N-terminal and C-terminal plasma membrane anchoring modulate differently agonist-induced activation of cytosolic phospholipase A₂

Elsa Klapisz¹, Mouloud Ziari¹, Dominique Wendum¹, Kamen Koumanov¹, Corinne Brachet-Ducos¹, Jean-Luc Olivier¹, Gilbert Béréziat¹, Germain Trugnan² and Joëlle Masliah¹

¹UPRES-A CNRS 7079 and ²CJF INSERM 9607, CHU Saint-Antoine, Paris, France

The 85 kDa cytosolic phospholipase A_2 (cPLA₂) plays a key role in liberating arachidonic acid from the *sn*-2 position of membrane phospholipids. When activated by extracellular stimuli, cPLA₂ undergoes calciumdependent translocation from cytosol to membrane sites which are still a matter of debate. In order to evaluate the effect of plasma membrane association on cPLA₂ activation, we constructed chimeras of cPLA₂ constitutively targeted to the plasma membrane by the N-terminal targeting sequence of the protein tyrosine kinase Lck (Lck-cPLA₂) or the C-terminal targeting signal of K-Ras4B (cPLA₂-Ras). Constitutive expression of these chimeras in Chinese hamster ovary cells overproducing the α_{2B} adrenergic receptor (CHO-2B cells) did not affect the basal release of [³H]arachidonic acid, indicating that constitutive association of cPLA₂ with cellular membranes did not ensure the hydrolysis of membrane phospholipids. However, Lck-cPLA₂ increased [³H]arachidonic acid release in response to receptor stimulation and to increased intracellular calcium, whereas cPLA₂-Ras inhibited it, compared with parental CHO-2B cells and CHO-2B cells producing comparable amounts of recombinant wild-type cPLA₂. The lack of stimulation of cPLA₂-Ras was not due to a decreased enzymatic activity as measured using an exogenous substrate, or to a decreased phosphorylation of the protein. These results show that the plasma membrane is a suitable site for cPLA₂ activation when orientated correctly.

Keywords: cytosolic phospholipase A2; phosphorylation; plasma membrane; translocation.

Phospholipases A_2 (PLA₂) belong to a growing superfamily of enzymes which hydrolyze membrane phospholipids into fatty acids and lysophospholipids, providing the precursors for many of the lipid mediators involved in regulating physiological and pathological processes [1]. There are at least three groups of PLA₂s in mammalian cells: Ca²⁺-dependent secretory PLA₂s (sPLA₂s), intracellular Ca²⁺-independent PLA₂s (iPLA₂s) and the cytosolic 85-kDa Ca²⁺-dependent PLA₂ (cPLA₂). Recent evidence indicates that cPLA₂ plays a major role in the overproduction of lipid mediators during inflammation [2,3]. cPLA₂ activated by extracellular stimuli triggers the rapid hydrolysis of membrane phospholipids to give free arachidonic acid $(\Delta_4 Ach)$, which is the rate-limiting step of eicosanoid production [4,5]. This activation is dependent on at least two mechanisms: the phosphorylation of cPLA₂ by various kinases and its translocation to membrane phospholipids by a Ca2+dependent lipid-binding domain (CaLB domain) [6], following an increase in intracellular Ca^{2+.} This gives this cytosolic enzyme access to its membrane substrate [7,8]. However, the

Correspondence to J. Masliah, UPRES-A CNRS 7079,

Dept de Biochimie, CHU Saint-Antoine, 27 rue Chaligny, 75012 Paris, France. Fax: + 33 1 4001 1495, Tel.: + 33 1 4001 1341,

E-mail: masliah@ccr.jussieu.fr

Abbreviations: CaLB, Ca²⁺-dependent lipid binding domain; CHO, Chinese hamster ovary; CHO-2B, CHO cells overproducing rat α_{2B} adrenergic receptor; cPLA₂, cytosolic PLA₂; Δ_4 Ach, arachidonic acid; EGF, epidermal growth factor; FITC, fluorescein isothiocyanate; iPLA₂, Ca²⁺-independent PLA₂; MAP kinase, mitogen-activated protein kinase; PLA₂, phospholipase A₂; Sf9, *Spodoptera frugiperda*; sPLA₂, secreted PLA₂. *Enzymes*: phospholipase A₂ (EC 3.1.1.4).

(Bassived 12 May 1000 revised 1 June 1000 seconted)

(Received 12 May 1999, revised 1 June 1999, accepted 13 August 1999)

way in which cPLA₂ is activated by extracellular stimuli, and whether this activation occurs at specific sites are not yet known. Various intracellular sites of translocation have been found for cPLA₂, depending on the cell type and the stimulus used. They include nuclear and endoplasmic reticulum membranes [9-13], where cPLA2 could colocalize with the enzymes transforming Δ_4 Ach into eicosanoids, the cyclooxygenases and lipoxygenases [12,14]. However, little is known about the relative importance of these different sites for cPLA₂ activation. The plasma membrane may also be a possible site for translocation of cPLA₂, but early studies suggesting the direct interaction of PLA2 with heterotrimeric G proteins have not been confirmed [15]. Recent data indicating that cPLA₂ interacts with Jak kinases [16] or is activated by phosphatidylinositol 4,5-bisphosphate [17] have raised the possibility that translocation of cPLA₂ to the plasma membrane might be part of its activation by membrane receptors. Such a translocation of cPLA₂ to the plasma membrane was recently observed in confluent endothelial cells [18].

In order to evaluate the influence of plasma membrane anchoring on cPLA₂ activation, we have constructed chimeras of cPLA₂ by adding C-terminal or N-terminal plasma membrane targeting signals to the molecule. We added the plasma membrane targeting signal of the Lck protein kinase to the N-terminus of the cPLA₂ [19] and the plasma membrane localizing sequence of K-Ras4B to the C-terminus [20]. These chimeras were expressed in Chinese hamster ovary (CHO) cells overproducing the G-protein-coupled α_{2B} adrenergic receptor (CHO-2B cells). CHO cells contain three forms of PLA₂s, like many other cell types, and they seem to play different roles in Δ_4 Ach release: an sPLA₂, which is not involved in rapid receptor-mediated Δ_4 Ach release [4,21], an iPLA₂ [22], which is mainly involved in the remodeling of membrane phospholipids [23], and cPLA₂, which is responsible for Δ_4 Ach release after stimulation by extracellular agonists or an increase in intracellular Ca²⁺ [4,5]. In CHO-2B cells it was possible to separately induce receptor-mediated phosphorylation and activation of cPLA₂ by Ca²⁺ [24]. Stimulation of the receptor with epinephrine causes pertussis toxin-sensitive, Ras-independent activation of mitogen-activated protein kinase (MAP kinase; [25]), leading to cPLA₂ phosphorylation [24,26], but has only a modest effect on the release of Δ_4 Ach [24]. Free Δ_4 Ach is maximally produced by stimulating the cells with both epinephrine and the Ca²⁺ ionophore A23187, which results in a massive entry of extracellular Ca^{2+} [24]. We used this cell model to determine whether targeting cPLA₂ to the plasma membrane led to the constitutive hydrolysis of membrane phospholipids or could promote an increase in cPLA₂ activation in response to receptor stimulation, increased intracellular Ca²⁺, or both. Our results show that the N-terminal and C-terminal lipid-modified anchoring sequences used promote a constitutive targeting of cPLA₂ to the plasma membrane. In contrast with wild-type cPLA₂, the two chimeras have a significant but opposite effect on Δ_4 Ach release by receptor stimulation or by Ca²⁺. These results suggest a new mechanism involving plasma membrane components in the regulation of cPLA₂ activation.

