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INTRODUCTION

Water availability is one of the major 
factors affecting plant productivity. 
The necessity to regulate this factor, 
particularly through irrigation, is 
primarily concerned with the actual need 
of plants for water, and the characteristics 
of their water regime (Petinov, 1962; 
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Kushnirenko, 1964). The water content 
in tissues of fruit plants depends on the 
growing conditions as well as on the age of 
organs and whole organisms. The shortage 
of water in plants significantly affects 
morpho-physiological characteristics of 
plant organs (Bahanova, 2003; Rajametov 
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et al., 2010; Zayseva, 2011). Water 
regime of leaves is a significant factor 
underlying physiological state of trees. 
In drought years when the decreasing 
relative humidity reduces the activity of 
the root system, a marked inhibition in the 
growth of leaves and shoots was observed 
(Ulyanovskaya et al., 2005).

Plants usually respond to a changing 
environment in a complex, integrated 
way allowing them to adapt to the specific 
set of conditions and constraints present 
at a particular time. This involves an 
array of physiological and biochemical 
modifications including leaf wilting, 
reduction in leaf area and stomata, leaf 
abscission, stimulation of root growth, 
changes in relative water content, 
generation and accumulation of reactive 
oxygen species which disrupt cellular 
homeostasis by reacting with lipids, 
proteins, pigments and nucleic acids 
resulting in lipid peroxidation, membrane 
damage, inactivation of enzymes, thus 
affecting cell viability (Bajji, et al., 2001; 
Bahanova, 2003; Bartels and Sunkar, 2005). 
Molecular responses to abiotic stresses, on 
the other hand, include stress perception, 
signal transduction to cellular components, 
gene expression, and, finally, metabolic 
changes imparting stress tolerance 
(Agarwal et al., 2006; Lata and Prasad, 
2011). Stress-induced genes function 
not only to protect cells from stress by 
production of important proteins, but they 
also regulate the expression of downstream 
genes for signal transduction (Ingram and 
Bartels, 1996; Bray, 1997; Shinozaki and 
Yamaguchi-Shinozaki, 1997, Nakashima 
et al., 2000; Bohnert et al., 2001). 

Chlorophyll content and stomata are 
vital for gas exchange, photosynthesis and 
respiration (Trejo and Davies, 1991; Trejo 

et al., 1993; Rotondi and Predieri, 2002; 
Pruzinska et al., 2007). Generally, water 
balance and physiological properties 
of plants have been studied under the 
influence of different environmental 
factors, but the literature information 
about the changes in water potential 
and physiological activity of pear plants 
during summer is limited. Investigations 
have focused on short periods of treatment 
or special treatments. Therefore, the 
main purpose of this work was to study 
water regime in leaves and annual shoots 
together with changes in leaf anatomy, 
total chlorophyll content and electrolyte 
conductivity in different pear cultivars 
during the vegetation period under the 
natural conditions in Republic of Korea. 

MATERIALS AND METHODS

Experiments were carried out in the 
Naju Pear research station (RDA) during 
the summer of 2013 using pear cultivars of 
different origins: Bartlett (USA), Nashvati 
iz Pishkarina (UZB), Niitaka (JAP) and 
Chuwhangbae (KOR). It should be noted 
that all cultivars originated from humid 
areas except for Nashvati iz Pishkarina 
whose genealogic was formatted in the 
dry area. All experiments were conducted 
under natural conditions. 

Water regime in annual shoots and 
leaves was studied in the afternoon at 3:00 
p.m. in a position between 30 and 70 cm, 
and each shoot was about 0.80 – 1.0 m in 
length and 0.7 – 1.0 cm in diameter.

Water content in annual shoots and 
leaves was estimated by the formula: 

WC% = (W1 – W2) × 100/W1
where WC% – water content; W1 – initial 
mass of shoots or leaves; W2 – dry mass of 
shoots or leaves.
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Water deficit in shoots and leaves was 
determined as a percentage of its total 
content at a state of complete saturation 
(shoots and leaves should be kept in water 
for 24 h) and expressed as: 

WD% = (WA × 100)/W
where WD – water deficit; WA – water 
absorbed at saturation of the shoots 
and leaves, which is determined by the 
difference of mass of shoots and leaves 
before and after complete saturation; 
W – presence of water, the difference 
between the mass of shoots and leaves 
after complete saturation with water and 
dry mass of samples.

Electrical conductivity (EC) was 
measured with an Orion conductivity 
TDS meter model 124 conductimeter 
(Orion, Germany). In order to determine 
electrolyte leakage 3 leaves from each 
cultivar wеrе collected, weighed and cut 
into segments (ca. 0.5 cm). Segments 
originating from the same shoot were put 
into 40 ml of distillated water in a test tube 
and allowed to stand for 15 h in the dark 
at 20°C. An initial electrical conductivity 
measurement (ECi) was done at the 
beginning of this rehydration period. All 
tubes were heated for 30 min in water 
at 95°C. Then, the tubes containing the 
segments were returned into the dark at 
20°C and kept for 15 h. Following these 
readings, the total electrical conductivity 
(ECt) was measured. Electrolyte leakage 
(%) is expressed as: (ECi/ECt) × 100.

