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Summary. Abiotic stress (e.g. drought, heat, hypoxia, heavy metal 
pollution) can strongly affect senescence and the degradation of 
chloroplast proteins. In general, such a stress causes an earlier 
or accelerated senescence. Amino acids deriving from protein 
catabolism may be redistributed within the plant via the phloem 
and serve as a basis for protein synthesis in other plant parts. 
Under certain conditions amino acids may accumulate to high 
levels in leaves. Besides the onset and the velocity of senescence, 
the sequence of events may be altered under abiotic stress. 
Chloroplasts are dismantled in an early phase of senescence, 
while other subcellular compartments (e.g. mitochondria) are 
still functional. Rubisco is the most abundant protein on earth 
and contributes up to 50 % of the soluble proteins and up to 
30 % of total leaf nitrogen in leaves of C3 plants. Therefore, 
the degradation of Rubisco and the reutilization of the amino 
acids liberated are important for the nitrogen budget of plants. 
During natural senescence, often only the bands representing 
the intact large and small subunits (but no fragments) are visible 
on stained gels or immunoblots. However, under abiotic stress 
inducing a rapid net degradation of Rubisco fragments of the large 
subunit may become detectable on immunoblots. Site-specific 
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INTRODUCTION

 Protein synthesis and protein degradation are equally important for 
changes in the protein pattern and are of fundamental importance for the 
normal development, homeostasis and final death of a plant cell (Vierstra, 
1996). Proteolysis in plants is a complex process involving many enzymes 
and multifarious proteolytic pathways in various cellular compartments 
(Grudkowska and Zagdańska, 2004). Therefore proteolysis is an important 
process in maintaining functional chloroplasts under optimal and stress 
conditions. Recent progress in genome information revealed various 
plastidial plant proteases that are involved in the degradation (gradual 
degradation to oligopeptides and amino acids) of proteins especially in 
response to environmental conditions (Sakamoto, 2006). ATP-independent 
and ATP-dependent proteolytic pathways are involved in plant proteolysis 
(Callis, 1995). It has been proposed that chloroplast proteins may be 
degraded by vacuolar proteases, via the ubiquitin pathway in the cytosol 
and also by the plastidial Clp system (Shanklin et al., 1995; Vierstra, 1996). 
Conformational changes of chloroplasts proteins may open them and make 
them accessible for different types of proteases. 
 Chloroplasts are a major site of protein degradation during senescence 
(Mae et al., 1984). Rubisco is the most abundant protein on earth and 
contributes a high percentage to the total leaf nitrogen in C3 plants (Ellis, 

antibodies are helpful tools to characterize the fragmentation. From 
such experiments it became evident that under certain conditions 
(e.g. oxidative stress in isolated chloroplasts) small peptides at the 
C-terminus were released, while under other conditions (e.g. in leaf 
segments under hypoxia in darkness) the first cut(s) might occur 
near the N-terminus. 