EXPERIMENTAL PROCEDURES

Plasmids and recombinant viruses construction

The cPLA₂ cDNA was obtained from the wild-type cPLA₂/ PVL1393 plasmid [27] by PCR. A Kozak consensus sequence was added to the forward primer and a NheI site was placed just before the stop codon in the reverse primer. The digested PCR product was inserted into the KpnI and BglII sites of the pcDNA3 to obtain the wild-type cPLA₂/pcDNA3. Three successive PCR were performed to epitope-tag cPLA₂ at the N-terminus. A Kozak consensus sequence and the epitope tag sequence of human c-Myc (MEQKLISEEDL) were introduced at the N-terminus of wild-type cPLA2 through three successive rounds of PCR by using three overlapping forward primers and a common reverse primer encompassing the unique EcoRI site of cPLA₂ cDNA. The digested PCR product was then ligated into the KpnI and EcoRI sites of the wild-type cPLA₂/pcDNA3 to obtain the myc-cPLA₂/pcDNA3. A similar procedure was used to fuse the N-terminal 10 amino acids of human Lck (MGCGCSSHPE) to the N-terminal end of cPLA₂. The PCR product was ligated into the wild-type cPLA₂/pcDNA3 to obtain the Lck-cPLA₂/pcDNA3. To obtain the sequence encoding the 18 C-terminal amino acids of mouse K-Ras4B (SKDGKKKKKKSRTRCTVM), a sense oligonucleotide containing a *Nhe*I site and the coding sequence of the first 15 amino acids of the K-Ras4B C-terminus was hybridized to an antisense oligonucleotide encoding the last 12 amino acids of K-Ras4B, a stop codon and a XhoI site. The double-stranded DNA fragment was blunt-ended by Vent Polymerase, digested and ligated into the NheI and XhoI sites of the wild-type cPLA₂ expression plasmid to obtain the cPLA2-Ras/pcDNA3. The Lck-cPLA₂ and cPLA₂-Ras cDNA were amplified by using the respective pcDNA3 constructs as template and inserted into the PVL 1393 plasmid. The corresponding PVL 1393 constructs and the linear transfection module from Pharmingen were used to obtain recombinant viruses from Spodoptera frugiperda (Sf9) cells cultures. All constructs were verified by DNA sequencing.

Cell culture, stable transfection of CHO-2B cells, infection of Sf 9 cells

The CHO cells stably expressing the rat α_{2B} adrenergic receptor (CHO-2B cells) were maintained as described previously [25]. CHO-2B cells were stably transfected with either wild-type cPLA₂/pcDNA3, myc-cPLA₂/pcDNA3, Lck-cPLA₂/pcDNA3 or cPLA₂-Ras/pcDNA3 using the calcium phosphate precipitation method. Resistant clones were selected in medium supplemented with 0.8 mg·mL⁻¹ G418 and picked out by trypsinization using cloning rings. Individual clones were screened by immunoblot analysis. Stably transfected cells were maintained in complete medium supplemented with 0.65 mg·mL⁻¹ G418. All cells were maintained for up to 10 passages after thawing at 37 °C in a 5% CO₂ incubator.

Sf9 insect cells were grown at 27 °C in Grace's medium supplemented with 100 U·mL⁻¹ penicillin, 100 μ g·mL⁻¹ streptomycin, 10% fetal bovine serum. Sf9 cells were allowed to adhere to tissue culture dishes for 1 h and then were infected at a multiplicity of infection of 10–20 for 1 h with the appropriate recombinant virus (wild-type cPLA₂, Lck-cPLA₂ or cPLA₂-Ras recombinant baculovirus). All the experiments were performed at 68–70 h postinfection.

Transient transfection and immunofluorescence analysis

CHO-2B cells were plated on glass coverslips at 3×10^5 cells per well in six-well plates and grown for 18 h. Cells were transfected with 0.5 µg of each indicated plasmid using Lipofectamine-PLUS reagent (Life Technologies). Immunostaining experiments were all performed 48 h after the start of transfection, at room temperature. Transiently transfected cells were washed three times with NaCl/P_i, (140 mM NaCl, 10 mM P_i) fixed with 2% paraformaldehyde in NaCl/P_i for 10 min, washed three times with NaCl/P_i, incubated for 10 min with 50 mM NH₄Cl, again washed three times in NaCl/P_i and then permeabilized with 0.075% saponin in NaCl/P_i for 10 min. Cells were washed three times and incubated for 1 h with primary anti-cPLA₂ (1:200 dilution of rabbit polyclonal cPLA₂ antibody [28], a gift from R. M. Kramer, Lilly Research Laboratories, Indianapolis) and washed three times. They were then incubated with fluorescein isothiocyanate (FITC)-conjugated donkey anti-(rabbit IgG) (diluted 1:100; Jackson ImmunoResearch Laboratories) for 1 h, washed and incubated for 10 min with 1 mg·mL⁻¹ RNAse A. Nuclei were stained with 2.5 $\mu g {\cdot} m L^{-1}$ propidium iodide for 10 min. Cells were examined under a Leica fluorescence microscope and a laser scanning confocal imaging system [29].

Cell fractionation and immunoblot analysis

Confluent CHO cells or infected Sf 9 cells were rinsed twice with ice-cold NaCl/P_i, scraped into buffer B (40 mM Tris/HCl pH 7.4, 0.25 M sucrose, 1 mM EDTA, 5 mM dithiothreitol, 100 µg·mL⁻¹ 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), 10 µg·mL⁻¹ leupeptin, 1 µg·mL⁻¹ pepstatin A, 1 µg·mL⁻¹ antipain, 200 µM sodium orthovanadate, 10 mM sodium fluoride) and disrupted by sonication [20 kHz with an MSE (Crawley, Surrey, UK) tip probe at \approx 100 W for 15 s]. Cell lysates were centrifuged at 100 000 g for 60 min at 4 °C. Supernatant (cytosolic fraction) and pellet (membrane fraction, resuspended in buffer B) were stored at -80 °C at protein concentrations of 1-2 µg·µL⁻¹. Cell lysates (50 µg), cytosolic fractions (25 µg) or membrane fractions (100 µg) from CHO cells and cell lysates from infected Sf 9 cells (300 ng) were resolved by 7.5% or 10% SDS/PAGE under reducing conditions, transferred to nitrocellulose membranes for immunoblot analysis [27]. Blots were probed with 1 μ g·mL⁻¹ mouse monoclonal anti-cPLA₂ (Santa-Cruz, sc-454) followed by horseradish peroxidase-conjugated anti-(mouse IgG) (Biosys, France), and detected with the Amersham ECL chemiluminescence system.

Release of [³H]arachidonic acid from CHO and Sf9 cells

Stable transfectants and parental CHO-2B cells (5 \times 10⁴ cells per well in 12-well plates) were labeled for 18 h with $[^{3}H]\Delta_{4}Ach$ (0.5 $\mu Ci \cdot mL^{-1}$, Amersham). Under these conditions, the total incorporation of $[{}^{3}H]\Delta_{4}Ach$ into confluent cells was similar in the parental CHO-2B cells and in the stable transfectants wild-type cPLA₂ CHO, myc-cPLA₂ CHO, Lck-cPLA₂ CHO and cPLA₂-Ras CHO cells (respectively $63.39 \pm 1.03, \ 62.77 \pm 2.14, \ 63.67 \pm 3.72, \ 63.02 \pm 1.51,$ $62.75 \pm 1.45\%$ of the total radioactivity, mean \pm SEM of five independent experiments performed in triplicate). Unincorporated $[{}^{3}H]\Delta_{4}Ach$ was removed, confluent cells were washed with NaCl/Pi containing 0.2% fatty acid-free BSA, and incubated for 15 min in fresh medium alone (unstimulated cells) or in medium containing $1\;\mu\text{M}$ epinephrine, $1\;\mu\text{M}$ calcium ionophore A23187, or both. The medium was removed and centrifuged at 2000 g to remove cell debris. The cells were washed and scraped off. The radioactivity in the cells and media was measured by scintillation counting. The release of $[^{3}H]\Delta_{4}Ach$ was expressed as the percentage of the total radioactivity incorporated using the formula [radioactivity in medium/(radioactivity in medium + radioactivity in cells)] \times 100. The stimulation of $[{}^{3}H]\Delta_{4}Ach$ release in each stable transfectant was compared with the stimulation in parental cells performed in the same experiment (Fig. 4C).