Stomatal area was determined in 
leaves from the middle part of annual 
shoots in the morning and afternoon using 
an electron microscope AXIO (Carl Zeiss, 
Germany, and magnification – x50 – 400). 
The leaf area (cm2) was measured in mid-
August using a LI-3100 Area meter (USA). 
For determination of leaf anatomical 

structure leaf samples were initially 
fixed in 2.5% glutaraldehyde for 90 min 
at 4°C and then rinsed four or five times 
with 0.1 M phosphate buffer (pH 7.2). 
The second fixing process was achieved 
using 1% osmium tetraoxide for 90 min 
and the samples were rinsed again with 
0.1 M phosphate buffer five times. The 
fixed samples were dehydrated in alcohol 
series with increasing concentrations. 
Dehydrated samples were laid in a silicon 
mold with epon + D.M.P. 30 for 4 days at 
60°C. After polymerization, the embedded 
samples were sectioned in 1 μm thickness 
using an ultramicrotome (Ultracut R. 
Leica Co., Austria) and observed under 
a light microscope AXIO (Carl Zeiss, 
Germany, and magnification – x200). 

Total chlorophyll content was 
analyzed spectrophotometrically in 
the morning and afternoon using Eon 
Microplate Spectrophotometer (USA). 
Leaf disks each of 6.25 mm in diameter, 
were punched from the medium part 
of annual shoot leaves. The disks were 
placed immediately into 25 mL of 100% 
methanol, and pigments were allowed to 
be extracted in the dark at 4°C for 14 h. 
The absorbance was read at 651 and 664 
nm. Chlorophyll content is expressed as 
(mg g-1 fresh weight).

RESULTS AND DISCUSSION

Normally, climate conditions during 
the summer in South Korea are usually 
characterized with warm, long sunny days 
and high level of precipitation. During the 
experiment, air temperature and humidity 
were recorded. Our data showed that the 
temperature increased from June to mid-
August and reached a maximum of about 
35°C in August (Fig. 1). 
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Relative humidity (RH) was 
consistently high during the summer, 
especially at night when it reached 99%, 
but in the afternoon it was also relatively 
high (above 50%). Monthly mean rainfall 
was higher in July and in August and 
total rainfall was about 700 mm during 
the summer. Soil moisture content at a 
depth of 1.0 m exceeded 30-40% (data 
not presented); thus all cultivars were well 
supplied with water. 

Figure 1. Climatic conditions during the investigation period of 2013, Naju.

Figure 2. Changes in leaf water content in different pear cultivars.

Our results showed that the water 
regime in leaves and annual shoots was 
unstable and ranged depending on period 
and cultivar. So, regardless of the climate 
condition WCL in all investigated cultivars 
decreased from early June to late August as 
was reported in fruit crops (Bahanova, 2003; 
Zakharchuk and Ryazanova, 2013). The 
same pattern was detected in WCS of pears, 
but the varietal differences in this parameter 
were more pronounced (Figs. 2, 3). 
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Figure 3. Changes in water content of annual shoots in different pear cultivars.

The cvrs. Niitaka and Nashvati iz 
Pishkarina had relatively low WCL 
and WCS in comparison with cvrs. 
Chuwhangbae and Bartlett. 

High water concentrations in leaves 
and shoots are related to physiological 
activity of plant organs, the absolute 
maximal levels being observed in the 
beginning of blossom (Bahanova, 2003). 
Further on, the water content is reduced 
due to aging of the organs but it should 
be noted that the cultivars which show 
high WCL at the blossom stage do not 
show high stable values during the 
vegetation period. A gradual decline in 
water regime during the summer period 
is associated with the biological features 
of cultivars. Water content in plant organs 
is under the controll by some plant 
regulators, hormones and genes. Reduced 
water content leads to physiological 
and biochemical modifications in plants 
including leaf wilting, reduction in leaf 
area, leaf abscission; it induces leaf 
stomatal closure to reduce water loss 
through transpiration and decreases the 

photosynthetic rate in order to improve 
the water-use efficiency and root growth 
(Gomez et al., 1988; Agarwal et al., 2006; 
Bartels and Sunkar, 2005; Lata et al., 
2011; Lata and Prasad, 2011). Thus, it 
can be assumed that the physiological and 
biochemical processes in plants depend 
on water regime and can vary in different 
cultivars.

