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Abstract: We explored the interplay between ethylene signals and the auxin pool in roots exposed to
high salinity using Arabidopsis thaliana wild-type plants (Col-0), and the ethylene-signaling mutants
ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced
in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1
controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active
auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In
contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of
ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for
local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-
GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling
pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady
expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport
reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related
to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis
and transport.

Keywords: Arabidopsis ctr1-1 and ein2-1 mutants; auxin homeostasis; ethylene signals; crosstalk;
salt stress

1. Introduction

Saline soils present a serious agricultural constraint especially in coastal areas and in
regions with industrial pollution or intensive plant breeding. Moderate salt stress could
remain undetected since it causes no apparent injuries other than restricted growth. This
means that high salinity has a negative effect on the signaling cascades involved in the
regulation of plant growth and development. The growth restriction caused by high salt
concentrations is further complicated by impaired photosynthesis which ultimately leads
to accelerated aging and death [1,2].

Plants adapt to environmental challenges through anatomical, metabolic, and mor-
phological changes and the gaseous plant hormone ethylene modulates many of these
growth-related processes. As a major stress hormone, ethylene causes growth reduction
primarily due to the inhibition of cell expansion which is an adaptive response to the
adverse environment [3,4]. Several studies have demonstrated that plants exposed to
salt stress show induced ethylene biosynthesis and have enhanced ethylene signaling
maintaining both shoot and primary root growth [5–10]. Some ethylene mutations, which

Plants 2021, 10, 452. https://doi.org/10.3390/plants10030452 https://www.mdpi.com/journal/plants

Г7_1

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-3117-7274
https://orcid.org/0000-0001-5849-8786
https://orcid.org/0000-0003-2656-3437
https://orcid.org/0000-0002-9055-8002
https://orcid.org/0000-0002-7755-1420
https://doi.org/10.3390/plants10030452
https://doi.org/10.3390/plants10030452
https://doi.org/10.3390/plants10030452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10030452
https://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/10/3/452?type=check_update&version=2


Plants 2021, 10, 452 15 of 18

of 60–95 ◦C in 0.2 ◦C increment for 60 s. The relative expression of the target genes was
calculated using the 2-∆∆Cq method [71] with two reference genes (At3g18780, At5g60390)
for normalization of the relative quantification. Primers used in the qRT-PCRs are provided
in Table S3 (Suppl. Materials).

4.6. Statistical Analyses

The data in Figures 1 and 4 were obtained from at least three independent experiments.
Plants from three independent crosses with the respective reporters were analyzed to form
three independent datasets. Each dataset contain measurements of at least 10 (up to 20)
control or salt-treated individuals from the tested lines.

The assumed differences among the tested genotypes at control and salt stress con-
ditions were analyzed by Student’s t-test (Figure 1) and one-way ANOVA (Figures 2–6)
using Excel software. Error bars on the graphs indicate standard deviation (SD) and the
values were considered statistically significant at p ≤ 0.05.

5. Conclusions

Plant susceptibility/tolerance to salt stress is defined by multiple stress-responsive
genes controlled by various signal transduction pathways. Our results demonstrate that
ethylene signaling could also be engaged in salt stress response through the regulation of
local auxin availability. This is sustained by the relative salt tolerance of ctr1-1 mutation
which is characterized by an altered ethylene/auxin regulatory loop leading to stabilized
local auxin biosynthesis and polar transport. The salt hypersensitivity of the ethylene-
insensitive mutant ein2-1 could be due to the chronic root auxin deficiency.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223
-7747/10/3/452/s1, Table S1: TF DeCON in silico screen genes from the auxin Trp-dependent
biosynthesis: TAA1 (At1g70560), TAR1 (At1g23320), TAR2 (At4g24670) and YUC1-11 (resp. At4g32540,
At4g13260, At1g04610, At5g11320, At5g43890, At5g25620, At2g33230, At4g28720, At1g04180, At1g48910,
At1g21430), and Table S2: TF DeCON in silico screen of the auxin transport genes PIN1, PIN2,
PIN3, PIN4, PIN5, PIN6, PIN7, PIN8 (At1g73590, At5g57090, At1g70940, At2g01420, At5g16530,
At1g77110, At1g23080, At5g15100), AUX1 (At2g38120), LAX1 (At5g01240), LAX2 (At2g21050), LAX3
(At1g77690) and ABCB1 (At2g36910), ABCB4 (At2g47000), ABCB19 (At3g28860) using DAP-Seq data
from the Ecker lab (Salk Institute for Biological Studies); Table S3: Primers used for qRT-PCR
analyses; Figure S1: AthaMap analyses of promoter regions of the genes coding for TAA1, TAR1,
TAR2, and YUC (1-11) genes.
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Abstract: Hordeum vulgare and Hordeum bulbosum are 
two closely related barley species, which share a com-
mon H genome. H. vulgare has two nucleolar organizer 
regions (NORs), while the NOR of H. bulbosum is only one. 
We sequenced the 2.5 kb 25S-18S region in the rDNA of H. 
bulbosum and compared it to the same region in H. vul-
gare as well as to the other Triticeae. The region includes 
an intergenic spacer (IGS) with a number of subrepeats, a 
promoter, and an external transcribed spacer (5′ETS). The 
IGS of H. bulbosum downstream of 25S rRNA contains two 
143-bp repeats and six 128-bp repeats. In contrast, the IGS
in H. vulgare contains an array of seven 79-bp repeats and
a varying number of 135-bp repeats. The 135-bp repeats
in H. vulgare and the 128-bp repeats in H. bulbosum show
similarity. Compared to H. vulgare, the 5′ETS of H. bulbo-
sum is shorter. Additionally, the 5′ETS regions in H. bulbo-
sum and H. vulgare diverged faster than in other Triticeae
genera. Alignment of the Triticeae promoter sequences
suggests that in Hordeum, as in diploid Triticum, tran-
scription starts with guanine and not with adenine as it is
in many other plants.

