CLONING AND CHARACTERIZATION OF TWO STRESS INDUCIBLE GENES FROM THE MANGROVE SPECIES *AVICENNIA MARINA* VIERCH. FORSK

Sadhasivam V.¹, S. R. Prashanth², K. R. Sivaprakash¹, A. Venkat³, A. Parida^{1*}

¹M.S. Swaminathan Research Foundation, Third Cross Street, Taramani Institutional Area, Chennai, India, ² Baba Ataomic Research Centre, Mumbai, ³ Vellore Institute of Technology, Vellore, India.

Received: 4 February 2010 Accepted: 13 September 2010

Summary. Salinity stress is one of the major abiotic stresses that affect crop productivity. Halophytes are plants which are able to withstand and grow under high soil saline conditions. Mangroves are a plant community which are halophytes and survive well under high saline conditions. Induction of abiotic stress tolerance genes is one of the important strategies of these halophytes to combat salinity stress. *SOD* (superoxide dismutase) and *LTP* (lipid transfer protein) play a key role in abiotic stress tolerance in plants. In the present study, we report the mRNA accumulation patterns of *Sod2* and *LTP1* encoding MnSod and LTP respectively under salinity stress in the mangrove species *Avicennia marina*.

Key words: salinity stress; manganese superoxide dismutase; lipid transfer protein.

INTRODUCTION

Plants are exposed to several abiotic stresses such as high salinity, drought, extreme light and temperature under natural conditions which thereby affect their growth and development (Jithesh et al., 2006). Salinity stress is of particular importance since it is a threat which confronts the modern agricultural productivity. Salinity stress affects seed germination, seedling growth and vigour, vegetative growth, flowering and fruit set in plants (Sairam and Tyagi, 2004). The series of events that happen when a plant is subjected to salinity stress are

physiological water deficit, abscisic acid regulated stomatal closure in leaves, limited CO_2 availability, over-reduction of electron transport chain and finally, generation of reactive oxygen species (ROS), (Jithesh et al., 2006). This condition, termed photo-oxidative stress, underlies also other plant stress responses like drought, temperature and light stress (Jithesh et al., 2006).

Halophytes are plants of salty environments, capable of thriving and growing under high concentrations of NaCl (Hellebust, 1976; Flowers et al.,

^{*}Corresponding author: sequencing@mssrf.res.in

1986). Amongst, halophytes, mangroves form an important constituent. These are woody trees and shrubs present in the tropical and sub-tropical regions of the world. Mangroves are ideal candidates for salt stress research because of their capacity to maintain active leaves under conditions that severely reduce photosynthetic capacity through photoinhibition (Cheesman et al., 1997). LTP and MnSod have been shown to play key roles in conferring tolerance to salt stress in plant systems (Jung et al., 2003; Wang et al., 2004; Parida et al., 2004). In the present study, we have reported the cloning, characterization and mRNA accumulation pattern of two genes involved in stress response: lipid transfer protein (LTP) and manganese superoxide dismutase (MnSod) (LTP1 and SOD2) from the mangrove plant species A. marina during salinity stress.

MATERIALS AND METHODS

Construction of c-DNA Library and Sequencing of Expressed Sequence Tags (ESTs).

Library was constructed and the ESTs were sequenced according to Parani et al. (2002). One-year-old wild plants of *A. marina* were collected and treated with 0.5 M NaCl for 48 h. Total RNA from the leaf tissue was isolated following the GITC method (Chomzynski and Sacchi, 1987) with minor modifications (Parani et al., 1999). Poly (A)⁺ RNA was purified using an oligo-(dT) cellulose column and used as a template for cDNA synthesis. The SuperScriptTM Lambda System for cDNA Synthesis and λ Cloning (Life Technologies, USA) was used for cDNA synthesis. First strand cDNA

