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Abstract. The work is concerned with the determination of the mechanical behaviour of cell mem-
branes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming
that the shape of the deformed cell membrane is axisymmetric a variational statement of the prob-
lem is developed on the ground of the so-called spontaneous curvature model. In this setting, the
cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space
providing a stationary value of the shape energy functional under the constraint of fixed total area
and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary con-
ditions are derived, analyzed and used to express the forces and moments in the membrane. Several
examples of such surfaces representing possible shapes of cell membranes under pressure subjected
to micro injection are determined numerically.
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INTRODUCTION

The 2010 Nobel Prize in Physiology or Medicine was awarded to Robert Edwards for
the development of human in-vitro fertilization in 1977 (Louise Brown, the world’s first
“test tube baby”, was born on 25 July, 1978). On the other side, genetic engineering is a
rapidly developing area of biology in the past 30 years aimed in creation of transgenic
organisms with desired properties. Recently, the controlled delivery of diamond and gold
nanoparticles within a single cell has being developed (see, e.g. [7]), and is expected to
become a broadly applicable tool for therapy, since these nanoparticles being not toxic
can be used as carriers for therapeutics, proteins, antibodies, DNA and other biologi-
cal agents. Presently, these three fields of the human activity involve the intracellular
delivery of substances by micro-injection. During the process of a micro-injection, a
micro pipette pierces the cell membrane and releases substances within the cell interior.
The success of a micro-injection depends mainly on the mechanical properties of the
injected cell membrane and on the specific way of interaction between the membrane
and the holding and injection pipettes.

Observing the literature on micro-injections of cells one realizes that large cells are
the most often studied, typical examples being the zebrafish and mouse embryos. The
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analysis is mainly experimental, but several theoretical models have also been suggested
(see, e.g. [1, 18, 13, 8, 14]).

A semi-empirical model of axisymmetrical membrane deformation of zebrafish em-
bryo is presented by Lu et al. [8]. In this work, the stress at the injection pipette tip is
obtained measuring the radius of the contact spot between the embryo membrane and
the wall the cell is hold to. In this model, the stretch at the border circle between the de-
formed and undeformed parts of the membrane is obtained approximating the observed
contour of the deformed membrane by second-order polynomials.

A more sophisticated model is suggested by Tan et al. [14]. In this model, the cell
membrane is supposed to be a two-dimensional Mooney-Rivlin material, its deformation
being governed by a system of quasi-static equilibrium equations.

It should be underlined that from mechanical point of view, the embryos are different
from the other animal cells in both, their size and coating. For instance, the zebrafish
embryos are 0.6 − 1.25mm in diameter [1] whereas the size of the most eukaryotic
animal cells is within 10−30 μm (the red blood cells are even smaller – less than 6 μm
in size). On the other hand, that embryo’s coating is a veil called chorion [1] unlike the
other cells that are coated by lipid bilayer membrane with protein inclusions.

A general theoretical model for deformation of lipid bilayer membranes was proposed
by Helfrich [5] in 1973. This model, usually referred to as the spontaneous curvature
model, is widely acknowledged and used by many authors to study stresses and strains
in cell membranes (see, e.g., the exhaustive surveys [6, 11, 12, 15]). The corresponding
partial differential equations determining the equilibrium shapes of closed lipid bilayer
membranes (vesicles – the simplest model of cells) subjected to hydrostatic pressure is
derived in 1989 by Ou-Yang and Helfrich [10]. Latter on, Capovilla et al. [2] and Tu et
al. [16, 17] have extended the foregoing model to cell membranes with free edges.

In the present study, the mechanical behaviour of cells subjected to micro-injection
and the corresponding forces, moments and deformed shapes of the cell membrane is
examined in the line of the Helfrich spontaneous curvature model. The cell membrane
is supposed to be inextensible and to deform axisymmetrically. The evolution of the
membrane shape during a micro-injection process is supposed to be quasi-static. The
main tack consists in the determination of the equilibrium shapes of an initially spherical
vesicle subjected to a uniform hydrostatic pressure and forces exerted by the holding and
injection pipettes at two contours of the membrane. The foregoing forces are supposed
to act along the symmetry axis of the injected cell membrane and to direct inward.
Actually, the present model is an extension of the model proposed in [3] in which the
effects due to the spontaneous curvature c0 and hydrostatic pressure P have not been
taken into account.