Keywords: external transcribed spacer; Hordeum;  
intergenic spacer; promoter; rDNA.

1   Introduction

In eukaryotes, the 18S, 5.8S, and 25S-28S ribosomal RNAs 
(rRNAs) are generated by the processing of a larger 35–45S 
rRNA precursor (pre-rRNA), synthesized from a single 
transcription unit. The processing of the pre-rRNA involves 
excision of the external (5′external transcribed spacer 
(ETS) and 3′ETS) and the internal transcribed spacers 
(ITS1 and ITS2) [1]. In plants, there are several hundreds to 
several thousands of nuclear rRNA genes, repeated head-
to-tail in one or more chromosomes [2]. The pre-rRNA 
transcription units are separated by  noncoding intergenic 
spacers (IGS), which in plants, as a rule, are shorter than 
in animals [3]. Sequences in the IGS may have defined 
functions. Transcription initiation and  termination are 
characterized in many plants (e.g. [4, 5]). The rRNA gene 
promoter is part of the IGS. It is studied in the model plant 
Arabidopsis both by transient expression and in vitro [6, 
7]. Typically, the IGS regions contain a variety of repeti-
tive elements. Some repeated IGS sequences were shown 
to be involved in transcription enhancement [8]. The 
origin of replication [9] and replication fork barrier [10] 
were also demonstrated to reside in the IGS. Unavoidably, 
the search for a function within the IGS region, either by 
comparison with other sequences or directly, begins with 
rDNA sequencing.

The tribe Triticae of the grass family Poaceae is com-
posed of about 360 species classified into 20–30 genera. 
Rye and the oldest domesticated plants, wheat and 
barley, as well as their wild relatives and some impor-
tant forage grasses, are among the species that belong 
to that tribe [11, 12]. The genus Hordeum is composed of 
33 species,  subdivided into two subgenera (listed in Ref. 
[13]). Hordeum ITS sequences, chloroplast sequences, 
and single nuclear loci were used to construct compre-
hensive phylogenetic trees [13–15]. The most studied 
Hordeum species is the cultivated barley Hordeum vulgare 
L. H. vulgare has two nucleolar organizer regions (NORs),
one on chromosome 5H and the other on chromosome
6H [16]. As a rule, each H. vulgare plant has two rDNA
repeat length variants: a short variant on NOR 5H, and
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Clathrin-mediated endocytosis (CME) is a major route for 
internalization of plasma membrane proteins and mole-
cules from the extracellular environment1,2, but its dynamic 

and essential nature makes it difficult to dissect using classical 
genetics approaches. Chemical inhibitors of endocytosis are an 
attractive alternative to the current methods available for disrupt-
ing protein functions. However, despite the extensive structural 
and biochemical knowledge about CME in eukaryotic cells3, the 
development of chemicals that interfere with this process is still 
at a relatively early stage. To date, a few small molecules have 
been shown to target the CME machinery in mammalian, yeast 
or plant systems4. Among the most commonly used small-mole-
cule CME inhibitors in mammalian systems are Pitstop2 (ref. 5), 
targeting the N-terminal domain (nTD) of the CHC, Dynasore6 
and the Dynasore-based series of small molecules called Dyngo7, 
the latter pair affecting the dynamin function. A natural product, 
ikarugamycin, has recently been used to inhibit CME in differ-
ent systems, but neither its potency nor specificity toward CME 
has been extensively examined8. As none of the above-mentioned 
molecules displayed consistent effects in plant cells, the plant cell 
biology has taken advantage of tyrphostin A23, a CME-inhibiting 
small molecule9. However, tyrphostin A23 has recently been 
described as a protonophore in Arabidopsis thaliana, and its inhi-
bition of endocytosis was shown to occur through non-specific 
cytoplasmic acidification9. Therefore, CME research in plants 

would benefit from novel, potent small-molecule inhibitors that 
dissect endocytosis to improve our understanding of the many 
physiological processes that rely on it.