synthesis was primed with NotI-primer adapter, and the double stranded cDNA was directionally cloned in a plasmid vector (pSPORT 1) using SalI adapter ligated at the 5' end. The SalI adapter ligated cDNAs were size fractionated through a SizeSep[™]-400 Sepharose CL-4B spun column (pharmacia Biotech, USA) before cloning in the plasmid vector. The ligated cDNAs were transformed in the DH5 α strain of Escherichia coli. Several clones from A. marina cDNA library were randomly selected, and the insert size in each clone was determined by PCR using the universal M13 forward and reverses primers. The plasmid DNA from the cDNA clones having cDNA above 600 bp size were isolated by the alkaline lysis method (Birnboim & Doly, 1979). The 5' end of the cDNAs were subjected to single-read sequencing using M13 reverse primer and Big-Dye[™] Terminators in an automated sequencing machine (ABI310, Applied Biosystems, USA). The DNA sequences were clipped for removing vector and adapter sequences and manually edited for sequencing errors. The edited DNA sequences were used for searching nucleotide and protein homology to the existing genes in the database at www. ncbi.nlm.nih.gov using BLASTN and algorithms, BLASTX respectively. While the clones identified to be partial or having homology with unknown proteins were reserved for future studies, the clones having potentially full-length genes were completely sequenced from both strands and further characterized (Parani et al., 2002). This study reports the characterization of a full-length cDNA that codes the lipid transfer protein in A. marina.

Salt stress treatment.

Seeds of A. marina collected from the Pichavaram mangrove forest, Tamilnadu, India, were grown in sand-filled travs in a greenhouse at $35^{\circ}\pm 2^{\circ}$ C under a 12 h/12 h (light/dark) photoperiod for one month with daily watering (Mehta et al., 2005). The seedlings were then removed from the soil and grown in half strength Murashige and Skoog inorganic salt medium under control light conditions of 100µmol m⁻² s⁻¹ with a photoperiod of 16 h/8 h (light/ dark) for 3 days. Salt stress treatment was applied by adding 0.5 M NaCl to the freshly prepared half strength MS nutrient to the acclimatized A. marina seedlings. Leaves were harvested from the treated seedlings at time intervals of 0, 12, 24, 36 and 48 h after NaCl treatment.

RNA isolation and northern hybridization.

Total RNA was extracted from the leaves of A. marina seedlings using the LiCl method (Abbas Alemzadeh et al., 2005) at different time points after treatment with NaCl. RNA (20ug) was resolved on a 1.4% MOPSformaldehyde gel, capillary-transferred (Sambrook et al., 1989) to Hybond N+ membrane (Amersham Inc., USA) and fixed by UV cross-linking according to manufacturer's instructions (Hoefer, Germany). Blots were probed using 3'UTR (untranslated region) of LTP1 and SOD2. The 3' UTR probe was amplified using specific primers (LTP1: Forward 5'- GTGGCGTTAACATTCCCTACA-3', Reverse 5'-GCAAAAGGAGCTAGCG-TCCA-3' and SOD2: Forward 5'-GAG-GTTCTGGTAACTGTGA-3', Reverse 5'-AAGTTATTATATATAGATATAATG -3'). The amplified product was gel eluted and labelled with ³²P by random priming (Rediprime, Amersham Biosciences). The probe was purified using a ProbeQuant G-50 column (Amersham Biosciences) and hybridization was carried out at 63°C overnight using Perfect Hyb PLUS hybridization buffer (Sigma, USA). Blots were washed sequentially using 1X and 0.5X SSC containing 0.1% SDS (w/v) at 63°C. Northern hybridization was repeated twice with two different blots.

Amino acid sequence analysis.

The phylogenetic analysis was done using the Phylogenetic tree prediction online software Treetop (http://www. genebee.msu.su/services/phtree_reduced. html). The details of the protein sequences used such as plant species and GenBank protein accession number are presented in Table 1.

RESULTS

Full length cDNAs encoding LTP and MnSod (LTP1 and SOD2) were isolated as mentioned previously (Parani et al., 2002). Both genes were completely sequenced. The cDNAs encoding LTP (GenBank cDNA accession number AF331710.1) and *MnSod* (GenBank cDNA accession number AY137205.1) were of 588 and 925 bp, respectively. A sequence alignment study was done to compare the aminocid sequence of SOD2 with MnSOD sequences from 13 other plant species (Fig. 1a) and the same for LTP (Fig. 1b). It was reported earlier that the active sites of the MnSod protein was conserved very stringently even across taxonomically different species (Fink and Scandalios, 2002). Our study confirmed this observation and all the