Key words: abiotic stress, antibodies, Phaseolus vulgaris, proteolysis, 
Rubisco degradation, Triticum aestivum.
Abbreviations: Rubisco - Ribulose-1,5-bisphosphate carboxylase/
oxygenase; LSU – large subunit of Rubisco.
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1979; Feller et al., 2008). During early stages of senescence, Rubisco 
accounts for about 90 % of the degraded proteins (Miller and Huffaker, 
1985). Roberts et al. (2003) reported a serine protease activity in senescing 
wheat leaves for which Rubisco was a target protein. A net degradation 
of Rubisco and other chloroplast proteins can be observed during 
endogenously initiated leaf senescence as well as during or after abiotic 
stress phases and allows the reutilization of the nitrogen in other organs 
after the transfer via the phloem (Crafts-Brandner and Egli, 1987; Crafts-
Brandner et al., 1998; Herrmann and Feller, 1998; Demirevska-Keopva et 
al., 2004, 2005; Thoenen et al., 2007; Feller et al., 2008). Not only the 
velocity of Rubisco degradation, but also the mechanisms involved may 
depend on the environmental conditions (Feller et al., 2008). 
 LSU fragments can be detected on immunoblots from isolated pea 
chloroplasts incubated in the light (several bands in the range of 30 
– 45 kDa) or in darkness (one major band at about 37 kDa) for several 
hours (Mitsuhashi et al., 1992; Roulin and Feller, 1998a, b). Since these 
fragments were detected by antibodies against the whole enzyme as well 
as by antibodies against the first 25 amino acids of the mature LSU, it 
can be concluded that the N-terminus was still present and smaller pieces 
were removed from the C-terminus. This fragmentation was most likely 
catalyzed by a metalloendopeptidase inside the chloroplasts (Roulin and 
Feller, 1998a). It has been reported that LSU may also be non-enzymatically 
cleaved by reactive oxygen species (Ishida et al., 1997, 1999; Luo et 
al., 2002; Nakano et al., 2006). Reactive oxygen species may directly 
cleave this protein or modify it in a manner making it more susceptible 
to proteolytic cleavage (Desimone et al., 1996, 1998; Ishida et al., 1997, 
1999). Increased levels of reactive oxygen species may be caused by high 
light at low temperature (Nakano et al., 2006) or by excessive supply of 
some heavy metals (Demirevska-Kepova et al., 2004). Rubisco aggregates 
can be formed within chloroplasts as a result of osmotic or oxidative stress 
(Ferreira and Shaw, 1989, Desimone et al., 1996). The cross-linked LSU 
has been found to be insolubilized and more sensitive to proteases (Mehta 
et al., 1992). Evidence for the involvement of a cysteine endopeptidase 
under certain conditions has been presented, too (Minamikawa et al., 2001; 
Thoenen et al., 2007; Yoshida and Minamikawa, 1996). Increased cysteine 
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endoproteinase activities suggest that vacuolar enzymes are potentially 
involved in the response to stress conditions. 
 The levels of many plastidial and extraplastidial enzyme proteins besides 
Rubisco respond to abiotic stress (Cushman et al., 1989; Dizengremel, 
2001; Meloni et al., 2004; Sahu et al., 2001; Van Herwaarden et al., 1998; 
Wang et al., 2007; Xu and Yu, 2006). Although the general effects of 
stress conditions on plant growth are well known, the primary effects at 
the plastidial and extraplastidial enzyme protein levels in comparison with 
Rubisco are not yet clear.
 For example, enzyme proteins may differ in their susceptibility to 
modifications or to proteolytic attack. Rubisco activase, that catalyzes the 
activation of Rubisco, is highly sensitive to elevated temperature (reversible 
and irreversible effects), while Rubisco is far more stable under such 
conditions (Eckardt and Portis, 1997; Feller at. al., 1998). Furthermore, 
interactions with solutes may influence the degradation of enzyme proteins 
by peptide hydrolases (Houtz and Mulligan, 1991). Nitrogen deficiency, 
hypoxia and darkness belong to the most important abiotic stresses.
 The aim of the work reported here was to elucidate the fate of Rubisco 
during abiotic stress (nitrogen deficiency, oxygen deficiency and darkness) 
in comparison to other stromal and extraplastidial enzyme proteins. Site-
specific antibodies against well defined regions of LSU were raised in 
rabbits and represent helpful tools in this context allowing the identification 
of N-terminal and C-terminal fragments.

MATERIALS AND METHODS

Plant Material

Wheat (Triticum aestivum L., “Arina”) and bean (Phaseolus vulgaris L., 
“Saxa”) were germinated on wet tissue paper in darkness for 2 days and 
afterwards grown hydroponically in a light/dark cycle (14 h light, 50 µE 
m-2 s-1, 24 °C; 10 h darkness, 19 °C). A standard nutrient medium containing 
all nutrients as described by Hildbrand et al. (1994) was used for the beans. 
Detached fully expanded bean leaves were incubated in darkness for 0, 5 
and 10 days (either “+O2” floating on deionized water, or “-O2” submerged 
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in deionized water to exclude oxygen). Wheat plants grew on deionized 
water until day 13 and were then transferred to a nutrient medium lacking 
mineral nitrogen or to the same medium supplemented with 5 mM NH4NO3.  
The first and second leaves of wheat plants were collected 13 (transfer to 
nutrient medium with or without mineral nitrogen), 18 and 26 days after 
imbibition. The samples were stored frozen prior to the extraction.