Previously, ES9 (1) was characterized as an endocytosis inhibi-
tor in different model systems9. Although ES9 is a protonophore, its 
interference with CME did not originate solely from cytoplasmic 
acidification. In Drosophila melanogaster, ES9 blocked synaptic 
vesicle recycling, mimicking the phenotypes in mutants defective 
in clathrin or dynamin functions whereas in Arabidopsis, ES9 was 
found to retain its ability to inhibit endocytosis at an increased 
apoplastic pH9. These results suggested that, despite its protono-
phore activity, ES9 may directly interfere with proteins involved 
in CME. Here, we demonstrated that ES9 binds the nTD of the 
Arabidopsis clathrin heavy chain (CHC). Further structure activity 
relation (SAR) analysis identified a non-protonophoric ES9 analog 
with a similar mode of action, as confirmed by cellular thermal 
shift assay (CETSA)10 and drug affinity-responsive target stability 
(DARTS)11. Altogether, we expand the current chemical toolbox 
for CME inhibition and present promising scaffolds for further 
development of chemical probes targeting CHC across different 
systems. For further information on ES9 and other agents fea-
tured in this article, see the sections at the end of the article titled 
Synthetic functions. In the main text, these agents are flagged as 
numerals within parentheses and are cross-linked to the appropri-
ate section(s).

Disruption of endocytosis through chemical 
inhibition of clathrin heavy chain function
Wim Dejonghe1,2,16,17, Isha Sharma1,2,17, Bram Denoo3, Steven De Munck4,5, 
Qing Lu   1,2, Kiril Mishev   1,2,6, Haydar Bulut7, Evelien Mylle1,2, Riet De Rycke1,2,8, Mina Vasileva9, 
Daniel V. Savatin1,2, Wim Nerinckx10,11, An Staes10,12, Andrzej Drozdzecki13,14, Dominique Audenaert13,14, 
Klaas Yperman1,2, Annemieke Madder3, Jiří Friml   9, Daniël Van Damme   1,2, Kris Gevaert10,12, 
Volker Haucke   15, Savvas N. Savvides   4,5, Johan Winne3 and Eugenia Russinova   1,2*

Clathrin-mediated endocytosis (CME) is a highly conserved and essential cellular process in eukaryotic cells, but its dynamic 
and vital nature makes it challenging to study using classical genetics tools. In contrast, although small molecules can acutely 
and reversibly perturb CME, the few chemical CME inhibitors that have been applied to plants are either ineffective or show 
undesirable side effects. Here, we identify the previously described endosidin9 (ES9) as an inhibitor of clathrin heavy chain 
(CHC) function in both Arabidopsis and human cells through affinity-based target isolation, in vitro binding studies and X-ray 
crystallography. Moreover, we present a chemically improved ES9 analog, ES9-17, which lacks the undesirable side effects of 
ES9 while retaining the ability to target CHC. ES9 and ES9-17 have expanded the chemical toolbox used to probe CHC function, 
and present chemical scaffolds for further design of more specific and potent CHC inhibitors across different systems.
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INTRODUCTION

Structural integrity, chemical homeostasis, and, thus, the func-
tionality of eukaryotic cells, including plant cells, depends on 
a complex network of intracellular membrane trafficking routes 
that act in concert with each other. A large number of critical 
components of endomembrane trafficking have been identified 

using various approaches; some of them are evolutionarily 
conserved, and some are more specific for particular model 
systems. Among the most prominent regulators of trafficking 
are ARF (ADP-ribosylation factor) GTPases that, together with 
their activators ARF-GEFs (ARF guanine nucleotide exchange 
factors), regulate the budding of trafficking vesicles (Yorimitsu 
et al., 2014). ARF proteins constantly switch between active 
(GTP-bound) and inactive (GDP-bound) states (Yorimitsu et al., 
2014). The inactive ARF-GDP form localizes to the cytosol or 
associate loosely with membranes and become activated by 
the catalytic SEC7 domain of ARF-GEFs by exchanging GDP 
for GTP (Nielsen et al., 2008). Following activation to the GTP-
bound state, ARFs bind to membranes and recruit cytosolic 
coat proteins Coat Protein Complex I (COPI), COPII, and clath-
rin to specific sites of vesicle budding at the Golgi apparatus 

The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF 
GTPase Exchange Factors and Interferes with Subcellular 
Trafficking in Eukaryotes[OPEN]

Urszula Kania,a,b,1 Tomasz Nodzyński,c Qing Lu,b Glenn R. Hicks,d Wim Nerinckx,e,f Kiril Mishev,b,g
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The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-
GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, 
vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly 
through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using 
a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. 
ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intra-
cellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccha-
romyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based 
membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF 
activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing  
ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated pro-
cesses, including ARF-GEF-mediated plant development.
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(At2g47170), GNOM (At1g13980), BRI1 (At4g39400), PID (At2g34650), 
CHC1 (At3g11130), CHC2 (At3g08530), SNX1 (At5g06140), VTI12 
(At1g26670), RCN1 (At1g25490), AXR2 (At3g23050), BIG3 (At1g01960), 
FABD (AT4G26700), and MAP4 (M72414).