SOD	Species Accession number		
CsMnSOD	Camellia sinensis	AAT68778.2	
CaMnSOD	Capsicum annuum	AAB88870.1	
NtMnSOD	Nicotiana tabacum	BAC75399.1	
GmMnSOD	Glycine max	ABQ52658.1	
Ta1MnSOD	Tamarix androssowii	AAS77885.2	
ZaMnSOD	Zantedeschia aethiopica	AAC63379.1	
TaMnSOD	Triticum aestivum	AAC62115.1	
ZmMnSOD	Zea mays	AAA72022.2	
RsMnSOD	Raphanus sativus	AAL07333.1	
AtMnSOD	Arabidopsis thaliana	AAL66910.1	
ThMnSOD	Thellungiella halophila	ABQ81865.1	
AeMnSOD	Acanthus ebracteatus	ABK32075.1	
AmMnSOD	Avicennia marina	AAN15216.1	
EeMnSOD	Euphorbia esula	AAF65768.1	
LTP	Species	Accession number	
AmLTP	Avicennia marina	AAK01293	
SiLTP	Sesamum indicum	ABQ53934.1	
SmLTP	Salvia miltiorrhiza	ABP01769.1	
TaLTP	Triticum aestivum	AAK20395.1	
LpLTP	Lycopersicon pennellii	AAB07487.1	
LcLTP	Lycopersicon chilense	AAZ22829.1	
NtLTP	Nicotiana tabacum	BAA03044.1	
StLTP	Solanum tuberosum	AAM82606.1	
CaLTP	Capsicum annum	ACB05670.1	
VvLTP	Vitis vinifera	AAO33394.1	
VaLTP	Vitis aestivalis	AAQ96338.1	
GhLTP	Gossypium hirsutum	ACI26696.1	
SoLTP	Spinacia oleracea	AAA34032.1	
CsLTP	Citrus sinensis	AAM21292.1	

Table 1. SOD and LTP-encoding sequences used for phylogenetic analysis.

major functional domains of the protein sequence were conserved in SOD2 as in the sequences from other species (suppl. Fig 1). A dendrogram representing the relationship of fourteen MnSOD amino acid sequences was constructed. The SOD2 sequence grouped with the MnSOD sequence of *Acanthus ebracteatus*, which is a halophyte species (Fig. 1a). However, the MnSOD sequence of *Thellungiella halophilla* which is also a halophyte, did not group with *Avicennia marina*. It grouped with the sequences of *Arabidopsis thaliana* and *Raphanus sativus*. The

Fig. 1. Phylogenetic tree showing the relationship between MnSOD sequences (a) and LTP sequences (b) with different plant species.

Fig 2. Effect of salt stress on the mRNA levels of *SOD2* and *LTP1*. after 0, 12, 24, 36, 48 h of exposure to 500mM NaCl. For RNA control loading, the gel was stained with ethidium bromide (Etbr).

multiple sequence alignment of LTP1 with 13 other plant species revealed the presence of eight conserved cysteine residues (suppl Fig. 2) that are specific for the nonspecific LTPs which is shown to form four disulphide bridges important for structure and function (Takishima et al. 1986). LTP1 formed a group with *Sesamum indicum* and *Salvia miltiorrhiza* in the dendrogram constructed with LTP aminoacid sequences of 14 different plant species (Fig. 1b).

Under 500mM salt stress conditions both *SOD2* and *LTP1* mRNA transcripts accumulation increased with time of exposure to NaCl stress and attained maximal accumulation at 48 h of salt stress (Fig. 2).

DISCUSSION

LTP and MnSod have been shown to play key roles in conferring tolerance to salt stress in plant systems (Jung et al., 2003; Wang et al., 2004; Parida et al., 2004). MnSod activity has been known to increase under salinity stress in halophytes (Wang et al., 2004; Parida et al., 2004). An increase in MnSod and Fesod activities has been documented to be an important stress response in halophytes since these two enzymes are localized in the mitochondria and chloroplasts, respectively which are the sites of generation of superoxide radicals during stress conditions due to electron transport chain (Jithesh et al., 2006). It has been observed in a number of halophytes that salt stress results in an increase in the activities of MnSod and FeSod, but not in Cu/ZnSod (Wang et al., 2004; Parida et al., 2004). In the halophyte A. marina, cytosolic Cu/ZnSod is not induced by salt stress (Jithesh et al., 2006). However, in the present study, we were able to observe that *MnSod* is induced by salinity stress in A. marina. This is entirely in agreement with the observations made by Wang et al. (2004) and Parida et al. (2004). Cherian et al. (1999) observed an increase in SOD activity in the leaves of A. marina under salinity stress. The results of the present study suggest that the increase in MnSod transcript levels in A. marina may be significantly contribute to the increase in the SOD activity in leaves during salinity stress in A. marina (Cherian et al, 1999) considering that transcript levels of cytosolic Cu/ZnSod were not induced in A.marina under salinity