Immunoblotting analysis

 Proteins were extracted as reported previously (Thoenen et al., 2007). 
After gel electrophoresis, proteins were blotted onto nitrocellulose and 
the intact proteins as well as fragments deriving from them were detected 
with specific antibodies using the PAP complex and 4-chloro-1-naphtol for 
visualization (Herrmann and Feller, 1998).  Polyclonal antibodies against 
glycolate oxidase were produced in rabbits as described by Mitsuhasi and 
Feller (1992).  Specific polyclonal antibodies against the N-terminus and 
C-terminus of LSU were produced in rabbits after immunization with 
synthetic peptides representing the first 17 amino acids (N-terminus; 
N-terminal proline acetylated as reported by Mulligan et al., 1988) or of 
the last 18 amino acids (C-terminus) of the mature LSU of wheat.

RESULTS AND DISCUSSION

Nitrogen deficiency is a frequent abiotic stress. The net degradation of 
chloroplast proteins is in general well coordinated under such conditions 
(Fig. 1). From the results presented in Fig. 1 it became evident that in 
nitrogen deficient plants (-N) stromal proteins were degraded in the oldest 
leaf (leaf 1) and the amino acids were used for the synthesis of proteins 
in the younger leaf (leaf 2) after the translocation via the phloem, while 
the protein levels increased in both leaves of plants with an adequate 
nitrogen supply (+N). Nitrite reductase represents an interesting enzyme 
in this context. No band was visible on day 13 (plant growth depended on 
the reserves in the caryopsis and no external nitrate was available). After 
supplying mineral nitrogen (+N, days 18 and 26), this enzyme was detected 
on immunoblots, but it was still absent in plants grown without nitrate 
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Fig. 1. Effects of nitrogen deficiency on the levels of Rubisco and other chloroplast 
proteins in wheat leaves. All lanes for a blot were loaded with an equal percentage 
of a leaf to allow a direct comparison (0.3 % of a leaf lamina for the Rubisco blots 
and 0.6 % of a leaf lamina for the other proteins). Phosphoribulokinase (PRK; 
EC 2.7.1.19), rubisco activase, phoshoglycolate phosphatase (PGP; EC 3.1.3.18), 
nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and 
glutamate synthase (ferredoxin GOGAT; EC 1.4.7.1) were detected on immunoblots 
with specific antibodies developed in rabbits. Two types of antibodies raised in 
rabbits were used to detect LSU (large subunit of Rubisco, EC 4.1.1.39) and LSU 
fragments: antibodies against a synthetic peptide representing the first 17 amino 
acids of the mature wheat LSU (N-terminus of LSU) and antibodies against a 
synthetic peptide representing the last 18 amino acids (C-terminus of LSU) of 
wheat LSU.
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(-N). Only the intact LSU, but no fragments were detected on immunoblots 
developed with specific antibodies against the N- or C-terminus of LSU, 
even in leaves characterized by a net degradation of this protein (-N, leaf 
1). Tsai et al. (1991) suggested that the decreased abundance of Rubisco 
polypeptides during growth of maize at low soil nitrogen was a result of 
enhanced proteolysis. From our results it can be concluded that fragments 
produced by a first cleavage were rapidly degraded to small peptides and free 
amino acids which were no longer detected on immunoblots. In contrast to 
previous observations concerning intact leaves incubated in darkness under 
oxygen deficiency (Feller et al., 2008) or isolated chloroplasts incubated in 
the light (Roulin and Feller, 1998a, b), no large LSU fragments produced 
by the removal of small pieces from the N- or C-terminus were detected. 
Kingston-Smith et al. (2004) reported an increase in cysteine protease activity 
when plants were stressed by withholding nitrate. The authors suggested 
that nitrogen limitation induced an early, reversible stage of senescence in 
which perturbations in protease activity facilitated the degradation of non-
essential proteins in order to increase the chances of plant survival. 
 An accumulation of two large LSU fragments still containing the 
C-terminus was detected in bean leaves incubated in darkness under 
hypoxia (Feller et al., 2008). However, other plastidial as well as 
extraplastdial proteins were degraded in darkness upon +O2 and –O2 
incubations without a major accumulation of fragments (Fig. 2). Cytosolic 
glutamine synthetase (Fig. 2, weak band below the plastidial form) was 
maintained longer than the chloroplast enzyme. Glutamate dehydrogenase 
(mitochondrial protein) was also maintained for a longer period than the 
stromal proteins. The level of this enzyme protein increased even during 
the first days upon +O2 incubations. An interesting response was detected 
for phosphoglycolate phosphatase. This protein was degraded on one hand 
and a new immunoreactive band above the intact subunit was detected 
after incubation under hypoxia   (-O2) on the other hand. The nature of this 
band is not yet clarified. It could derive from a stable cross-linkage of the 
subunit or of a fragment with another polypeptide as detected previously 
for Rubisco activase (Feller et al., 1998). Apparently the accumulation of 
large amounts of fragments under hypoxia was specific for Rubisco and not 
a general process.
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Fig. 2. Net degradation of plastidial and extraplastdial proteins in bean leaves 
incubated under oxygen deficiency in darkness. The lanes were loaded with 
an equal percentage of a leaf to allow a direct comparison (0.6 % of a primary 
leaf). Phosphoribulokinase (PRK, plastidial), nitrite reductase (NiR, plastidial), 
phoshoglycolate phosphatase (PGP, plastidial), glutamine synthetase (GS, major 
band plastdidial), glycolate oxidase (GO, peroxisomal; EC 1.1.3.15), glutamate 
synthase (GOGAT, plastidial), phosphoenolpyruvate carboxylase (PEPC, 
cytosolic; 4.1.1.31) and NADH-glutamate dehydrogenase (GDH, mitochondrial; 
EC 1.4.1.2) were detected on immunoblots with specific antibodies developed in 
rabbits.