Supplemental Data

Supplemental Figure 1. Chemical screen of a set of 11 small molecules 
implicated in polarity changes.

Supplemental Figure 2. Characterization of the effects of ES4.

Supplemental Figure 3. Effect of ES4 on intracellular trafficking.

Supplemental Figure 4. Effect of ES4 on vacuolar trafficking.

Supplemental Figure 5. Effect of ES4 on intracellular compartments.

Supplemental Figure 6. Effect of ES4 on ARF1T31N-CFP marker.

Supplemental Figure 7. ES4 sensitivity of yeast deletion strains.

Supplemental Figure 8. Representative nucleotide exchange kinetic 
curves.

Supplemental Figure 9. SDS-PAGE and fluorescence intensity and 
absorbance of ES4.

Supplemental Table 1. Yeast deletion strains used in the growth  
assay.

Supplemental Table 2. Docking-calculated affinities.

Supplemental Table 3. ANOVA tables.
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Small GTP-binding proteins from the ADP-ribosylation factor (ARF) family are important regulators of vesicle formation and
cellular trafficking in all eukaryotes. ARF activation is accomplished by a protein family of guanine nucleotide exchange factors
(GEFs) that contain a conserved catalytic Sec7 domain. Here, we identified and characterized Secdin, a small-molecule inhibitor
of Arabidopsis thaliana ARF-GEFs. Secdin application caused aberrant retention of plasma membrane (PM) proteins in late
endosomal compartments, enhanced vacuolar degradation, impaired protein recycling, and delayed secretion and endocytosis.
Combined treatments with Secdin and the known ARF-GEF inhibitor Brefeldin A (BFA) prevented the BFA-induced PM
stabilization of the ARF-GEF GNOM, impaired its translocation from the Golgi to the trans-Golgi network/early endosomes, and
led to the formation of hybrid endomembrane compartments reminiscent of those in ARF-GEF-deficient mutants. Drug affinity-
responsive target stability assays revealed that Secdin, unlike BFA, targeted all examined Arabidopsis ARF-GEFs, but that the
interaction was probably not mediated by the Sec7 domain because Secdin did not interfere with the Sec7 domain-mediated ARF
activation. These results show that Secdin and BFA affect their protein targets through distinct mechanisms, in turn showing the
usefulness of Secdin in studies in which ARF-GEF-dependent endomembrane transport cannot be manipulated with BFA.

INTRODUCTION

The small GTP-binding proteins from the ADP-ribosylation factor
(ARF) family are major regulators of vesicle biogenesis and in-
tracellular trafficking inall eukaryotes, includingplants (Donaldson
and Jackson, 2011; Yorimitsu et al., 2014). Like other small

GTPases, the ARF proteins are controlled by a GTP-binding and
GTP hydrolysis cycle that activates and inactivates them, re-
spectively. ARF activation is facilitated by the ARF guanine-
nucleotide exchange factors (ARF-GEFs), whereas ARF
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absorbs lightat290nm,whichdeterminesthedifferences intheplateauofthe
kinetics traceswithandwithout thecompound.Thisdecreasewas taken into
account by fitting the entire kinetics curve. The fluorescence emission
spectraofSecdinwithandwithoutARF (excitationwavelength 290nm)were
also controlled. The emission spectra of ARF in the presence of Secdin
matchedwell theadditionof the separate spectra, revealingnoobviousdirect
interference of Secdin with ARF. All experiments were done in triplicate.

Statistical Analysis

Unless otherwise specified, P values were calculated with a two-tailed
Student’s t test with Excel software.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL databases under the following accession
numbers: GNOM (At1g13980), GNL1 (At5g39500), GNL2 (At5g19610),
BIG1 (At4g38200), BIG2 (At3g60860), BIG3 (At1g01960), BIG4 (At4g35380),
BIG5/BEN1 (At3g43300), ARF1 (At2g47170), BRI1 (At4g39400), PIN2
(At5g57090),BOR1 (At2g47160), VHAa1 (At2g28520),RABF2a (At5g45130),
RABF2b (At4g19640), PIP2A (At3g53420), BSK1 (At2g17090), SYP61
(At1g28490), SYP22 (At5g46860), and AMSH3 (At4g16144).

Supplemental Data

Supplemental Figure 1. Subcellular localization of different plasma
membrane proteins and endomembrane markers in Arabidopsis root
epidermal cells treated with Secdin.

Supplemental Figure 2. Lack of cytotoxic effects of Secdin.

Supplemental Figure 3. Effects of Secdin on the vacuolar degrada-
tion pathway.

Supplemental Figure 4. The effect of Secdin on plasma membrane
protein degradation is dependent on protein ubiquitination.

Supplemental Figure 5. Structure-activity relationship analysis of
Secdin analogs.

Supplemental Figure 6. DARTS analysis for validation of the putative
Secdin protein targets in Arabidopsis and human cells.