Infected Sf9 cells $(5 \times 10^5 \text{ cells per well in 12-well plates})$ were labeled at 50 h postinfection with $[^3H]\Delta_4Ach$ (0.5 $\mu\text{Ci}\cdot\text{mL}^{-1}$) for 18 h. At 68 h postinfection, cells were incubated with vehicle (unstimulated cells), 1 μ M A23187 or 1 μ M okadaic acid for 2 h [30]. The stimulation of $[^3H]\Delta_4Ach$ release was monitored as described above.

Phospholipase A₂ activity

Cell lysates from Sf9 cells producing wild-type cPLA₂, cPLA₂-Ras or Lck-cPLA₂ were isolated as described above. The phospholipase A₂ activity was determined using 4 μ M of L- α -1-stearoyl-2-[¹⁴C]arachidonyl-phosphatidylcholine (Amersham) [27]. The assay mixture contained 100 mM Tris/HCl pH 8.5, 30% glycerol, 50 μ M Triton X-100, 5 mM CaCl₂, 0.1% (w/v) fatty acid-free BSA and 300 ng of cell lysates, in a final volume of 250 μ L. The mixture was incubated at 37 °C for 10 min and the lipids were extracted using the Bligh and Dyer procedure [27]. After separation by TLC, radioactivity of free fatty acid and phosphatidylcholine was quantified by liquid scintillation counting. The percentage of hydrolysis of the substrate was used to calculate the specific activity of the enzyme in the cell lysates.

Immunoprecipitation

Immunoprecipitation of cPLA₂-Ras from cPLA₂-Ras CHO cells using an anti-KRas4B and of $[^{32}P]$ -labeled wild-type cPLA₂ or cPLA₂-Ras from infected Sf9 cells using an anti-cPLA₂ antibody was performed as follows. Infected Sf9 cells (68 h postinfection) or confluent CHO cells were washed three times with ice-cold NaCl/P_i containing 1 mM sodium

orthovanadate and lysed in 1 mL ice-cold lysis buffer (10 mm Tris/HCl pH 7.4, 150 mm NaCl, 1 mm EDTA, 1 mm EGTA, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 0.2 mm sodium orthovanadate, 10 mm sodium fluoride, 30 mm sodium pyrophosphate, 100 μ g·mL⁻¹ AEBSF, 1 μ g·mL⁻¹ leupeptin, 1 μ g·mL⁻¹ pepstatin A, 1 μ g·mL⁻¹ antipain, 1 μ g·mL⁻¹ aprotinin). After sonication (Ultrasonic Cleaner Branson-1200 for 1 min), lysates were clarified by centrifugation at 15 000 g for 15 min at 4 °C and precleared by incubation with 50 µL mouse or rabbit IgG-agarose beads (Jackson ImmunoResearch Laboratories) for 1 h at 4 °C. The resulting supernatants were transferred to a microfuge tube containing 1.5 µg mouse monoclonal anti-cPLA₂ (Santa-Cruz, sc-454), or 1 µg rabbit polyclonal anti-KRas4B (Santa-Cruz, sc-521) and mixed by gentle rotation overnight at 4 °C. Protein A/G PLUS-agarose beads (Santa Cruz) were added for 2 h at 4 °C. The immunoprecipitates were recovered by centrifugation, washed five times with 1 mL ice-cold lysis buffer, boiled for 5 min in $1 \times$ Laemmli buffer containing 0.5 mM sodium orthovanadate in the case of [³²P]-labeled immunoprecipitates, separated by 7.5% SDS/PAGE, and transferred to a nitrocellulose membrane. The [³²P]-labeled immunoprecipitates were vizualized by exposing the nitrocellulose membrane at -80 °C to Kodak XAR films. Immunoblot analysis was performed as described above with anti-cPLA₂ (Santa Cruz, sc-454).

Phosphorylation studies in Sf9 cells

Sf 9 cells (4 × 10⁶ cells per p60 dish) were labeled at 20 h postinfection with [³²P]-orthophosphoric acid (0.5 mCi in 1.5 mL Grace's supplemented medium containing 10% fetal bovine serum) for 48 h. At 68 h postinfection, cells were incubated with vehicle or 1 μ M okadaic acid for 2 h, and [³²P]-labeled wild-type cPLA₂ or cPLA₂-Ras were immunoprecipitated overnight, separated by SDS/PAGE and visualized by autoradiography as described above. In each experiment, the amount of immunoprecipitated [³²P]-labeled wild-type cPLA₂ and cPLA₂-Ras was then assessed by anti-cPLA₂ immunoblotting.

RESULTS

Targeting of cPLA_2 to the plasma membrane by Lck and Ras sequences

cPLA₂ was targeted to the plasma membrane by the addition of lipid-modified anchoring sequences. The 10 first amino acidtargeting signal of the Lck protein kinase in which Gly2 is myristoylated and Cys3 and Cys5 are palmitoylated was added at the N-terminus of the cPLA2 (Fig. 1, Lck-cPLA2). This dual acylation motif has been used previously to target cytosolic proteins to the plasma membrane [19]. The C-terminal 18 amino acids of K-Ras4B containing a polybasic domain of six lysine residues and ended by a CAAX box (CTVM) was added to the C-terminus of cPLA2. This CAAX box undergoes postranslational modifications, including farnesylation of the cysteine, proteolysis and carboxymethylation (Fig. 1, cPLA₂-Ras). This sequence ensures the plasma membrane localization of K-Ras4B [31], and has been used to anchor cytosolic proteins to the plasma membrane [20,32]. Plasmids containing cDNAs encoding human wild-type cPLA₂ (Fig. 1, WT cPLA₂) or c-myc epitope-tagged cPLA₂ (Fig. 1, myc-cPLA₂) were used as controls to compare the effects of cytosolic overproduction of cPLA₂ with that of targeting cPLA₂ to membranes.

Indirect immunofluorescence microscopy was used to determine the location of endogenous cPLA₂ in parental CHO-2B

Fig. 1. Schematic representation of the wild-type cPLA₂, myccPLA₂, LckcPLA₂ and cPLA₂Ras constructs. Wild-type cPLA₂ (WT cPLA₂) was epitope-tagged at its N-terminus with the c-myc epitope tag (myc-cPLA₂). cPLA₂ was targeted to the plasma membrane by adding N-terminal or C-terminal plasma membrane targeting signal to wild-type cPLA₂. The 10 first amino acids of the Lck protein kinase were added to its N-terminus (Lck-cPLA₂). This motif is myristoylated on Gly2 (<u>G</u>), and palmitoylated on Cys3 and 5 (<u>C</u>). The 18 last amino acids of K-Ras4B were added to its C-terminus (cPLA₂-Ras). This motif undergoes post-translational modifications, including farnesylation of the cysteine (<u>C</u>).

cells. Endogenous cPLA₂ was barely detected in CHO-2B cells as punctate staining distributed throughout the cytoplasm (Fig. 2A). Treatment of cells with epinephrine and/or calcium ionophore A23187 caused a significant release of $[{}^{3}H]\Delta_{4}Ach$ from prelabeled cells [24]. However, stimulation with these agonists produced no detectable translocation of endogenous cPLA₂ from cytosol to membranes in agreement with a recent report [33].