The results of this study is expected to provide a realistic mechanical description of the
penetration process. The estimated strain (deflection) of the cell membrane may serve as
an indicator of the deformation sustained by cell organelles prior to penetration, which
may be used for the purposes of a fault diagnosis.
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VARIATIONAL STATEMENT OF THE PROBLEM

Within the framework of the spontaneous curvature model [5] (see also [6, 11, 12, 15]),
the cell membrane is regarded as a two-dimensional surface S embedded in the three-
dimensional Euclidean space R

3. The membrane is supposed to exhibit a purely elastic
mechanical behaviour and to be inextensible upon deformation. The equilibrium shapes
of the membrane are described in terms of its mean H and Gaussian K curvatures, which
are assumed to be such that the so-called curvature (shape) energy functional

Fc =
kc
2

∫

S

(2H + c0)
2dA+ kG

∫

S

KdA

has a local extremum under the constraints of fixed total area A and enclosed volume
V (if a hydrostatic pressure p is applied). Here, kc and kG are two constants associated
with the bending rigidity of the membrane and c0 is the so-called spontaneous curva-
ture. It should be noted that the associated Euler-Lagrange equation, usually called the
membrane shape equation, is a nonlinear fourth order partial differential equation with
respect to the components of the position vector, see [10].

For an initially spherical cell membrane of radius ρ supposed to retain its axial
symmetry upon deformation, as it is assumed in the present study, the curvature energy
functional Fc takes the form

Fca = 2πkc

∫ L

0

1
2

(

dϕ
ds

+
sinϕ

r
+ c0

)2
rds+2πkG

∫ L

0

dϕ
ds

sinϕ ds

since the mean H and Gaussian K curvatures of a surface in revolution are given by the
expressions

H =
1
2

(

dϕ
ds

+
sinϕ

r

)

, K =
dϕ
ds

sinϕ
r

·

Here, s is the arclength of the profile curve of the membrane, which is assumed to lie in
the ROZ-plain (see Fig. 1) and to be determined by the parametric equations R = r(s),
Z = z(s) while ϕ(s) is the slope angle defined by the relations

dr
ds

= cosϕ,
dz
ds

= sinϕ. (1)

The values s = 0 and s = L of the arclength variable are assumed to correspond
to the points at the profile curve where the injection pipette and the holding pipette,
respectively, act on the cell membrane along the respective contours, which will be
denoted by C0 and CL.

Taking into account the work done by the hydrostatic pressure P, the constraint of
fixed total area of the membrane and the geometric relations (1) by introducing three
Lagrange multipliers λ (s), μ(s), η(s) and an auxiliary function α(s) such that α(L)−
α(0) = A0/2π , where A0 is a certain fixed value of the total area of the membrane, as
well as accepting the additional assumption that at both ends of the membrane, i.e.,
at s = 0 and s = L, there are distributed forces f0 = kcq0 and fL = kcqL exerted at
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FIGURE 1. Sketch of an initially spherical cell membrane of radius ρ deformed axisymmetrically by
two micro-pipettes in the process of a micro-injection. Here, Z-axis is the symmetry axis of the cell, ϕ
is the slope angle of the profile curve, which is assumed to lie in the ROZ-plane while f0 and fL are the
magnitudes of the forces (per unit contour length) exerted by the micro-pipettes at the contours s = 0 and
s = L.

the membrane along the Z-axis in the opposite directions and, finally, assuming that
there could be line tensions kcσ0 and kcσL due to the membrane – injection pipette and
membrane – holding pipette interactions, we arrive at the functional

A = 2πkc

[

∫ L

0
L ds+q0w0r(0)+σ0r(0)+qLwLr(L)+σLr(L)

]

where w0 = ρ − z(0) and wL = ρ + z(L), whose Lagrangian density L is given by the
expression