Supplemental Figure 7. Representative nucleotide exchange kinetics
curves used to estimate the exchange rates (kobs) of spontaneous
(EDTA) and GEF-stimulated ARF1 activation after small-molecule
treatment.

Supplemental Figure 8. Golgi apparatus disruption in Secdin-treated
human cell cultures.

Supplemental Data Set 1. NMR spectra of the synthesized Secdin-
related compounds.

Supplemental Data Set 2. Affinity purification of protein interactors of
biotin-tagged Secdin derivative (Secdin24) in Arabidopsis PSB-D cell
cultures.
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Plants largely rely on plasma membrane (PM)-resident receptor-
like kinases (RLKs) to sense extracellular and intracellular stimuli
and coordinate cell differentiation, growth, and immunity. Several
RLKs have been shown to undergo internalization through the
endocytic pathway with a poorly understood mechanism. Here,
we show that endocytosis and protein abundance of the Arabi-
dopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are
regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and
PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiq-
uitination and association with PUB12 and PUB13 through phosphor-
ylation at serine 344 residue. Loss of PUB12 and PUB13 results in
reduced BRI1 ubiquitination and internalization accompanied with
a prolonged BRI1 PM-residence time, indicating that ubiquitination
of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our
studies provide a molecular link between BRI1 ubiquitination and
internalization and reveal a unique mechanism of E3 ligase–substrate
association regulated by phosphorylation.

Arabidopsis | BRI1 | ubiquitination | E3 ligase | endocytosis

Being sessile and autotrophic organisms, plants live in a rel-
atively constrained niche with constant challenges from en-

vironmental stresses while coordinating growth and developmental
processes. Plants have evolved a largely expanded collection of
plasma membrane (PM)-resident receptor-like kinases (RLKs),
many of which have been implicated in sensing external or internal
signals and relaying the signaling cascades to various downstream
outputs that are central to plant growth, development, and immu-
nity (1, 2). For instance, BRASSINOSTEROID INSENSITIVE1
(BRI1) perceives the polyhydroxylated steroid hormone brassinos-
teroids (BRs) in regulating growth and development (3), and
FLAGELLIN-SENSING2 (FLS2) perceives bacterial flagellin or
its conserved 22-aa peptide (flg22) in regulating plant pattern-
triggered immunity (PTI) (4). Both BRI1 and FLS2 belong to the
leucine-rich repeat (LRR) domain-containing RLK family with
more than 200 members in Arabidopsis (1). Despite distinct signaling
outputs in growth and immunity, both BRI1 and FLS2 heterodimerize
with another LRR RLK, BRI1-ASSOCIATED RECEPTOR
KINASE1 (BAK1), also known as SOMATIC EMBRYOGENESIS
RECEPTORKINASE3 (SERK3), and other SERKmembers upon
the cognate ligand perception (5–9). BAK1/SERKs are the shared
coreceptors of FLS2, BRI1, and several other LRR RLK receptors,
including ELONGATION FACTOR-TU (EF-Tu) RECEPTOR
(EFR) regulating immunity and ERECTA regulating stomatal pat-
terning (10). FLS2 and BRI1 reside in PM nanoclusters, the majority
of which are spatiotemporally separated at the steady state (11).
The activity of LRR RLK receptor complexes is under mul-

tilayered positive and negative regulations to fine-tune signaling

outputs (1, 12). Protein posttranslational modifications, such as
phosphorylation and ubiquitination, play key roles in the activation
and attenuation of LRR RLK complexes. BAK1-mediated trans-
phosphorylation with its associated LRR RLK receptors is essential
to activate or amplify intracellular signaling (13). FLS2 is ubiquiti-
nated by two closely related plant U-box (PUB) E3 ubiquitin ligases
PUB12 and PUB13. Upon flg22 perception, FLS2 associates with
PUB12 and PUB13, resulting in ligand-induced FLS2 ubiquitination

Significance

The brassinosteroid (BR) receptor BRI1 provides a paradigm for
understanding receptor-mediated signaling in plants. Different
posttranslational modifications have been implicated in the reg-
ulation of BRI1 activity. Here, we show that BR perception pro-
motes BRI1 association with plant U-box E3 ubiquitin ligases
PUB12 and PUB13, which in turn directly ubiquitinate BRI1. Im-
portantly, the BRI1 protein abundance and plasma membrane-
residence time are increased while the endosomal pool of BRI1 is
reduced in the pub12pub13 mutant, indicating that PUB12/
PUB13-mediated ubiquitination regulates BRI1 endocytosis and
degradation. BRI1 phosphorylates PUB13 on a specific residue to
enhance its association with BRI1, suggesting a unique regulatory
circuit of phosphorylation-regulated E3 ligase–substrate associa-
tion. Our study elucidates a mechanism of BRI1 internalization
through E3 ubiquitin ligase-mediated ubiquitination.
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a b s t r a c t