The CHO-2B cells were transiently transfected with either wild-type cPLA2, myc-cPLA2, Lck-cPLA2 or cPLA2-Ras expression plasmids. Wild-type cPLA2 and myc-cPLA2 had a similar pattern of distribution within the cytoplasm (Fig. 2B, C, respectively), but with more intense staining than endogenous cPLA₂ (Fig. 2A), suggesting that the very weak signal in parental cells was not due to a loss of soluble cPLA₂ during the staining procedure. By contrast, Lck-cPLA2 and cPLA2-Ras which contained an N-terminal or C-terminal plasma membrane targeting sequence showed a distribution very different to wild-type cPLA₂ with distinct staining in the plasma membrane (Fig. 2D,E, respectively). A vesicular structure adjacent to the nucleus was also stained in cells producing Lck-cPLA₂ (Fig. 2D). No signal was detected within the nucleus or the nuclear membrane. These results clearly demonstrated that addition of an N-terminal or C-terminal plasma membrane targeting sequence to cPLA₂ promoted plasma membrane association.

Anchoring of $cPLA_2$ to the plasma membrane has no effect on the basal release of [³H]arachidonic acid, but opposite effects on its stimulation by agonists

The effect of the constitutive location of $cPLA_2$ at the plasma membrane on its activation was examined using CHO cell lines stably producing either Lck-cPLA₂, cPLA₂-Ras, myc-cPLA₂ or wild-type cPLA₂. The cells were generated by stably transfecting CHO cells overproducing rat α_{2B} adrenergic receptor (CHO-2B cells). Immunofluorescence showed the same pattern of distribution as that of transiently transfected cells, although the staining was less intense (not shown). Cytosol and crude membranes of each cell line were separated and analysed by anti-cPLA₂ immunoblotting. Lck-cPLA₂, cPLA₂-Ras and

Fig. 2. Subcellular distribution of wild-type cPLA₂, myc-cPLA₂, Lck-cPLA₂ and cPLA₂-Ras in CHO-2B cells. Parental CHO-2B cells (A) and cells transiently transfected with either wild-type cPLA₂ (B), myc-cPLA₂ (C), Lck-cPLA₂ (D) or cPLA₂-Ras (E) constructs were stained with a polyclonal anti-cPLA₂ and a FITC-conjugated second antibody (green). Nuclei were stained with propidium iodide (red). Immunofluorescent staining was visualized by confocal microscopy. Note the plasma membrane distribution of Lck-cPLA₂ (D) and cPLA₂-Ras (E) as opposed to the punctate cytoplasmic distribution of wild-type cPLA₂ (B) and myc-cPLA₂ (C). Immunofluorescence analysis was also performed on stable transfectants producing the various forms of cPLA₂. The patterns of staining were similar to those of the transiently transfected cells. Bar, 10 μ m.

myc-cPLA₂ all had reduced electrophoretic mobility, probably due to the addition of 9-18 amino acids, but wild-type cPLA₂ did not (Fig. 3). Parental CHO-2B cells contained endogenous cPLA₂ mainly in the cytosol, with a small amount in membranes (Fig. 3, CHO-2B). There was increased wild-type cPLA₂

Fig. 3. Distribution of wild-type cPLA₂, myc-cPLA₂, Lck-cPLA₂ and cPLA₂-Ras in the cytosolic and membrane fractions of CHO cells. Cytosolic fractions (25 μ g) and crude membrane fractions (100 μ g) of parental CHO-2B cells and stable transfectants producing wild-type cPLA₂, myc-cPLA₂, Lck-cPLA₂ or cPLA₂-Ras were resolved by 7.5% SDS/PAGE (overnight) and detected with a monoclonal anti-cPLA₂. Under these conditions, myc-cPLA₂, Lck-cPLA₂ and cPLA₂-Ras have reduced electro-phoretic mobility compared with endogenous cPLA₂ and wild-type cPLA₂.

Fig. 4. N-terminal and C-terminal targeting of cPLA₂ to the plasma membrane have opposite effects on agonist-induced [³H]arachidonic acid release. (A) Comparison of the amounts of wild-type cPLA2, myc-cPLA2, Lck-cPLA2 and cPLA2-Ras produced in the stable CHO transfectants. Fifty micrograms of total cell lysates were resolved by 10% SDS/PAGE (3 h electrophoresis) and detected with a monoclonal anti-cPLA₂ (B) Release of $[{}^{3}H]\Delta_{4}Ach$ from prelabeled parental CHO-2B cells stimulated with 1 μ M epinephrine, 1 μ M Ca²⁺ ionophore A23187 or both for 15 min. The stimulation of $[^{3}H]\Delta_{4}Ach$ release is expressed relative to the release from unstimulated cells which was taken as 100% (dotted line). Data are means \pm SEM of three independent experiments performed in triplicate. (C) Comparison of $[^{3}H]\Delta_{4}Ach$ release from prelabeled stable transfectants producing wild-type cPLA2 (empty bars), epitope-tagged myc-cPLA₂ (horizontal bars), Lck-cPLA₂ (hatched bars), or cPLA₂-Ras (solid bars) stimulated with 1 μm epinephrine, 1 μm Ca^{2+} ionophore A23187 or both for 15 min. For each stimulus, results are expressed as the net release of $[^{3}H]\Delta_{4}Ach$ from stable transfected cells relative to the net release from parental cells measured in the same experiment and which was taken as 100% (dotted line). Data are means ± SEM of 3-4 independent experiments performed in triplicate.

and myc-cPLA₂ in the cytosolic fraction of the corresponding stable transfectants (Fig. 3, WT cPLA₂ CHO and myc-cPLA₂ CHO), giving between three and five times the amount of endogenous cPLA₂ in cell lysates (Fig. 4A), and to a lesser extent there was increased myc-cPLA₂ in membranes. In contrast, there was increased Lck-cPLA₂ and cPLA₂-Ras in the membrane fraction but not in the cytosol of the corresponding stable transfectants (Fig. 3, Lck-cPLA₂ CHO and cPLA₂-Ras CHO), giving 2.5 and 2 times the amount of endogenous cPLA₂ in cell lysates (Fig. 4A).

We then tested the ability of chimeric Lck-cPLA₂ and cPLA₂-Ras to modify the release of $[^{3}H]\Delta_{4}Ach$ from prelabeled cells. In unstimulated cells, the basal release of $[^{3}H]\Delta_{4}Ach$ was not affected by the overproduction of any of the recombinant cPLA₂s (Table 1). This result was expected for wild-type cPLA₂ and myc-cPLA₂, which are overproduced in the cytosol where they do not have access to their phospholipid substrate. The lack of increase of basal $\Delta_{4}Ach$ release in Lck-cPLA₂ and cPLA₂-Ras CHO cells was more surprising, showing that constitutive association of cPLA₂ with membranes by means other than the CaLB domain does not ensure the hydrolysis of membrane phospholipids in unstimulated cells.

We have previously shown that stimulation of the α_{2B} adrenergic receptor in CHO-2B cells with epinephrine produces

a small but significant increase in Δ_4 Ach release [24]. The maximal stimulation of Δ_4 Ach release was obtained by stimulating the cells with 1 μ M epinephrine plus the calcium ionophore A23187, which potentiates the stimulation induced

Table 1. Influence of wild-type cPLA₂, myc-cPLA₂, Lck-cPLA₂ or cPLA₂-Ras production on the basal release of [³H]arachidonic acid by CHO-2B cells. Cells were labeled overnight with [³H] Δ_4 Ach. Unincorporated [³H] Δ_4 Ach was removed, cells were washed with NaCl/P_i containing 0.2% fatty acid-free BSA, and incubated for 15 min in fresh medium. The radioactivity in the cells and media was measured by scintillation counting. Δ_4 Ach release is expressed as the percentage of the total radioactivity incorporated. Data are means \pm SEM of (*n*) independent experiments performed in triplicate.