L =
1
2

(

dϕ
ds

+
sinϕ

r
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)2
r+
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r(r
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)
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(
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(2)

where p = P/kc. Then, setting to zero the first variation of the functional A one obtains
the following system of Euler-Lagrange equations

d2ϕ
ds2 =−

dϕ
ds

cosϕ
r

+
sin2ϕ

2r2 +μ
sinϕ

r
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(3)
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and natural boundary conditions
{

M̂δϕ +λδα + μ̂δ r+ η̂δ z+H δ s
}L

0
+(q0w0 +σ0)δ r(0)−q0r(0)δ z(0)+Q0δ s(0)
+(qLwL +σL)δ r(L)+qLr(L)δ z(L)+QLδ s(L) = 0

(4)

where

M̂ =

[

dϕ
ds

+

(

1+
kG
kc

)

sinϕ
r

+ c0

]

r, μ̂ = μ −
1
3

prz, η̂ = η +
1
3

pr2 (5)
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1
2

[

(

dϕ
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]

r+λ r+μ cosϕ +η sinϕ (6)

and

Q0 = [q0w0 +σ0r(0)]cosϕ(0)−q0r(0)sinϕ(0)

QL = [qLwL +σLr(L)]cosϕ(L)+qLr(L)sinϕ(L).
(7)

Actually, H is a conserved quantity on the smooth solutions of the Euler-Lagrange
equations (3) due to the invariance of the functional A under the translations of the inde-
pendent variable s. It should be noted also that δ r(0) = δ r(L) = 0 since the diameters of
the pipettes are fixed as well as λ (L)δα(L)−λ (0)δα(0) = 0 because of the constraint
of fixed total area and the fact that λ turned out to be a constant.

Observing expressions (4), one can immediately interpret

M = 2πkcM̂ (8)

and
F = 2πkcF̂, F̂ = (μ̂ +H cosϕ)i+(η̂ +H sinϕ)j (9)

where i and j denote the unit vectors along the coordinate axes R and Z, as the bending
moment (couple resultant) and force (stress resultant) at any contour of the membrane,
except for the contours C0 and CL at which the force suffers jump discontinuity because
of the external forces

f0 = Q0 cosϕ (0) i+[Q0 sinϕ (0)+q0r (0)] j (10)

and
fL = QL cosϕ (L) i+[QL sinϕ (L)+qLr (L)] j (11)

respectively, which are applied at these contours.
This means that the so loaded cell membrane is in equilibrium provided that the

following jump conditions

[[M̂]]C0 = [[M̂]]CL = 0, [[F̂]]C0 = f0, [[F̂]]CL = fL (12)
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hold. In addition, one should be aware that the balance of the external forces implies

q0r (0) = qLr (L) . (13)

Thus, within the framework of the variational approach suggested here, the equilib-
rium states (moments, forces and profile curves) of the considered cell membranes sub-
jected to micro-injections are determined by the solutions of the Euler-Lagrange equa-
tions (3) that meet the conditions (12) and (13).

NUMERICAL RESULTS

Explicit analytic parametrization of certain axisymmetric surfaces whose curvature is
a solution of the shape equation is presented recently (see [4]). However, it is difficult
to find analytical solutions of the nonlinear system (3) due to the specific form of the
boundary conditions (12) and (13). For that reason, the boundary value problem (3),
(12), (13) is treated here numerically using the routine NDSolve in Mathematica�

(see [19, Sec. 1.6.4]) which is combined with a Maple implementation of the shooting
method (package shoot, see [9]).

Typical examples of cell membrane shapes are displayed in Fig. 2. It is shown that
membranes of length L = 3 subjected to a pressure p= 25 can take different equilibrium
shapes near the holding pipette at a small change of the spontaneous curvature c0. The
comparison of the membrane shapes in Fig. 2 predicted by the suggested variational
approach to the experimental results presented in Fig. 3 shows up their qualitative
coincidence thus verifying the theoretical results presented here.

(a) (b)
FIGURE 2. Shapes of axisymmetrically deformed initially spherical cell membranes subjected to
micro-injection: length L = 3, pressure p = 25 and spontaneous curvature c0 = 0.2 (a), c0 = 0.205 (b).

FIGURE 3. Screen shots of the injection process of a single cell using the Hydro-MiNa robotic system.
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