Extensive cytosine methylation is characteristic of plant rDNA. Evidence exists, however, that the active
rRNA genes are less methylated. In this work we report on the mapping of unmethylated CCGG sites
in Hordeum vulgare rDNA repeats by digestion with methylation sensitive restriction enzyme HpaII and
indirect end-labeling of the generated fragments. For mapping we used genomic DNA from barley dele-
tion line with a single NOR on chromosome 5H. This NOR is more active in order to compensate for the
missing NOR 6H. The enhanced NOR 5H activity in the deletion mutant is not due to higher multiplicity
of the rRNA genes or, as sequencing showed, to changes in the subunit structure of the intergenic spacer.
The HpaII sites in barley rDNA are heavily methylated. Nevertheless, a fraction of the rDNA repeats is
hypomethylated with unmethylated CCGG sites at various positions. One unmethylated CCGG sequence

Г7_4
is close to the transcription start site, downstream of the 135 bp subrepeats. Unmethylated sites are
also present in the external transcribed spacer and in the genes coding mature rRNAs. The patterns of
unmethylated sites in the barley deletion line and in lines with two NORs were compared. It is hypoth-
esized that the occurrence of unmethylated sites on a fixed subset of rDNA repeats correlates with their
transcriptional activity.

© 2016 Elsevier GmbH. All rights reserved.
. Introduction

It is well established that cytosine in plant nuclear DNA is
xtensively methylated into 5-methylcytosine (m5C). The m5C in
igher plants as well as in vertebrates occurs primarily in the
equence CpG. Members of conserved DNA methyltransferases
NMT1 (mammalian) and MET1 (plants) are mainly responsible

or the CpG methylation. These enzymes are specific for regions of
ewly synthesized hemimethylated DNA, with only the old strand
eing methylated (maintenance methylation). However, in con-

rast to vertebrate DNA, in plants, cytosine in non-CpG contexts

ay also be methylated. Sequences CpHpG and CpHpH (H C, A
r T) are methylated by different DNA methyltransferases, such as

Abbreviations: rRNA, ribosomal RNA; rDNA, DNA coding pre-rRNA; NOR, nucle-
lus organizer region; IGS, intergenic spacer; ETS, external transcribed spacer; TSS,
ranscription start site; 5H and 6H, Hordeum chromosomes 5 and 6.
∗ Corresponding author.

E-mail address: annad@bas.bg (A.D. Dimitrova).

ttp://dx.doi.org/10.1016/j.jplph.2016.07.019
176-1617/© 2016 Elsevier GmbH. All rights reserved.
chromomethylases (CMT) and domains rearranged methyltrans-
ferases (DRM) (Goll and Bestor, 2005; Feng et al., 2010; Zhang et al.,
2010; Stroud et al., 2014).

The distribution of m5C in the plant genome is not uniform. In
a large fraction of the protein-coding genes, the gene body is more
methylated than the flanking 5′ and 3′ regions. A majority, but not
all, of the RNA polymerase II promoters are hypomethylated (Zhang
et al., 2006; To et al., 2015; Xu et al., 2016). The most methylated
parts of the Arabidopsis genome are the transposable elements, the
telomers, the centromers and other repeated elements (Zhang et al.,
2006).

It has long been established that the tandem rRNA genes in
plants are hypermethylated (Delseny et al., 1984; Watson et al.,
1987; Flavell et al., 1988; Torres-Ruiz and Hemleben, 1994). How-
ever, these, as well as other studies have shown that some rDNA
repeats are hypomethylated. The number of rRNA genes in plants

is large, in the hundreds and quite often in the thousands (Rogers
and Bendich, 1987). It has been suggested that the hypomethylated
repeats represent the transcriptionally active fraction of all genes.
This view is supported by several observations. Examination of the

dx.doi.org/10.1016/j.jplph.2016.07.019
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Mitochondrial uncouplers inhibit clathrin-mediated
endocytosis largely through cytoplasmic
acidification
Wim Dejonghe1,2, Sabine Kuenen3,4, Evelien Mylle1,2, Mina Vasileva5, Olivier Keech6, Corrado Viotti7,

Jef Swerts3,4, Matyáš Fendrych5, Fausto Andres Ortiz-Morea1,2, Kiril Mishev1,2, Simon Delang8, Stefan Scholl8,

Xavier Zarza9, Mareike Heilmann10, Jiorgos Kourelis9,w, Jaroslaw Kasprowicz3,4, Le Son Long Nguyen11,

Andrzej Drozdzecki11, Isabelle Van Houtte1,2, Anna-Mária Szatmári1,2, Mateusz Majda12, Gary Baisa13,

Sebastian York Bednarek13, Stéphanie Robert12, Dominique Audenaert11, Christa Testerink9, Teun Munnik9,

Daniël Van Damme1,2, Ingo Heilmann10, Karin Schumacher8, Johan Winne14, Jiřı́ Friml5, Patrik Verstreken3,4

& Eugenia Russinova1,2

ATP production requires the establishment of an electrochemical proton gradient across the

inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and

disrupt numerous cellular processes, including vesicular trafficking, mainly through energy

depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent

inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces

inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore

activity that leads to cytoplasm acidification. We show that the known tyrosine kinase

inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties,

thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor

complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm

acidification dramatically affects the dynamics and recruitment of clathrin and associated

adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma

membrane.
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Sequence-Specific Protein Aggregation Generates
Defined Protein Knockdowns in Plants1[OPEN]