stress (Jithesh et al 2006). However, further studies are underway to validate this observation. Although there are reports showing involvement of LTP in abiotic stress (Jung et al., 2003), to our knowledge the present study happens to be the first study on the effect of salinity stress on LTP transcription in halophytes. Our results showed that LTP1 transcript synthesis was induced under salinity stress thereby underlying the importance of LTP in the abiotic stress response of A. marina. Liu and Lin (2003) reported the induction of LTP in Vigna radiata under both salinity and dehydration stress. Choi et al. (2008) observed the induction of two isofroms of LTPs (SiLTP2 and SiLTP4) under NaCl, mannitol and ABA application in Sesamum indicum. However, the precise function of LTP is still largely unknown (Bakan et al., 2007). It has been suggested that LTPs play a key role in cuticle biosynthesis during abiotic stress (Sterk et al., 1991) by maintaining water balance and membrane damage repair by increasing the cuticle thickness (Jung et al., 2003). The halophyte A. marina studied in the present report has been reported to have a thick cuticle (Datta et al., 2005). Whether the increased synthesis of LTP mRNA during salinity stress might contribute to maintaining the cuticle thickness as observed by Jung et al. (2003) or LTP could play some other role under abiotic stress conditions in mangroves would have to be further investigated.

Acknowledgements: We acknowledge Department of Biotechnology, Government of India for research support.