Water shortage is an important and 
integral physiological index indicating the 
needs of plants for moisture. However, 
WDL and WDS differed significantly in 
comparison to WCL and WCS. So, WDL 
fluctuated in all cultivars except for cv. 
Bartlett (Fig. 4), which showed a high 
stable rate. Additionally, from early June 
to August, when the physiological activity 
and growth of plants are most intense 
(Bahanova, 2003; Gegechkori et al., 
2013), all pear cultivars showed relatively 
high unstable values of WDL.

Regardless of the high temperatures 
in August, the values for WDL in cvrs. 
Niitaka, Chuwhangbae and Nashvati iz 
Pishkarina showed a decreasing trend. 
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Figure 4. Changes in leaf water deficit in different pear cultivars.

Almost the same pattern of changes was 
observed in the experiments conducted 
under the conditions of Uzbekistan 
(Rajametov, 2008; Rajametov et al., 2010) 
where East and Central Asian pear cultivars 
showed low WDL values compared to 

Figure 5. Changes in water deficit of annual shoots in different pear cultivars.

the European cultivars. In comparison to 
Korean humid conditions where in June 
and July high (over 15%) and fluctuated 
values for WDL were measured, stable 
relatively low (about 10%) rates of WDL 
during the summer in Uzbekistan were 
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established. This might be attributed to 
the fact that the climate in Uzbekistan 
is dry without precipitation and and this 
activates plant’s protective mechanisms to 
save water (Cruz et al., 2012). 

The WDS levels in the studied 
cultivars showed a general decreasing 
trend from mid-June to August, as found 
for WCL and WCS, with the lowest WDS 
values being measured in cv. Nahsvati iz 
Pishkarina (Fig. 5).

In early June the values for WDS 
in all cultivars were low, then they 
increased, reaching a maximum in mid-
June. The low WDS values in early June 
can be related to the high rate of water 
uptake by plant organs to ensure growth 
and well saturated with water leaves and 
shoots. With increasing temperature plant 
requirements for water are increased. The 
imbalance between WDL and WDS was 
probably due to the difference in water 
absorption, a property that is related to 
water demand of plant organs, age, leaf 
anatomical structure, xylem and root 

Figure 6. Changes in electrolyte conductivity of leaves during the summer of 2013.

conductivity, transpiration rate (Trejo 
and Davies, 1991; Rotondi and Predieri, 
2002; Kosma et al., 2009; Cruz et al., 
2012; Aroca et al., 2012; Gegechkori et 
al., 2013). A strong shortage of water was 
observed in all cultivars in mid August 
and at the end of the month. 

The electrolyte conductivity of leaves 
in the summer was characterized by a 
significantly different trend than that 
observed for water regime (Fig. 6). Many 
researchers have reported that the EC 
correlates with various physiological and 
biochemical parameters, characterizing 
plant response to environmental 
conditions such as spectral reflectance 
(Garty et al., 2000; Vainola and Repo, 
2000), antioxidative enzyme synthesis 
(Liu and Huang, 2000; Sreenivasulu et al., 
2000), membrane acyl lipid concentrations 
(Lauriano et al., 2000), water use 
efficiency (Franca et al., 2000; Saelim 
and Zwiazek, 2000; Bajji et al., 2001), 
transverse relaxation time of leaf water 
protons (Maheswary et al., 1999), stomatal 
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resistance, osmotic potential and leaf 
rolling index (Premachandra et al., 1989). 
In the present study, EC rates showed a 
gradual increase from early June to mid-
July, then with raising of the average daily 
temperature in early August, there was a 
sharp decline in the degree of cell membrane 
injury (below 25%), which was preserved 
until the end of August. Compared to the 
other varieties, cv. Bartlett had a relatively 
high level of electrolyte leakage from the 
cells, thus indicating a severe damage to 
cell membranes (Bandurska et al., 1997; 
Linden et al., 2000; Bajji et al., 2001). 
Thus, in our study, no relationship was 
found between EC, stomatal parameters 
and water regime in pear plants in the 
summer.

Figure 7. Leaf anatomical structure in pear cultivars originating from different habitats.

Analysis of leaf anatomical 
structure showed that cvrs. Niitaka and 
Chuwhangbae were characterized by 
higher values for leaf thickness, upper and 
lower epidermis layers, length of stomata 
slit between the guard cells (Table 1) as 
well as over 1.5 times bigger diameter 
of the main vascular bundles especially 
xylem (Fig. 7). However, they had lower 
density of upper and lower epidermis 
per 100 µm when compared with cvrs. 
Bartlett and Nashvati iz Pishkarina. 
When comparing the length and density 
of palisade mesophyll per 100 µm all 
cultivars showed a negligible difference 
except for cv. Bartlett. According to 
Bahanova (2003), the high leaf thickness, 
upper and lower epidermis layers and 
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density of stomata per mm2 observed in 
apple varieties in a dry region contributed 
to the decrease in leaf transpiration rate 
and low WDL values, but this pattern was 
not observed in pears under the humid 
conditions of Republic of Korea.