Cell line	n	Δ_4 Ach release (% of total radioactivity)
CHO-2B	21	2.57 ± 0.17
WT cPLA ₂ CHO	3	2.70 ± 0.15
myc-cPLA ₂ CHO	4	2.32 ± 0.56
Lck-cPLA ₂ CHO	5	2.29 ± 0.45
cPLA ₂ -Ras CHO	5	2.25 ± 0.14

Fig. 5. Specific activity of wild-type cPLA₂, cPLA₂-Ras and Lck-cPLA₂ produced in Sf9 cells. Sf9 cells were infected with each indicated recombinant baculovirus and lysates were isolated at 68 h postinfection. (A) cPLA₂ activity was measured in 300 ng of total cell lysates using L- α l-stearoyl-2-[¹⁴C]arachidonyl-phosphatidylcholine as substrate, as described under Experimental procedures. Data are expressed in nmol substrate hydrolysed per min per mg of total proteins (mean ± SEM of four independent experiments performed in duplicate). The specific activity of lysates from uninfected Sf9 cells was less than 1 nmol·min⁻¹·mg⁻¹ proteins. (B) Comparison of the amounts of each recombinant protein produced in Sf9 cells. Total cell lysates (300 ng) were resolved by 10% SDS/PAGE and detected with a monoclonal anti-cPLA₂.

by each agonist (Fig. 4B). This stimulation was insensitive to specific inhibitors of calcium-independent PLA₂, but was strongly inhibited by specific cPLA₂ inhibitors [24]. The stimulation of Δ_4 Ach release by these agonists was measured in the transfectants overproducing wild-type cPLA₂, myc-cPLA₂, Lck-cPLA₂ or cPLA₂-Ras, and compared with the stimulation in parental CHO-2B cells measured in parallel in the same experiment. In contrast with previous data obtained in CHO cells overproducing high amounts of wild-type cPLA₂ [4,5], the

Fig. 6. Agonist-induced mobility shift of cPLA₂-Ras in CHO cells. Parental CHO-2B cells and cPLA₂-Ras CHO cells were incubated with 1 μ M epinephrine (Epi) or vehicle (C) for 15 min. Cytosolic and membrane fractions were isolated as described under Experimental procedures, resolved by 7.5% SDS/PAGE (overnight) and detected with a monoclonal anti-cPLA₂. (A) Immunoblot analysis of membrane fractions (100 μ g). There were agonist-induced mobility shifts in cPLA₂-Ras CHO cells for both endogenous cPLA₂ and cPLA₂-Ras. (B) anti-cPLA₂ immunoblot analysis (IB: cPLA₂) of cPLA₂-Ras immunoprecipitated from cPLA₂-Ras CHO cells with a polyclonal anti-KRas4B (IP: K-Ras4B). (C) Immunoblot analysis of cytosolic fractions (25 μ g).

Fig. 7. Agonist-induced phosphorylation and [3H]arachidonic acid release from prelabeled Sf9 cells producing wild-type cPLA₂ or cPLA₂-Ras. (A) Sf 9 cells were infected with wild-type cPLA2 or cPLA2-Ras recombinant baculovirus. At 20 h postinfection, cells were labeled with [32P]phosphate for 48 h. At 68 h postinfection, cells were incubated with vehicle (C) or 1 µM okadaic acid (Oka) for 2 h. [³²P]-labeled wild-type cPLA₂ or cPLA₂-Ras were immunoprecipitated from cell lysates with a monoclonal anti-cPLA₂, separated by 7.5% SDS/PAGE and visualized by autoradiography. Results are from one representative experiment out of three. (B) The amount of immunoprecipitated wild-type cPLA2 or cPLA2-Ras was assessed by anticPLA₂ immunoblotting. (C) Infected Sf9 cells were prelabeled with $[{}^{3}H]\Delta_{4}Ach$ and incubated at 68 h postinfection with vehicle (empty bars), $1~\mu\text{M}$ A23187 (hatched bars) or $1~\mu\text{M}$ okadaic acid (solid bars) for 2 h. The stimulation of $[{}^{3}H]\Delta_{4}Ach$ release is expressed relative to the release from unstimulated cells which was taken as 100% (dotted line). Results are means \pm SD of triplicate values from one representative experiment out of four. Basal levels of $[{}^{3}H]\Delta_{4}Ach$ release from Sf 9 cells producing wild-type cPLA₂ or cPLA2-Ras were comparable.

moderate overproduction of cPLA₂ in wild-type cPLA₂ and myc-cPLA₂ CHO cells did not affect agonist-induced Δ_4 Ach release (Fig. 4C, empty and horizontal bars, respectively). In contrast, the constitutive production of Lck-cPLA₂ increased the release of [³H] Δ_4 Ach by threefold compared with parental and wild-type cPLA₂ CHO cells in response to epinephrine, calcium ionophore A23187, or both, showing that N-terminal anchoring of cPLA₂ to the plasma membrane had a positive effect on its stimulation (Fig. 4C, hatched bars), but was still sensitive to calcium. However, cPLA₂-Ras decreased the release of Δ_4 Ach induced by the same agonists twofold compared with parental cells (Fig. 4C, solid bars). This effect of cPLA₂-Ras suggests that the C-terminal anchoring of cPLA₂ not only inhibits its activation, but also interferes with the activation of endogenous cPLA₂.

The membrane-bound cPLA₂-Ras is enzymatically active, is phosphorylated but is weakly activated in response to stimuli

The first explanation for the lack of activation of cPLA₂-Ras was that C-terminal anchoring decreased or abolished the enzymatic activity of the protein. To verify this hypothesis, we first measured the cPLA₂ enzymatic activity in membranes isolated from parental CHO-2B cells and cPLA2-Ras CHO cells using an exogenous radiolabeled substrate [27]. The very low activity in both cell lines prevented evaluation of any significant difference between endogenous cPLA2 and cPLA2-Ras (not shown). We then used a more sensitive assay to measure the ability of cPLA2-Ras to hydrolyze membrane phospholipids in vitro. Crude membranes were incubated with calcium. The release of free fatty acids was quantified by GC coupled to MS [34], showing that cPLA₂-Ras released fatty acids as efficiently as endogenous cPLA $_2$ (not shown). In order to compare more accurately the activity of cPLA2-Ras with that of wild-type cPLA₂, we used the baculovirus-Sf9 insect cell system which produces high levels of recombinant proteins. Moreover, uninfected Sf9 cells can be considered to be free of cPLA₂ as they contain no immunoreactive cPLA₂ and have no cytosolic PLA₂ activity when measured using an exogenous radiolabeled arachidonyl-phosphatidylcholine (not shown). Figure 5 shows that wild-type cPLA₂ and cPLA₂-Ras as well as Lck-cPLA₂, produced at the same level in Sf9 cells (Fig. 5B), exhibit similar specific activities (Fig. 5A).