					0	χ1
CaMnSOD	MALRNLMTKKPFA		GILTFRQQLRCVQ	TFSLPDLSYDYG	ALEPAISGE	47
NtMnSOD	RTLATG		LGFRQQLHGFQ	TFSLPDLPYDYG.	ALEPAISGD	38
GmMnSOD	MAARALLTRKTLATV	LRNDAKPII	GVGITAAATHSRGLH	WYTLPDLDYDYG.	ALEPAISGD	60
CsMnSOD	MALRTLLTRKALTG-		-SGLGLGFQSIRGFÇ	TFSLPDLPYDYS.	ALEPAISGE	49
AeMnSOD	-ALRTLVTRKTLRAF	P	VGFRGLÇ	TFSLPDLPYDYG.	ALEPAISAE	43
AmMnSOD	MALRALVTRNPLRAP	S	LTCRGLÇ	TFSLPDLPYDYG.	ALEPAISGE	44
EeMnSOD	MALRSLVTRRTLGLA	SNSAK	-LVSGSAVAQLRGFK	TFSLPDLPYDYG.	ALEPAISGE	55
REMISOD	MAIRSVASRKTLAGL	K	ETSSRLLRFRGIQ	TETLPDLPIDIS.	ALEPAISGE	50
AtMnSOD MhMnSOD	MAIRCVASRKTLAGL	K	ETSSRLLRINGIQ	TETLPDLPIDIG.	ALEPAISGE	50
Thinson	MALKSVATEKTLAGL	R	ETSSRLLGFRGIQ	TETLEDLEIDIS.	ALEPAISGE	10
Talmisod	MALDULAAKKILIIA	I CC	QGLALIQSKSLQ	TESLEDLSIDIG.	ALEPAISCE	49
ZmMnSOD	MALBTLASKNALSFA	LGGAARPS-	AASABGVT	TVALPDLSYDEG	ALEPATSGE	52
ZaMnSOD	MAFOTLLAKKALGTA	LENGAAELG	-LAPALGLCOARKLC	TESLEDLEYDYG	SLEPAISGE	59
			: .	**** **	****	
	αı			α_2		
CaMnSOD	TMOLHHOKHHOTYITT	JYNNALOOLI	DAINKGDSPTVAKLO	GATKENGGGHTN	HSVFWKNL	107
NtMnSOD	IMOLHHOKHHOTYVTN	JYNKALEOLI	HDAISKGDAPTVAKL	TAIKFNGGGHIN	HSIFWKNL	98
GmMnSOD	IMOLHHOKHHOTYITM	YNKALEQLO	DAIAKKDSSAVVKL	GAIKFNGGGHVN	HSIFWKNL	120
CsMnSOD	IMOLHHOKHHKTYVTN	JYNKALEQLI	DAMAKGDAPTTVKL	SAIKFNGGGHIN	HSLFWQNL	109
AeMnSOD	IMQLHHQKHHQTYITM	JYNKALEQLI	GAISKGDASTVVKL	SAIKFNGGGHVN	HSIFWKNL	103
AmMnSOD	IMQLHHQKHHQTYITM	YNKALEQLI) GAIAKGDASTVVKL	QSAIKFNGGGHVN	HSIFWKNL	104
EeMnSOD	IMQLHHQKHHQTYITM	JYNKALEQLF	HEATEKGDSSTVVKLQ	QSAIKFNGGGHIN	HSIFWKNL	115
RsMnSOD	IMQIHHQKHHQAYVTN	JYNNALEQLI	DQAVNKGDASAVVKLQ	QSAIKFNGGGHVN	HSIFWKNL	110
AtMnSOD	IMQIHHQKHHQAYVTN	JYNNALEQLI	DQAVNKGDASTVVKLG	SAIKFNGGGHVN	HSIFWKNL	110
ThMnSOD	IMQLHHQKHHQTYVTN	JYNNALEQLI	DQAVNKGDASTVVKLQ	QSAIKFNGGGHVN	HSIFWKNL	110
TalMnSOD	IMQLHHQKHHQTYVT	JYDKALEQLI	JGAMSKGDAPTVVKL(2SAIKFNGGGHIN	HSIFWKNL	109
TaMnSOD	IMRLHHQKHHATYVAF	IYNKALEQLI	DAAVSKGDASAVVHL	2SAIKFNGGGHVN	HSIFWKNL	104
ZmmnSOD	IMRLHHQKHHATYVG	VYNKALEQLI	DAAVAKGDASAVVQLQ	ZGAIKENGGGHVN	HSIFWKNL	112
Zamnsod	1MR1AAQKAAQA1111	*******	* * * *	25AIKENGGGHVN	** • * * • * *	119
				•		
	(Xa	a.	β1	β_2	
CaMpSOD	APTPECCEPPECCI	SATDENECS	I FAUTORMNAFCAA		FINDINTE	167
NtMnSOD	APVREGGGEPPKGSLC	WAIDINEGS	SLEALVOKMNAEGAA	LOGSGWVWLGVDK	ELKELVIE	158
GmMnSOD	APVREGGGEPPKGSLC	WAIDTHEGS	SFEALIOKVNAEGAA	LOGSGWVWLGLDE	ELKRLVVE	180
