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INTRODUCTION

The cyanoprocaryotes (cyanobacteria) 
are distributed globally. Their ability 
to bloom in water is mainly a result of 
eutrophication of water bodies, the safety 
of which is connected to the presence of 
toxin producing algal species (Oliver and 
Ganf, 2000). Cyanobacteria can produce 
a broad spectrum of toxins – cyanotoxins 
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which may adversely affect aquatic and 
the terrestrial wildlife as well as humans.  
If the water inhabitants come in contact 
with the polluted water or if the animals 
consume or inhale the toxins, neurological 
and gastrointestinal symptoms and 
even death can result   (Sivonen and 
Jones, 1999). The cyclic heptapeptide 
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hepatotoxins, microcistins, are frequently 
reported in water (Sivonen and Jones, 
1999) and are isolated from several 
species of freshwater genera including 
Microcystis, Planktothrix (Oscillatoria), 
Anabaena and Nostoc.  Microcystin-LR is 
considered to be one of the most important 
toxins and World Health Organization 
suggests provisional guideline values 
of 1 μg/L  in drinking water (WHO 
Guidelines, 1998) and 20 μg/L in bathing 
water (Chorus, 2005). Many studies 
across the globe have reported on the 
occurrence of microcystins in surface 
water (Bláha and Maršálek, 2003; Pavlova 
et al., 2006; Sedmak and Kosi, 1997; 
Sivonen and Jones, 1999).  However, 
there is still uncertainty regarding what 
environmental factors play a role in any 
given bloom or species in the initiation 
of toxin productions.  The influence of  
temperature, light intensity, pH, the ratio 
N:P on  and relationship to the content 
of chlorophyll a and to the production of 
cyanotoxins has been investigated, but the 
data are discrepant (Almeida et al., 2006; 
Codd, 2000; Hobson et al., 1999; Lee et 
al., 2000; Orr et al., 2004; Wiedner et al., 
2003). 

Studies that have investigated 
the genetic capacity for microcystin 
production have revealed no clear 
indication of recombination across the 
genera, while frequent recombination 
events  both within and between mcyB 
and mcyC sequences were detected 
between strains from the same genus, 
except for mcyC from Planktothrix 
(Tooming-Klunderud et al., 2008). The 
authors demonstrated the remodeling of 
mcyB and mcyC genes including evidence 
for positive selection suggesting that the 
microcystin variant profile of a given 

strain is likely to influence the ability of 
the strain to interact with its environment.

Our previous work of the microalgal 
flora and microcystin content in some 
Bulgarian water bodies found that 
Microcystis aeruginosa is a dominant 
species in three of the investigated lakes 
with algae blooms and high microcystins 
concentrations (Pavlova et al., 2006).  The 
goal of this study was to further examine 
the effect of a range of temperatures and 
light intensities on the growth, chlorophyll 
a concentration and the production of 
microcystins in a controlled laboratory 
culture of Microcystis aeruginosa to shed 
light on the inconsistencies reported in 
literature.

MATERIALS AND METHODS

The strain Microcystis aeruginosa 
(Kützing, UTEX 2667)  was used for 
addressing the key research questions for 
this current study and was cultivated using 
a block with a temperature gradient (Dilov, 
1985) with  temperature  investigated 
in the range 20 - 38°C. The light was 
continuous with an intensity of 8000 lx 
and 2x8000 lx. Aeration was carried out by 
bubbling 100 L gas - air mixture (enriched 
with 2% CO2) per one liter of suspension 
per hour.  The cultivation was carried out 
with a continuously growing density of 
the algae for a period of 96 hours using the 
medium Allen Arnon (Allen and Arnon, 
1955). Chlorophyll a was measured 
spectrophotometrically after extraction 
with hot methanol from three parallel 
samples and the average concentrations 
were calculated according to a formula 
which is cited in MacKinney, 1941. The 
algal growth was measured by dry weight 
from three parallel samples as absolutely 
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dry substance (average ADS). The 
content of microcystins was determined 
by the ELISA method. Multiskan RC 
(Labsystems) coupled with ELISA 
Quanti Plate Kit was used. The sample 
pretreatment was carried out according 
to the manufacturer’s instructions with 
measurement of three parallel samples. 
The average concentrations were 
calculated. The absorption was detected at 
450 nm and additionally at 600, 630 and 
650 nm as a comparison. 

For quality determination of 
microcystins the same strain was cultivated 
at 25 - 26°C and the biomass was used 
for HPLC-DAD analysis according to 
Pavlova et al., 2006. 