Analysis of stomatal parameters 
showed variability depending on species 
and times of the day (Table 2). In the 
morning (8:00 AM) in comparison to the 
afternoon (3:00 PM) stomatal area in cvrs. 
Niitaka and Bartlett expanded significantly 
from 773.0 to 835.1 and from 703.5 to 
724.3 µm2, respectively. In cvrs. Nashvati 
iz Pishkarina the values were reduced 
while in cv. Chuwhangbae the change was 
quite negligible. Stomatal response might 
be associated with temperature and RH, 
xylem conductivity, needs of plant organs 
to uptake water, involvement of ABA 
in the regulation of stomatal behavior 
(Rodriguez and Davies, 1982; Zhang and 
Davies, 1990; Hartung and Slovik, 1991; 
Gollan et al., 1992; Trejo et al., 1993). 

The stomatal density per mm2 in 
the studied cultivars varied from 164.8 
to 214.3 (Table 2). In cvrs. Niitaka and 
Chuwhangbae stomatal density was high 
(exceeding 16-18%,) when expressed per 
total leaf area whereas in cvrs. Nashvati 
iz Pishkarina it was about 12%. We did 
not find a significant relationship between 
water regime and leaf anatomical structure 
during the summer when air and soil were 
sufficiently moist.

Total chlorophyll content varied in 
the studied cultivars, but regardless of the 
conditions the minimal values were noted 
in cv. Niitaka (Figs. 8, 9). According to 
Rotondi and Predieri (2002), the leaves 
of the pear cvrs. Abbé Fétel and Passe 
Crassane had high chlorophyll content and 
exhibited also high photosynthetic activity. 

Some researchers (Kushnirenko and 
Medvedev, 1969; Bahanova, 2003) have 
reported that increasing the chlorophyll 
content of leaves under water shortage is 
a protective response of plants and such 
cultivars are more drought resistant. In the 
present study, the highest total chlorophyll 
content during the summer was measured 
in cvrs. Nashvati iz Pishkarina (Figs. 8, 9).

This could suggest high 
photosynthesic activity in these varieties. 
The concentration of chlorophyll in 
all cultivars was slightly higher in the 
afternoon (3:00 p.m.) than in the morning. 
The values reached a maximum in mid-
August and decreased thereafter. In our 
previous seasonal studies both negative 
and positive correlations were found 
between total chlorophyll and total 
nitrogen content in the same varieties, 
and the data fluctuated regardless of the 
time of study (data not presented). Park et 
al. (2007) found that chlorophyll content 
in apple leaves, measured by a portable 
chlorophyll meter (SPAD-502), increased 
from June to August but the correlation 
coefficient between SPAD reading values 
and nitrogen content in the leaves tended 
to gradually decrease with the progress 
of growth. According to Ghasemi et al. 
(2011) there was a positive and linear 
correlation between chlorophyll content 
and total nitrogen content in Asian pear 
leaves, however, the analysis was only 
made in June. The discrepancy between 
these results, as well as in results reported 
by other authors (Blackmer and Shepers, 
1995; Wu et al., 1998; Richardson et 
al., 2002; Rotondi and Predieri, 2002; 
Kowalczyk-Jusko and Koscik, 2002), 
may be due to differences in genotype, 
experimental period and environmental 
factors.
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Figure 8. Total chlorophyll content in leaves of different pear cultivars measured at 
8:00 a.m. during the summer of 2013.

Figure 9. Total chlorophyll content in leaves of different pear cultivars measured at 
3:00 a.m. during the summer of 2013.
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In conclusion, our results 
demonstrated that the water regime, 
electrolyte conductivity, stomatal size and 
density as well as total chlorophyll content 
in the studied pear varieties were unstable 
and varied depending on investigation 
time, variety and climatic conditions. 
However, in humid summer conditions in 
South Korea, pear cultivars can not reveal 
their real ability in terms of water regime 
and physiological characteristics to resist 
stress factors.

The variety-environment interactions 
are very important in crop breeding in 
order to develop a specific variety suitable 
for a given region (Becker et al., 1999). 
Based on the presence or absence of an 
interaction effect, breeders may have to 
change the target area for cultivation or 
the selection scheme. 

As for cultivation of a given cultivar 
in a different habitat, breeders in the future 
should pay attention to the development 
of new cultivars based on parental lines 
originating from external habitats. Thus, 
the same type of study should be conducted 
in semiarid areas where practically there 
is no rain in the summer and the humidity 
is relatively low compared to humid and 
rainy weather conditions. In such cases, 
other patterns of physiological responses 
can be observed and some of the newly 
developed cultivars may possess higher 
resistance than cultivars growing in a 
wetland.
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