    The accumulation of different Rubisco fragments under various abiotic 
stress conditions is summarized in Fig. 3. Several fragments still containing 
the N-terminus (removal of smaller fragments at the C-terminus) were 
detected on immunoblots from isolated chloroplasts incubated in the light 
(Roulin and Feller, 1998a, b). It has been demonstrated that Rubisco can be 
degraded in intact chloroplasts (Mitsuhashi et al., 1992). Reactive oxygen 
species (Nakano et al., 2006) and a metalloendopeptidase (Roulin and Feller, 
1998a) must be considered important factors in this context. In contrast, 
in detached leaves incubated under hypoxia in darkness other fragments 
(still containing the C-terminus, but missing the N-terminus) accumulated 
(Hildbrand et a., 1994; Feller et al., 2008). Large LSU fragments still 
containing the C-terminus were also observed in wheat leaf segments 
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incubated under a limiting energy supply (Thoenen et al., 2007), but such 
fragments were not found in isolated chloroplasts. Additional studies 
suggest that a cysteine endopeptidase (presumably vacuolar) is involved in 
Rubisco degradation and that the first cleavage of LSU can occur when it 
is still present in the holoenzyme together with the other large and with the 
small subunits (Thoenen et al., 2007). 

Fig. 3. Scheme representing different types of LSU fragmentation under abiotic 
stress conditions. No LSU fragments were detectable on immunoblots of detached 
bean leaves incubated for up to 10 days floating on deionized water in darkness, 
while large amounts of two LSU fragments containing the C-terminus (N-terminus 
removed) accumulated under hypoxia in darkness (A). In isolated chloroplasts 
incubated in the light, various Rubisco fragments containing the N-terminus 
(C-terminus removed) accumulated in the range of 30 - 45 kDa (B).
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CONCLUSIONS

Rubisco represents an interesting enzyme protein with respect to its 
catabolism. Rubisco degradation depends on the actual conditions. Different 
mechanisms might be relevant under various stress conditions (Luo et al., 
2002; Demirevska-Kepova et al., 2004; Thoenen et al., 2007; Feller et al., 
2008). The accumulation of immunoreactive fragments may allow the 
identification of different mechanisms involved in Rubisco degradation 
(Zhang et al., 2007; Feller et al., 2008). Specific antibodies raised against 
defined sequences of LSU might allow more detailed investigations. The 
various steps in Rubisco degradation, the proteolytic enzymes involved and 
the subcellular compartmentation of these processes under various abiotic 
stress conditions remain to be elucidated in the future.
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