RESULTS AND DISCUSSION

Light and temperature are the main 
factors influencing photosynthesis. Figure 
1 presents the growth of Microcystis 
aeruginosa (Kützing, UTEX 2667) at five 

Fig. 1. Growth of Microcystis aeruginosa (UTEX 2667) at 8000 lx (a) and 2x8000 lx (b) 
expressed as absolutely dry substance (ADS).

a)

b)
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temperatures and two light intensities.  This 
algal species was able to grow over a broad 
temperature range of 26°C and 32°C, with 
lower and higher temperature effecting 
the ADS at 8000 lx light intensity. The 
results were similar at 26°C for both light 
intensities, however, better exponential 
growth was achieved with 2x800 lx at 
26°C, whereas at 32°C under the same 
light intensity it did not grow as readily. 
The temperature relationships to the 
microcystin concentration, the growth and 
the content of chlorophyll a are illustrated 
in Table 1. Not surprising, all showed 
a strong relationship to temperature.  

Investigations by other scientists had 
given the optimum of growth at 32,5°C 
and between 32-36°C respectively for 
the strains Microcystis aeruginosa (NRS-
1) and Microcystis aeruginosa (UV-
006) (Gorunova and Demina, 1974; Van 
der Westhuizen and Eloff, 1985). Thus 
this strain is able to compete, grow and 
produce microcystins at much lower 
temperatures than previously suggested 
by the literature, suggesting adaptation 
perhaps to local environmental conditions. 

Figure 2 shows the growth of the 
algae and microcystin production over 
the temperature gradients used in this 

Table 1. Quadratic equations of the temperature dependences. The regression analysis shows 
correlation between the temperature and the concentration of microcystins, the amount of 
chlorophyll a and the growth respectively. 

Temperature dependence Quadratic equation (p<0.05) R2

Concentration of microcystins
48 h, 8000 lx

Y= -4.9788xT2 + 285.772xT - 3363.8 0.829

Concentration of chlorophyll а
48 h, 8000 lx

Y= -0.2073xT2 + 11.9291xT - 147.72 0.835

Growth (ADS)
48 h, 8000 lx

Y= -0.0106xT2 + 0.6067xT - 6.8172 0.956

Concentration of microcystins
48 h, 2x8000 lx

Y= -9.3611xT2 + 522.644xT - 6223.3 0.884

Concentration of chlorophyll а
48 h, 2x8000 lx

Y= -0.1941xT2 + 11.0717xT - 135.40 0.908

Growth (ADS)
48 h, 2x8000 lx

Y= -0.0152xT2 + 0.8662xT - 10.222 0.980

Concentration of microcystins
96 h, 8000 lx

Y= -33.089xT2 + 1729.24xT - 18054 0.963

Concentration of chlorophyll а
96 h, 8000 lx

Y= -0.4532xT2 + 26.3244xT - 339.25 0.900

Growth (ADS)
96 h, 8000 lx

Y= -0.0252xT2 + 1.4724xT - 18.197 0.981

Concentration of microcystins
96 h, 2x8000 lx

Y= -40.123xT2 + 2091.96xT - 222102 0.952

Concentration of chlorophyll а
96 h, 2x8000 lx

Y= -0.4641xT2 + 26.3738xT - 334.52 0.937

Growth (ADS)
98 h, 2x8000 lx

Y= -0.0302xT2 + 1.6969xT - 20.101 0.966
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Fig. 2. Comparison of growth and microcystin production (MYC) at 48 h (a) and 96 h (b).

a)

b)

study. Samples for the determination 
of microcystins and chlorophyll a were 
taken at 48 h and 96 h.  Exponential 
growth occurred between 50 h and 80 
h, with maximum biomass achieved due 
to algal growth by 96 h.  Thus, samples 
were taken slightly before and just prior to 
reaching the highest algal concentrations. 
The accumulated algal biomass at 
optimum temperatures (26°C and 32°C) 
at 96 h was considerably different than 
that at 48h. The relationship between of 
the synthesis of microcystins (total) and 

the growth of the algae as measured by 
chlorophyll a is shown in Fig. 3. The 
concentrations of microcystins correlated 
with the accumulated biomass and content 
of chlorophyll a at 48 h for both light 
intensities (Figs. 2a and 3a). The same 
result was obtained by Lyck (2004) in 
experiments with the strains Microcystis 
aeruginosa (CYA 228). Microcystin toxin 
production was enhanced at 2x8000 lx 
(Fig. 2) at both time points (48 and 96 h). 

Clear temperature dependence of the 
synthesis of microcystins at 26°C was 
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Fig. 3. Comparison of chlorophyll a (Chl a) and microcystin production (MYC) at 48 h (a) and 
96 h (b).

b)

a)

observed at both light intensities after 
96 h. This maximum did not correspond 
to the curves of growth and content of 
chlorophyll a (Figs. 2b and 3b).  The 
content of microcystins was increased 
five times at 96 h compared to 48 h of 
growth, but biomass and chlorophyll a 
were increased only  twice.