CsMnSOD	APVREDGGEPPKGSLG	WAIDTNEGS	LEALIOKMNAEGAA	LRGSGWVWLGVDK	ELKKLVVE	169
AeMnSOD	APVPEGGGEPPKGSLC	SAVDNHFGS	LDALIOKMNAQGAA	LOGSGWVWLGLDF	ESKHLVVE	163
AmMnSOD	APVREGGGEPPKGSLG	WAIDHDEGS	LEALIQNMNAEGAA	LQGSGWVWLAVDK	EFKRLVVE	164
EeMnSOD	APVGEGGGELPHGSLG	WAIDKDFGS	LEKLIQKMNTQGAA	VQGSGWVWLGLEK	ESKRLVVE	175
RsMnSOD	APVKEGGGEPPKGSLG	GAIDTSFGS	SLEGLVKKMSAEGAA	/QGSGWVWLGL D F	ELKKLVVD	170
AtMnSOD	APSSEGGGEPPKGSLG	SAIDAHFGS	SLEGLVKKMSAEGAA	VQGSGWVWLGLDF	ELKKLVVD	170
ThMnSOD	APVNQGGGEPPKGALG	GAIDTHEGS	SLEGLVKKMNAEGAA	LQGSGWVWLGLDF	ELKKLVVD	170
TalMnSOD	APVYQGGGEPPKGNLG	WRIDEDFGS	SLETLVQKMNAEGAA	LQGSGWVWLGVDF	ESKKLVIE	169
TaMnSOD	KPISEGGGEAPHGKLG	WAIDEDFGS	SIEKLIKKMNAEG-A	LQGSGWVWLALDF	EAKGLSVE	163
ZmMnSOD	KPISEGGGEPPHGKLG	WAIDEDFGE	SFEALVKRMNAEGAA.	LQGSGWVWLALDF	EPKKLSVE	170
Zarmsod	* * * * * * * * * *	• * • * • * *	CEALIQUISAEGAA	• * * * * * * * * • • *	ELKKAIVE	1/9
	B2 CLE	ß.		d.	a-	
	<u>F2</u> <u></u>	<u>P3</u>		<u></u>	<u>~/</u>	
CaMnSOD	TTANQDPLVIKGPNLV	PLLGIDVWE	SHAYYLQYKNVKPDY.	LKNIWKVINWKYA	AEVYEKEC	221
NtMnSOD	TTANQDPLVSKGANLV	PLLGIDVWE	SHAYYLQY			190
GmMnSOD	TTANQDPLVTKGPNLV	PLIGIDVWE	SHAYYLQYKNVRPDY.	LKNIWKVINWKYA	SEVIEKES	240
CSMNSOD	TTANQDPLVTKGPSLV	PLLGLDVWE	SHAIILQIKNVRPDI	LKNIWKVVSWKIA	SEVIERVC	229
Aemnsod	TTANQDELVTKGESLV	PLLGIDVWE	SHAIILQIKNVRPDI	LKINI WKVIINWKI P	GEVIENES	223
FeMpSOD	TTANQUELVINGESLV	FLUGIDVWE	THAT I LOT KNY KPDY	PULL MEATING A	SDTVANES	224
ReMnSOD	TISNODPLUTKGELU	PLUGIDUWE	CHAYYI OVKNUD DDYI	L'ENRUEVENTAURE LE	SEVVEKEC	230
AtMpSOD	TTANODPLVTKGGSLV	PLUGIDUWE	HAVYLOVKNUP PEVI	LINUWRY TNWRY P	SEVIEREN	230
ThMnSOD	TTANODPLVTKGASLV	PLVGTDVWE	HAYYLOYKNVR PDY	KNWWKVTNWKYA	SEVYEKEC	230
TalMnSOD	TTANODPLMTKGPNL	PLLGIDVWE	CHAYYLOYKNVR PDY	KNUWKUMHWKYZ	GEVYDKEC	229
TaMnSOD	TTPNODPLUTKGSNLF	PLLGTDVW	CHAYYLOYKNVRPDY	TNTWKVVNWKYA	GEEYEKVL	223
ZmMnSOD	TTANODPLVTKGASL	PLLGIDVWF	HAYYLOYKNVRPDY	LNNTWKVMNWKYA	GEVYENVL	232
ZaMnSOD	TTANODPLVTKGLHLV	PLLGIDVWE	HAYYLOYKNVRPDY	LKNIWGVINWKYA	SEVYEKES	239
	** ***** ** *	** • * • * * * *	*****			
CaMnSOD	P 228					
NtMnSOD						
GmMnSOD	S 241					
CsMnSOD	P 230					
AeMnSOD	C 224					
AmMnSOD	IK- 226					
EeMnSOD	PSA 237					
RsMnSOD	K 231					
AtMnSOD	N 231					
ThMnSOD	K 231					
TalMnSOD	PQL 232					
TaMnSOD	A 224					
ZmMnSOD	A 233					
ZaMnSOD	A 240					