Next we examined the possibility that the lack of cPLA2-Ras activation was because of a lack of phosphorylation in response to agonists. Several studies have shown that agonist-induced phosphorylation of cPLA2 on Ser505 reduces its electrophoretic mobility on SDS/PAGE [26]. Incubation of CHO-2B cells with epinephrine induced a gel shift of endogenous cPLA2 in membrane fractions (Fig. 6A, CHO-2B). The same gel retardation was observed in membrane fractions of cPLA2-Ras CHO cells for both endogenous cPLA₂ and cPLA₂-Ras (Fig. 6A, cPLA₂-Ras CHO). The mobility shift of cPLA₂-Ras was confirmed by immunoprecipitation of the chimera using an anti-KRas4B (Fig. 6B). In addition, expression of cPLA₂-Ras did not seem to prevent the phosphorylation of endogenous cPLA₂ as epinephrine caused a mobility shift of endogenous cPLA₂ in the cytosol of both CHO-2B and cPLA₂-Ras CHO cells (Fig. 6C). We then compared the phosphorylation level of cPLA₂-Ras and wild-type cPLA₂ by producing the recombinant proteins in Sf9 cells which perform the same post-translational modifications of recombinant proteins as do mammalian cells, including phosphorylation of human recombinant wild-type cPLA₂ [30]. The phosphorylation of wild-type cPLA₂ and cPLA2-Ras was examined using Sf9 cells metabolically labeled with [³²P]phosphate for 48 h. The amounts of [³²P] incorporated into wild-type cPLA₂ and cPLA₂-Ras were identical in unstimulated cells (Fig. 7A) producing the same amounts of recombinant cPLA₂s (Fig. 7B). Stimulation of the cells with the phosphatase inhibitor okadaic acid caused similar increases in [³²P] incorporation into both wild-type cPLA₂ and cPLA₂-Ras (Fig. 7A).

We therefore used this cell system to evaluate the contributions of wild-type cPLA₂ and cPLA₂-Ras to Δ_4 Ach release after stimulation with agonists. Sf9 cells infected with wild-type cPLA2 or cPLA2-Ras recombinant baculovirus were labeled with $[{}^{3}H]\Delta_{4}Ach$ and stimulated with 1 μM okadaic acid or 1 µM calcium ionophore A23187 for 2 h. The basal release of $[^{3}H]\Delta_{4}Ach$ was not affected by the production of wild-type cPLA₂ or cPLA₂-Ras (not shown). In agreement with a previous study [30], the production of wild-type cPLA₂ in Sf9 cells increased $[{}^{3}H]\Delta_{4}Ach$ release by 2.5-fold and sevenfold over the control values in response to calcium ionophore and okadaic acid, respectively (Fig. 7C). In contrast, a similar content of cPLA₂-Ras as wild-type cPLA₂ produced little increase in $[{}^{3}H]\Delta_{4}Ach$ release by the same agonists, reaching 1.5-fold the control values for calcium ionophore and 1.8-fold for okadaic acid.

Plasma membrane anchoring of cPLA₂ (Eur. J. Biochem. 265) 963

Cave

eolin binding motif	ΦΧΦΧΧΧΧΦ
Human cPLA ₂ Mouse cPLA ₂ Chicken cPLA ₂ Fish cPLA ₂	F Q Y P N Q A F F Q Y P N Q A F F Q Y P N E A F F K Y N N Q A F
ΡΚС-α	FSYVNPQF

Fig. 8. A putative caveolin-binding motif, located at the C-terminal end of cPLA₂ (residues 683–690) is conserved from human to zebrafish and is identical to the caveolin binding motif of PKC α , a known caveolin-interacting protein. Φ represents aromatic residues and X denotes any amino acid.

DISCUSSION

We have used CHO cells overproducing the rat α_{2B} adrenergic receptor (CHO-2B cells) as cells that discriminate between receptor-specific phosphorylation and activation of cPLA₂ by calcium. These two key events leading to the activation of cPLA₂ can be induced separately in these cells, phosphorylation by epinephrine and activation by calcium ionophore [24]. Endogenous cPLA₂ is poorly expressed in CHO-2B cells and is found mainly in the cytosol, as shown by indirect immunofluorescence microscopy and by immunoblotting of cytosolic and membrane fractions. Using these techniques we detected no translocation to membranes in response to epinephrine, calcium ionophore or both. This contrasts with the findings of other studies, in which increasing intracellular calcium or stimulating G-protein-coupled receptors caused the translocation of cPLA₂ to the endoplasmic reticulum [10], to the nuclear membrane [9,10,13] or to the plasma membrane [18]. But this agrees with other recent results that found no detectable translocation in EGF/A23187-stimulated Her 14 fibroblasts [33]. However, in studies where cPLA₂ was shown to translocate to a definite membrane, it is possible that small amounts of cPLA₂ were translocated to other membrane sites but were not detected. In addition, even when cPLA₂ has been demonstrated to translocate to a definite cell compartment, there is still no clear evidence that cPLA₂ is activated at these sites.

The present study uses another approach to evaluate a possible regulatory role of plasma membrane association on $cPLA_2$ activation. We constructed chimeras of $cPLA_2$, which were constitutively targeted to the plasma membrane by N-terminal or C-terminal lipid-modified anchoring sequences (Lck-cPLA₂ and cPLA₂-Ras), whereas wild-type cPLA₂ and epitope-tagged cPLA₂ (myc-cPLA₂) remained in the cytosol. Four cell lines overproducing these recombinant cPLA₂s to the same extent were established to evaluate the influence of plasma membrane targeting on cPLA₂ activation.

The release of $[{}^{3}H]\Delta_{4}Ach$ from prelabeled cells was used to assay cPLA₂ activation in whole cells. The basal release of $\Delta_{4}Ach$ was unaffected by the overproduction of cPLA₂ in cytosol (wild-type cPLA₂ and myc-cPLA₂). This is in agreement with previous results showing that iPLA₂ is involved in the basal release of $\Delta_{4}Ach$, while cPLA₂ is not [23]. More surprisingly, the basal release of $\Delta_{4}Ach$ was also unchanged by the constitutive presence of Lck-cPLA₂ and cPLA₂-Ras at the plasma membrane (Table 1). This shows that constitutive association of cPLA₂ with membranes is not sufficient to cause the hydrolysis of membrane phospholipids.

In contrast, the N-terminal anchoring of cPLA₂ enhanced its ability to be activated by stimuli. The constitutive production of Lck-cPLA₂ increased the release of $[^{3}H]\Delta_{4}Ach$ stimulated by epinephrine threefold (Fig. 4C), showing its responsiveness to G-protein-coupled receptor transduction pathway. Surprisingly, stimulation with calcium ionophore was also enhanced in Lck-cPLA₂ CHO cells over that of wild-type cPLA₂ CHO cells (Fig. 4C), showing that N-terminal plasma membrane anchoring of cPLA₂ does not render it insensitive to calcium. This confirms that the CaLB domain of cPLA₂ is not only necessary for cPLA₂ translocation to membranes, but may also take part in activation by promoting specific interaction with phospholipids [35,36], thus allowing the orientation of the catalytic domain of the enzyme.

cPLA₂-Ras produced at the same level as Lck-cPLA₂ cells did not enhance the release of Δ_4 Ach induced by the agonists, and even inhibited it significantly (Fig. 4C). This lack of activation was confirmed by the weak stimulation of Δ_4 Ach release by Sf9 cells producing cPLA₂-Ras, but devoid of endogenous cPLA₂ (Fig. 7C). The three-dimensional structure of cPLA₂ has been elucidated recently [37] confirming that the amino acids of the active site lie within a large C-terminal domain of the enzyme [6,38]. We could not rule out that the addition of a C-terminal sequence to cPLA2 might have disturbed the conformation of the enzyme resulting in decreased activity. But this did not seem to be the case, because cPLA₂-Ras produced in Sf9 cells exhibited a specific PLA₂ activity in the same range than that of wild-type cPLA₂ and Lck-cPLA₂ (Fig. 5A).

We also examined the possibility that cPLA2-Ras was unphosphorylated in response to agonists and/or prevented the phosphorylation of endogenous cPLA₂. Phosphorylation of cPLA₂ by various kinases, including MAP kinases, is presumed to occur in the cytosol and to be required for its translocation [39] and activation [26]. Hence, the membrane-bound cPLA₂-Ras might not be accessible to phosphorylation by kinases. Our results show that both the recombinant cPLA₂-Ras and the endogenous cPLA₂ were shifted in epinephrine-stimulated cPLA₂-Ras CHO cells, showing that the membrane-bound cPLA₂-Ras was phosphorylated and did not prevent the phosphorylation of endogenous cPLA₂ (Fig. 6). Moreover, the phosphorylation level of wild-type cPLA2 and cPLA2-Ras was identical in unstimulated Sf9 cells and was increased to the same extent by stimulating the cells with the phosphatase inhibitor okadaic acid (Fig. 7A). Hence, the lack of activation of cPLA2-Ras is not due to either defective enzymatic activity or to a lack of phosphorylation, but perhaps to the inappropriate orientation of the active site towards membrane phospholipids in situ [37].