Camilla Betti, Isabelle Vanhoutte, Silvie Coutuer2, Riet De Rycke, Kiril Mishev3, Marnik Vuylsteke,
Stijn Aesaert, Debbie Rombaut, Rodrigo Gallardo, Frederik De Smet4, Jie Xu5, Mieke Van Lijsebettens,
Frank Van Breusegem, Dirk Inzé, Frederic Rousseau*, Joost Schymkowitz*, and Eugenia Russinova*

Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (C.B., I.V., S.C., R.D.R., K.M., S.A., D.R., M.V.L.,
F.V.B., D.I., E.R.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent,
Belgium (C.B., I.V., S.C., R.D.R., K.M., S.A., D.R., M.V.L., F.V.B., D.I., E.R.); Switch Laboratory, VIB, 3000
Leuven, Belgium (R.G., F.D.S., J.X., F.R., J.S.); Switch Laboratory, Department of Cellular and Molecular
Medicine, University of Leuven, 3000 Leuven, Belgium (R.G., F.D.S., J.X., F.R., J.S); and Gnomixx, 9000 Gent,
Belgium (M.V.)

ORCID IDs: 0000-0003-3522-6440 (C.B.); 0000-0003-2878-134X (I.V.); 0000-0002-7539-1005 (S.C.); 0000-0001-8270-7015 (R.D.R.);
0000-0001-5849-8786 (K.M.); 0000-0003-1584-3564 (R.G.); 0000-0002-3147-0860 (F.V.B.); 0000-0002-3217-8407 (D.I.);
0000-0003-2020-0168 (J.S.); 0000-0002-0569-1977 (E.R.).

Protein aggregation is determined by short (5–15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence
that self-associate in a specific manner to form b-structured inclusions. Here, we demonstrate that the sequence specificity of
APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic
aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the
glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme a-glucan water
dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced
aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content,
respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated
phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of
induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial
traits in crops.

In order to function properly, proteins must fold into
their native structure, but protein folding is often
challenged by protein misfolding and aggregation
(Tyedmers et al., 2010). Although protein aggregation
has long been considered as a disordered process
mediated by nonspecific hydrophobic interactions, it
is now understood to be a sequence-specific self-
association process (Mitraki, 2010; Tyedmers et al.,
2010). Indeed, both in bacterial (Sabaté et al., 2010) and
mammalian systems (Rajan et al., 2001), aggregation of
nonhomologous proteins has been shown to occur
preferentially in distinct inclusion bodies. In vitro ag-
gregation of protein solutions can be accelerated by
seeding with preformed aggregates, and this process
efficiency depends critically on the sequence homology
between seed and target protein (Krebs et al., 2004;
O’Nuallain et al., 2004). Self-seeding is generally several
orders of magnitude more efficient than cross-seeding
(Ganesan et al., 2015; Surmacz-Chwedoruk et al., 2014).
Aggregation-associated human diseases, such as
Alzheimer’s or Parkinson’s disease, are in line with this
notion because the processes underlying these diseases
are highly specific and characterized by the aggregation
of one or a few proteins in particular tissues and cell
types (Jucker and Walker, 2013).

The elucidation of the structure of amyloid-forming
peptides and protein fragments has shed light on the
molecular origin of the sequence specificity of protein
aggregation. The amyloid structure consists of the for-
mation of a so-called cross-b conformation, whereby
the peptide backbone of the aggregate creates hydrogen
bond-mediated b-strand interactions, whereas the side
chains contribute to the stability of these b-strands by
aligning with, and closely packing to, the identical se-
quence of the neighboring strand (Sawaya et al., 2007;
Makin et al., 2005). The registered stacking of side
chains explains the aggregation sequence specificity.
Indeed, backbone interactions contribute comparatively
more to the amyloid structure than to the globular pro-
tein structure (Fitzpatrick et al., 2011).

The portions of a protein sequence that are suscep-
tible to associate into aggregates by b-strand-mediated
interactions are limited to short segments, defined as
aggregation-prone regions (APRs). The APRs consist of
5 to 15 amino acids in length (Rousseau et al., 2006;
Goldschmidt et al., 2010) and can be identified by pre-
diction algorithms (Fernandez-Escamilla et al., 2004).
The determining role of APRs has been demonstrated
by “aggregation-grafting” experiments, in which in-
sertion of an APR of an aggregating protein into the
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sequence of a nonaggregating protein results in a pro-
tein with aggregation propensity and morphology
similar to those of the original protein (Ventura et al.,
2004).