Supplementary Fig. 1. Comparison of the MnSod amino acid sequences from different plant species. The plant species and the accession numbers are listed in Table 1. α 1, α 2, α 3, α 4, α 5, α 6, α 7, β 1, β 2 and β 3 are the functional domains, conserved across all the 14 species studied.

	\underline{C} \underline{C} \underline{CC}
SILTP	MASMIKALCVALVGAVLVIAVVPPAEAALGCGSVISYLGSCRPYVTDKGPLGGCC 55
SmLTP	MKLIGALLIAAALIAAVAPPSEAAIGCGAVVSYLNPCLPYVTNKGPLGGCC 51
AmLTP	MEGMNKSMCIIVVVAVLAAWVVPHGEAAISCGTVASKLAPCIPYVTNRGPLGGCC 55
VVLTP	MGSSGAVKLACVMVICMVVAAPAVVEATVTCGQVASALSPCISYLQKGGAVPAGCC 56
VaLTP	MGSSGAVKLACVMVICMVMAAPAAVEAAITCGQVASALSPCISYLQKGGAVPPACC 56
GhLTP	MASSMSLKLACVAVLCMVVGAP-LAQGAVTCGQVTSSLAPCIGYLTGNGAGGVPPGCC 57
SOLTP	MASSAVIKLACAVLLCIVVAAP-YAEAGITCGMVSSKLAPCIGYLK-GGPLGGGCC 54
CsLTP	MAALKLVSALVLCMLVTGP-LSAQAITCGQVSGSLAPCIGFLRSGGPIPMPCC 52
LpLTP	MEMVNKIACFVLLCMVVVAPHAEALTCGQVTSTLAPCLPYLMNRGPLGGCC 51
LCLTP	MEMVNKIACFVLLCMVVVAPHAEALTCGQVTSTLAPCLPYLMNRGPLGGCC 51
NtLTP	MEMVGKIACFVVLCMVVVAPHAEALSCGQVQSGLAPCLPYLQGRGPLGSCC 51
StLTP	MEMFGKIACFVLLCMVVVAPHAEALSCGQVTSGLAPCLPYLQGRGPIGGCC 51
CaLTP	MVGKIACVVLLCMVVVAPHAEALTCGQVQSRMTPCLPYLTGSGPLGRCC 49
TaLTP	MARTAATKLVLVALVAAMILAASDAAISCGOVSSALTPCVAYAKGSGTS-PSGACC 55
	: : : ** * : * : * * * **
SILTP	SGVKGLYKAAKTTADROATCSCLKTLASTYKGVNLSKAAGLPOOCGVNIPYKISPSTDCS 115
SmLTP	GGIKGLYGAAKTTPDRÖSVCNCLKTLASSYKGVNLGKAAGLPGÕCGVSIPYKISPSTDCS 111
AmLTP	GGVKSLYGLARTTPDROSVCGCLKSLASSYN-VNLGKAAGLPGOCGVNIPYKISPSTDCS 114
VVLTP	SGIKSLNSAAKTTGDROAACKCLKTFSSSVSGINYGLASGLPGKCGVSVPYKISPSTDCS 116
VaLTP	SGIKSLNSSAKTTADROAACKCLKNFSSTVSGINLSLASGLPGKCGVSVPYKISPSTDCT 116
GhLTP	GGIKSLNSAAOTTPDRÕAACKCIKSAAAGISGINYGIASGLPGKCGVNIPYKISPSTDCN 117
SOLTP	GGIKALNAAAATTPDRKTACNCLKSAANAIKGINYGKAAGLPGMCGVHIPYAISPSTNCN 114
CSLTP	NGVRSLNAAARTTPDROTACNCLKOAAGSIPNLNLNNAAGLPGACGVSIPYKISTSTDCS 112
LDLTP	GGVKGLLGOAOTTVDROTACTCLKSAASSFTGLDLGKAASLPSTCSVNIPYKISPSTDCS 111
LCLTP	GGVKGLLGOAOTTVDROAACACLKSAASSFTDLDLGKAASLPSTCNVNIPYKISPSTDCS 111
NtLTP	GGVKGLLGAAKSLSDRKTACTCLKSAANAIKGIDMGKAAGLPGACGVNIPYKISPSTDCS 111
StLTP	GGIKGLLGAAKTPADRKTACTCLKSAASAIKGINVGKAAGIPRVCGVNIPYKISPSTDCS 111
CaLTP	GGVKGLLGAAKTPADRKTVCTCLKSAAGSIGGINVRKAAGLPNMCGVNIPYOISPSTDCT 109
TaLTP	SGVRKLAGLARSTADKOATCRCLKSVAGGLNPNKAAGIPSKCGVSVPYTISASVDCS 112
	*:: * * : *::.* *:* : :: *:.:* ** :***
SiLTP	KVT 118
SmLTP	KVK 114
AmLTP	KVH 117
VVLTP	KVT 119
VaLTP	KVT 119
GhLTP	SVK 120
SoltP	AVH 117
CsLTP	KVR 115
LpLTP	KVQ 114
LCLTP	KVQ 114
NtLTP	KVQ 114
StLTP	KVR 114
CalTP	KVQ 112
TaLTP	KIH 115

Supplementary Fig. 2. Comparison of the LTP amino acid sequences from different plant species. The plant species and the accession numbers are listed in Table 1. The C represents the eight conserved cysteine residues.