Our results show that plasma membrane anchoring of $cPLA_2$ by a N-terminus or a C-terminus lipid-modified targeting sequence has a major influence on its activation. The anchoring might modify the configuration of the enzyme or its accessibility to the substrate, altering its ability to be activated *in situ*. However, this does not explain why Lck-cPLA₂ is activated more efficiently than wild-type cPLA₂.

The two plasma membrane targeting sequences used to construct Lck-cPLA₂ and cPLA₂-Ras belong to the Src family of protein tyrosine kinases and to the family of p21 Ras monomeric G proteins. These two classes of proteins associate with specialized domains of the plasma membrane, the caveolae, where a variety of signaling molecules are concentrated. Therefore, another hypothesis to explain our results is that the chimeras Lck-cPLA₂ and cPLA₂-Ras could be targeted to the caveolae. The major structural component of caveolae is caveolin, a 21 to 24-kDa integral membrane protein. Caveolin 1 interacts directly with a variety of signaling molecules [Ha-Ras, Src family tyrosine kinases, G protein α subunits, endothelial NOS, epidermal growth factor (EGF) receptor and protein kinase C (PKC) isoforms]. This interaction is mediated by a scaffolding domain within caveolin, which recognizes a common sequence motif within caveolin-binding proteins ($\Phi X \Phi X X X \Phi$ and $\Phi X X X \Phi X X \Phi$, where Φ is an aromatic amino acid and X denotes any amino acid; 40). We found a putative caveolin binding motif (<u>FQYPNQAF</u>) in the C-terminal end of the cPLA₂ sequence (residues 683–690; Fig. 8). This motif is present in all species examined to date, from human to zebrafish [6], and is identical to the caveolin-binding motif of PKC- α , a known caveolin-interacting protein [40].

Furthermore, preliminary results of co-immunoprecipitation show that Lck-cPLA₂, but not cPLA2-Ras or endogenous cPLA2, interacts with caveolin 1 (unpublished results). This interaction might occur through the caveolin-binding motif of cPLA₂ as the 10 first amino acids of Lck do not contain any caveolin-binding motif. Therefore, it seems likely that the N-terminal targeting of Lck-cPLA₂ allows its interaction with caveolin 1, which might account for its enhanced activation. This hypothesis is consistent with the caveolar location of molecular components involved in the regulation of cPLA₂ activation. For example, the MAP kinases ERK-1/2 are concentrated in caveolae membranes [41] and caveolin regulates the p42/44 MAP kinase cascade [42] involved in the agonistinduced phosphorylation of cPLA₂. The protein p11, a member of \$100 family proteins, forms a heterotetrameric annexin II₂p11₂ complex that is concentrated in caveolae [43]. This protein interacts with a large C-terminal domain of cPLA₂, inhibiting its enzymatic activity [44]. Also, phosphatidylinositol 4,5-bisphosphate, which is concentrated in caveolae [45], interacts with a putative pleckstrin homology domain of cPLA₂, resulting in increased enzymatic activity [17]. Similarly, diacylglycerol, which is also concentrated in caveolae [46] promotes cPLA₂ activity [47]. Consistent with this hypothesis, preliminary experiments on an epithelial cell line show that endogenous cPLA2 is located at the plasma membrane in unstimulated cells and that cPLA2 cofractionates with caveolin 1 in detergent-resistant membranes (unpublished results).

Taken together, our results show that anchoring $cPLA_2$ to the plasma membrane has no effect on phospholipids hydrolysis in unstimulated cells, but modulates its activation. Moreover, the way $cPLA_2$ is anchored determines its ability to release arachidonic acid in response to stimuli. Finally, these results show that plasma membrane is a suitable site for $cPLA_2$ activation when correctly orientated. Moreover, interaction of $cPLA_2$ with plasma membrane microdomains such as caveolae should be explored further as a possible regulatory mechanism in $cPLA_2$ activation.

ACKNOWLEDGEMENTS

This work was supported by the Association Française de Lutte contre la Mucoviscidose and Elf. Elsa Klapisz is a recipient of a fellowship from CNRS-Elf and the Fondation pour la Recherche Médicale. We are grateful to Anne-Marie Jouniaux and Colette Salvat for technical assistance, and to Laurent Fraisse at the Groupement de Recherches de Lacq for helpful discussion. The English text was checked by Dr Owen Parkes.

REFERENCES

- Dennis, E.A. (1997) The growing phospholipase A₂ superfamily of signal transduction enzymes. *Trends Biochem. Sci.* 22, 1–2.
- Bonventre, J.V., Huang, Z., Taheri, M.R., O'Leary, E., Li, E., Moskowitz, M.A. & Sapirstein, A. (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A₂. *Nature* 390, 622–625.

- Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J.-I. & Shimizu, T. (1997) Role of cytosolic phospholipase A₂ in allergic response and parturition. *Nature* **390**, 618–622.
- Lin, L.-L., Lin, A.Y. & Knopf, J.L. (1992) Cytosolic phospholipase A₂ is coupled to hormonally regulated release of arachidonic acid. *Proc. Natl Acad. Sci. USA* 89, 6147–6151.
- Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M.V., Tischfield, J.A. & Kudo, I. (1998) The functions of five distinct mammalian phospholipase A₂s in regulating arachidonic acid release. *J. Biol. Chem.* 273, 14411–14423.
- Nalefski, E.A., Sultzman, L.A., Martin, D.M., Kriz, R.W., Towler, P.S., Knopf, J.L. & Clark, J.D. (1994) Delineation of two functionally distinct domains of cytosolic phospholipase A₂, a regulatory Ca²⁺dependent lipid-binding domain and a Ca²⁺-independent catalytic domain. J. Biol. Chem. 269, 18239–18249.
- Kramer, R.M. & Sharp, J.D. (1997) Structure, function and regulation of Ca²⁺-sensitive cytosolic phospholipase A₂ (cPLA₂). *FEBS Lett.* 410, 49–53.
- Leslie, C.C. (1997) Properties and regulation of cytosolic phospholipase A₂. J. Biol. Chem. 272, 16709–16712.
- Glover, S., Bayburt, T., Jonas, M., Chi, E. & Gelb, M.H. (1995) Translocation of the 85-kDa phospholipase A₂ from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J. Biol. Chem. 270, 15359–15367.
- Schievella, A.R., Regier, M.K., Smith, W.L. & Lin, L.-L. (1995) Calcium-mediated translocation of cytosolic phospholipase A₂ to the nuclear envelope and endoplasmic reticulum. *J. Biol. Chem.* 270, 30749–30754.
- Kan, H., Ruan, Y. & Malik, K.U. (1996) Involvement of mitogenactivated protein kinase and translocation of cytosolic phospholipase A₂ to the nuclear envelope in acetylcholine-induced prostacyclin synthesis in rabbit coronary endothelial cells. *Mol. Pharmacol.* 50, 1139–1147.
- Peters-Golden, M. & McNish, R.W. (1993) Redistribution of 5-lipoxygenase and cytosolic phopholipase A₂ to the nuclear fraction upon macrophage activation. *Biochem. Biophys. Res. Commun.* 196, 147–153.
- Hirabayashi, T., Kume, K., Hirose, K., Yokomizo, T., Iino, M., Itoh, H. & Shimizu, T. (1999) Critical duration of intracellular Ca²⁺ response required for continuous translocation and activation of cytosolic phospholipase A2. J. Biol. Chem. 274, 5163–5169.
- Morita, I., Schindler, M., Regier, M.K., Otto, J.C., Hori, T., DeWitt, D.L. & Smith, W.L. (1995) Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. *J. Biol. Chem.* 270, 10902–10908.
- 15. Jelsema, C.L. & Axelrod, J. (1987) Stimulation of phospholipase A_2 activity in bovine rod outer segments by the $\beta\gamma$ subunits of transducin and its inhibition by the α subunit. *Proc. Natl Acad. Sci. USA* 84, 3623–3627.
- Flati, V., Haque, S.J. & Wiliams, B.R. (1996) Interferon-α-induced phosphorylation and activation of cytosolic phospholipase A₂ is required for the formation of interferon-stimulated gene factor three. *EMBO J.* 15, 1566–1571.
- Mosior, M., Six, D.A. & Dennis, E.A. (1998) Group IV cytosolic phospholipase A₂ binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273, 2184–2191.
- Sierra-Honigmann, M.R., Bradley, J.R. & Pober, J.S. (1996) "Cytosolic" phospholipase A₂ is in the nucleus of subconfluent cells but confined to the cytoplasm of confluent endothelial cells and redistributes to the nuclear envelope and cell junctions upon histamine stimulation. *Lab. Invest.* 74, 684–695.
- Zlatkine, P., Mehul, B. & Magee, A.I. (1997) Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. *J. Cell Sci.* 110, 673–679.
- Leevers, S.J., Paterson, H.F. & Marshall, C.J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. *Nature* 369, 411–414.