There was no correspondence of 
microcystin concentrations and the growth 
at 96 h or the concentrations of chlorophyll 

a at 96 h for both light intensities. Our 
results confirmed the results of other 
investigations (Gorunova and Demina, 
1974) showing that the maximum toxin 
production by Microcystis aeruginosa 
(NRS-1) and other Microcystis species 
(Microcystis viridis) was reached at 
25°C for the same period after protracted 
cultivation (Song et al., 1998).  

At least one study has shown that 
maximum toxicity was produced at 20°C 
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for Microcystis aeruginosa (UV-006) 
(Van der Westhuizen and Eloff, 1985) and 
the authors also concluded that optimal 
growth was not related to the microcystin.  
Microcystin production was not essential 
for the growth of Microcystis aeruginosa 
(PCC 7806) (Hesse et al, 2001). On the 
other hand, studies with Microcystis 
aeruginosa strains - MASH01-A19 and 
CYA 228 demonstrated that the process of 
cell division connected with growth and 
the microcystin production were tightly 
coupled (Orr and Jones, 1998; Lyck, 
2004).   

The ability to use chlorophyll a 
as a proxy for growth and microcystin 
production is not supported by our results. 
While some investigations on strains  
Microcystis aeruginosa  UTEX 2388 and 
CYA 228  have associated microcystin 
production and chlorophyll a content (Lee 
et al., 2000; Lyck, 2004), others have 
confirmed our conclusion showing the 
inability to predict microcystin production 
via the concentration of chlorophyll a 
with Microcystis aeruginosa in Bang 
Phra Reservoir, Thailand (Xialofeng et 
al.,2002).

Higher light intensity influenced the 
growth, but while our data showed little 
statistical correlation between microcystin 
production and the applied light 
intensities, there was greater microcystin 
production at the higher light intensity. 
Similar results have been obtained for a 
strain of Microcystis aeruginosa obtained 
from a reservoir (Xialofeng et al., 2002).  
The interdependence between light and 
the growth of Microcystis aeruginosa 
(РСС 7806) (Kaebernick et al., 2000) has 
been observed.   

The quality composition of 
microcystins was determined from the 

biomass cultivated at 25-26°C. Results 
of HPLC-DAD analysis of Microcystis 
aeruginosa (UTEX 2667) biomass 
confirmed the presence of microcystin-
LR and six microcystin-LR equivalents. 
The equivalents were not comparable 
to those in the standard solution (-LR, 
-RR and -YR) and were not identified 
because of lack of standards for them. The 
unknown peaks possessed characteristic 
microcystin-like UV-spectra. Fig. 4 shows 
the chromatogram of the biomass (a) and 
overview of UV- specters of microcystin-
LR and one of the “unknown” microcystin-
LR equivalents (b).

The data suggest that Microcystis 
aeruginosa (UTEX 2667) can produce 
microcystin-LR and other related 
microcystins (retention time and UV-
specter) which could also suggest that 
they can cause similar health risks. These 
toxins are concentrated generally in the 
cells and released in water when the cells 
are lysed (Chorus, 2005; Codd, 2000).  

Microcystin toxins associated with 
blooms have been shown to be of concern 
in water samples from 15 Bulgarian 
reservoirs and lakes (Pavlova et al., 2006).  
Studies undertaken in 2004 showed that 
the concentrations of total microcystins 
(MC-LR, MC-RR and MC-YR) in the 
biomass ranged from 8 to 1070 μg/g DW.    
The dissolved microcystin concentration 
was 1.64 μg/L obtained in one water 
sample (Pavlova et al., 2006).

An investigation of the phytoplankton 
diversity, algal biomass, and selected 
physicochemical parameters in a drinking 
water reservoir (Borovitsa) located in 
the Kardzhali region, Bulgaria in 2006 
has been recently reported (Teneva et 
al., 2010). The results demonstrate the 
presence of anatoxin-a and microcystins/
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Fig. 4. Chromatogram of Microcystis aeruginosa (UTEX 2667) biomass (a) and overview of 
UV-spectra of microcystin-LR and a microcystin-LR equivalent (b) – retention time 14.316, 
overview factor 982.5.
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nodularins (0.09-0.12 μg/L) (July 2006), 
and saxitoxins (2.5 μg/L) and  microcystins/
nodularins (0.18 μg/L) (September, 2006) 
in the raw water samples. The study 
underlines that permanent monitoring 
programs of Cyanoprokaryota in the 
reservoirs used as sources of drinking 
water and toxicity assessments should 
be implemented.While drinking water is 
of the utmost concern, indirect exposure 
and transfer of cyanotoxins through food 
chains must also be considered.

There are very few investigations and 
reports on the problems associated with 
cyanobacterial blooms and their toxins in 
water bodies in Bulgaria. Eutrophication 
and global climate changes have the 
potential to increase the numbers, duration 
and spatial distribution of these blooms. 
Therefore, investigations of cyanotoxins 
production in continued field studies 
are necessary if risks and management 
strategies have to be identified.     
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