REFERENCES

Alemzadeh A, M Fujie, S Usami, T Yamada, 2005. Isolation of high quality RNA from high-phenolic tissues of Ealgrass (*Zostera marina* L.) by keeping temperature low. Plant Mol Biol Rep, 23: 421a–421b.

Bakan B, M Hamberg, L Perrocheau, DMaume, H Rogniaux, O Tranquet,C Rondeau, J Blein, M Ponchet, DMarion, 2006. Specific adduction of

plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase. J Biol Chem, 281: 38981–38988.

- Brinboin H C, J Doly, 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 7, 1513.
- Cheesman, J M, L B Herendeen, A T Cheesman, B F Clough, 1997. Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ, 20: 579–588.
- Cherian S, M P Reddy, J B Pandya, 1999. Studies on salt tolerance in *Avicennia marina* (Forsk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian J Plant Physiol, 4: 266–270.
- Choi A M, S B Lee, S H Cho, H Inhwan, H Cheol-Goo, M C Suh, 2008. Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (*Sesamum indicum* L.) seeds. Plant Physiol Biochem., 46:127–139.
- Chomzynski P, N Sacchi, 1987. Singlestep method of RNA isolation by acid guanidium thiocyanate-phenolchloroform extraction. Ann Biochem., 162:156–159.
- Datta N, P Das, S Ghose, M, 2005. Relation of leaf micromorphology with photosynthesis and water efflux in some Indian mangroves. Acta Bot Croat, 64: 331–340.
- Fink R C, G H Scandalios, 2002. Molecular Evolution and Structure– Function Relationships of the Superoxide Dismutase Gene Families in Angiosperms and Their Relationship to Other Eukaryoticand Prokaryotic Superoxide Dismutases.

Arch Biochem Biophys, 399: 19–36.

- Flowers T J, M A Hajibagheri, N J W Clipson, 1986. Halophytes. Quart Rev Biol, 61: 313–337.
- Hellebust J A, 1976. Osmoregulation. Annu Rev Plant Physiol, 27: 485–505.
- Jithesh M N, S R Prashanth, K R Sivaprakash, A Parida 2006. Antioxidative response mechanisms in halophytes: their role in stress defence. J Genetics, 85: 237-254.
- Jung H W, W Kim, B K Hwang, 2003. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ, 26: 915– 928.
- Liu K H, T Y Lin, 2003. Cloning and characterization of two novel lipid transfer protein I genes in *Vigna radiata*. DNA Seq, 14: 420–426.
- Mehta PA, K Sivaprakash, M Parani, G Venkatraman, A Parida, 2005. Generation and analysis of expressed sequence tags from the salt tolerant mangrove species *Avicennia marina* (Forsk) Vierh. Theo Appl Genet, 110: 416–424.
- Parani M, M N Jithesh, M Lakshmi, A Parida, 2002. Cloning and Characterization of a Gene Encoding Ubiquitin Conjugating Enzyme from the Mangrove Species, *Avicennia marina* (Forsk.) Vierh. Ind J Biotech, 1: 164–169.
- Parani M, M Lakshmi, P Senthilkumar, A Parida, 1999. Molecular coning and nucleotide sequence of 2-Enoyl-CoA Hydratase from the mangrove species Avicennia marina (Accession No. AF190450) (PGR99-173). Plant Physiol, 121,1057.

- Parida A K, Das A B, P Mohanty, 2004. Defense potentials to NaCl in a mangrove, *Bruguiera parviflora*: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol, 161: 531–42.
- Sairam RK, A Tyagi, 2004. Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci, 86: 407–421.
- Sambrook J, E F Fritsch, T Maniatis, 1989.
 Molecular Cloning: A Laboratory Manual (2nd edition), Cold Spring Harbor Laboratory press, New York.
- Sterk P, H Booij, G A Schellekens, A Van

Kammen, S C De Vries, 1991. Cellspecific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 3: 907–921.

- Takishima K, Watanabe S, Yamada M, G Mamiya, (1986). The amino acid sequence of the nonspecific lipid transfer protein from germinated castor bean endosperms. Biochim Biophys Acta 870:248–255.
- Wang B, U Luttge, R Ratajczak, 2004. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C₃ halophyte *Suaeda salsa* L. J Plant Physiol, 161: 285–293.