- Balsinde, J. & Dennis, E.A. (1996) Distinct roles in signal transduction for each of the phospholipase A₂ enzymes present in P388D₁ macrophages. J. Biol. Chem. 271, 6758–6765.
- Wolf, M.J. & Gross, R.W. (1996) Expression, purification, and kinetic characterization of a recombinant 80-kDa intracellular calciumindependent phospholipase A₂. J. Biol. Chem. 271, 30879–30885.
- Balsinde, J. & Dennis, E.A. (1997) Function and inhibition of intracellular calcium-independent phospholipase A₂. J. Biol. Chem. 272, 16069–16072.
- Audubert, F., Klapisz, E., Berguerand, M., Gouache, P., Jouniaux, A.-M., Béréziat, G. & Masliah, J. (1999) Differential potentiation of arachidonic acid release by rat α₂ adrenergic receptor subtypes. *Biochim. Biophys. Acta* 1437, 265–276.
- 25. Flordellis, C.S., Berguerand, M., Gouache, P., Barbu, V., Gavras, H., Handy, D.E., Béréziat, G. & Masliah, J. (1995) α_2 Adrenergic receptor subtypes expressed in Chinese hamster ovary cells activate differentially mitogen-activated protein kinase by a p21^{ras} independent pathway. *J. Biol. Chem.* **270**, 3491–3494.
- Lin, L.-L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A. & Davis, R.J. (1993) cPLA₂ is phosphorylated and activated by MAP kinase. *Cell* 72, 269–278.
- Berguerand, M., Klapisz, E., Thomas, G., Humbert, L., Jouniaux, A.-M., Olivier, J.L., Bereziat, G. & Masliah, J. (1997) Differential stimulation of cytosolic phospholipase A₂ by bradykinin in human cystic fibrosis cell lines. *Am. J. Respir. Cell Mol. Biol.* **17**, 481–490.
- Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A. & Jakubowski, J.A. (1993) Thrombin-induced phosphorylation and activation of Ca²⁺-sensitive cytosolic phospholipase A₂ in human platelets. *J. Biol. Chem.* 268, 26796–26804.
- Lelongt, B., Trugnan, G., Murphy, G. & Ronco, P.M. (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis *in vitro. J. Cell. Biol.* 136, 1363–1373.
- de Carvalho, M.G.S., McCormack, A.L., Olson, E., Ghomashchi, F., Gelb, M.H., Yates, J.R. III & Leslie, C.C. (1996) Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A₂ expressed in insect cells and present in human monocytes. *J. Biol. Chem.* 271, 6987–6997.
- Hancock, J.F., Paterson, H. & Marshall, C.J. (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21^{ras} to the plasma membrane. *Cell* 63, 133–139.
- Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. & Hancock, J.F. (1994) Activation of Raf as a result of recruitment to the plasma membrane. *Science* 264, 1463–1467.
- Bunt, G., de Wit, J., van den Bosch, H., Verkleij, A.J. & Boonstra, J. (1997) Ultrastructural localization of cPLA₂ in unstimulated and EGF/A23187-stimulated fibroblasts. J. Cell Sci. 110, 2449–2459.
- Koumanov, K., Wolf, C. & Béréziat, G. (1997) Modulation of human type II secretory phospholipase A₂ by sphingomyelin and annexin VI. *Biochem. J.* 326, 227–233.
- 35. Nalefski, E.A., McDonagh, T., Somers, W., Seehra, J., Falke, J.J. & Clark, J.D. (1998) Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A₂. J. Biol. Chem. 273, 1365–1372.
- 36. Davletov, B., Perisic, O. & Williams, R.L. (1998) Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A₂ whereas the C2 domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096.
- Dessen, A., Tang, J., Schmidt, H., Stahl, M., Clark, J.D., Seehra, J. & Somers, W.S. (1999) Crystal structure of human cytosolic phospholipase A₂ reveals a novel topology and catalytic mechanism. *Cell* 97, 349–360.
- Pickard, R.T., Chiou, X.G., Strifler, B.A., DeFilippis, M.R., Hyslop, P.A., Tebbe, A.L., Yee, Y.K., Reynolds, L.J., Dennis, E.A., Kramer, R.M. & Sharp, J.D. (1996) Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A₂. J. Biol. Chem. 271, 19225–19231.
- Schalkwijk, C.G., van der Heijden, M.A., Bunt, G., Tertoolen, L.G., van Bergen en Henegouwen, P.M., Verkleij, A.J., van den Bosch, H.

& Boonstra, J. (1996) Maximal epidermal growth-factor-induced cytosolic phospholipase A_2 activation requires phosphorylation followed by an increased intracellular calcium concentration. *Biochem. J.* **313**, 91–96.

- Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M.P. (1997) Identification of peptide and protein ligands for the caveolinscaffolding domain. J. Biol. Chem. 272, 6525–6533.
- Liu, P., Ying, Y.-S. & Anderson, R.G.W. (1997) Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. *Proc. Natl Acad. Sci. USA* 94, 13666–13670.
- Engelman, J.A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., Kohtz, D.S. & Lisanti, M.P. (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade *in vivo. FEBS Lett.* 428, 205–211.
- Harder, T. & Gerke, V. (1994) The annexin II2p11 (2) complex is the major protein component of the triton X-100-insoluble low-density

fraction prepared from MDCK cells in the presence of Ca²⁺. *Biochim. Biophys. Acta* **1223**, 375–382.

- 44. Wu, T., Angus, C.W., Yao, X.-L., Logun, C. & Shelhamer, J.H. (1997) p11, a unique member of the S100 family of calcium-binding proteins, interacts with and inhibits the activity of the 85-kDa cytosolic phospholipase A₂. J. Biol. Chem. 272, 17145–17153.
- 45. Pike, L.J. & Casey, L. (1996) Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. *J. Biol. Chem.* **271**, 26453–26456.
- Liu, P. & Anderson, R.G.W. (1995) Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27179–27185.
- Leslie, C.C. & Channon, J.Y. (1990) Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A₂ from macrophages and reduce the calcium requirement for activity. *Biochim. Biophys. Acta* 1045, 261–270.