂), see Eq. (25), and

c =
1
4

(
α2 +β 2 + γ2 +αβ +αγ +βγ

)
, c1 =−1

8
(α +β )(α + γ)(β + γ) , c2 =

1
4

αβγ(α +β + γ).
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