Application of the prediction algorithm TANGO
(Fernandez-Escamilla et al., 2004) to the Arabidopsis
(Arabidopsis thaliana) proteome revealed that 80% of the
proteins contain APRs, implying that, similar to other
eukaryotes, plant proteomes are also susceptible to
protein aggregation (Rousseau et al., 2006). As most of
the Arabidopsis proteins harbor aggregation-prone se-
quence segments within their primary structure and as
aggregation is sequence specific, it should, in principle,
be possible to induce aggregation and, subsequently,
functional depletion of a protein by exposing it to a short
target-specific aggregating peptide in plants. First, we
tested this hypothesis by targeting proteins with kinase
activity in Arabidopsis plants. We selected the cytosolic
glycogen synthase kinase 3/Arabidopsis SHAGGY-like
kinases (GSK3/ASKs) and the chloroplast-localized
a-glucan water dikinase (GWD). Arabidopsis possesses
10 ASKs grouped into four clades (Youn and Kim, 2015)
that share a 50% overall sequence identity across the

whole protein. Among the ASKs, BRASSINOSTEROID
INSENSITIVE2 (BIN2) was characterized as a nega-
tive regulator of BR signaling (Li and Nam, 2002; Vert
and Chory, 2006; Yan et al., 2009). In addition to BIN2
and its two close homologs, BIN2-LIKE1 (BIL1) and
BIL2 (clade II), at least four other ASKs redundantly
convey BR signals via a mechanism similar to that of
BIN2 (De Rybel et al., 2009; Kim et al., 2009; Rozhon
et al., 2010).

The GWD enzyme catalyzes the phosphorylation of
starch in the chloroplasts by transferring b-ATP phos-
phate to either the C6 or the C3 position of the glycosyl
residue of amylopectin and, thus, plays an essential role
in starch metabolism (Mitsui et al., 2010). The phos-
phate groups influence the susceptibility of the starch
granules to degrading enzymes, such as b-amylases. As
a result, the starch breakdown is impaired in GWD-
deficient plants. In GWD-antisense potato (Solanum
tuberosum) plants (Lorberth et al., 1998), as well as in the
GWD-deficient starch excess1 (sex1) mutants of Arabi-
dopsis (Yu et al., 2001), the foliar starch content is sig-
nificantly higher than that of the respective wild-type
plants. In addition to the model plant Arabidopsis, we
applied the APR-mediated aggregation by targeting the
GWD enzyme in maize (Zea mays).

Our work demonstrates that overexpression of dif-
ferent APRs, derived from a single protein or protein
family, fused to a fluorescent carrier, results in specific
knockdowns similar to previously described genetic
mutants. We show that direct interactions between the
APRs and the target proteins caused the loss of function
of the proteins. Moreover, specific subcellular targeting
of the synthetic APRs can be achieved in both model
and crop plant species. Hence, the APR expression
approach presented here can be used as an innovative
knockdownmethod to inactivate proteins by specific in
vivo pull-down in defined subcellular compartments of
plants. In addition, the results also underline that, at
least in plants, protein aggregation is not cytotoxic per
se, but rather that the functional effect of the aggregates
observed here appear to be dominated by sequence-
specific cross-seeding of the aggregation of cellular
APR-sharing proteins.

RESULTS

Design of the Aggregation Constructs

To simultaneously knock out the function of all 10
ASKs in Arabidopsis by inducing specifically their
misfolding and inactivation, we applied the aggregation
prediction algorithm TANGO (Fernandez-Escamilla
et al., 2004) to BIN2 in order to identify overlapping
aggregation-prone peptides in the 10 target proteins.
One APR of nine amino acids with a TANGO aggre-
gation score greater than 50 (out of a maximum of 100)
and coding for the sequence 249QLVEIIKVL257 in BIN2
was detected (hereafter referred to as BIN2249-257; Fig.
1A; Supplemental Table S1). The BIN2249-257 APR was
situated in the kinase domain preceding the highly
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Chemical biology approaches have been instrumental in

understanding the mode of action of brassinosteroids, a group

of plant steroid hormones essential for plant development and

growth. The small molecules used for such approaches include

inhibitors of biosynthetic enzymes and signaling components.

Additionally, recent structural data on the brassinosteroid

receptor complex together with its ligand brassinolide, the

most active brassinosteroid, and knowledge on its different

analogs have given us a better view on the recognition of the

hormone and signaling initiation. Moreover, a fluorescently

labeled brassinosteroid enabled the visualization of the

receptor–ligand pair in the cell. Given the insights obtained,

small molecules will continue to provide new opportunities for

probing brassinosteroid biosynthesis and for unraveling the

dynamic and highly interconnected signaling.
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Introduction
Brassinosteroids (BRs) are plant steroid hormones that

play an essential role in plant growth and development

and their biosynthesis, signaling, and transcriptional

responses are among the best studied and understood

processes in plant biology [1,2]. Once perceived by the

plasma membrane-localized leucine-rich repeat (LRR)

receptor kinase BRASSINOSTEROID INSENSITIVE1

(BRI1), BRs trigger a signaling cascade that will regulate

transcriptional responses (Figure 1). Small molecules

have proven to be a valuable tool in elucidating BR

biosynthesis and signaling. Examples include the well-

known BR biosynthesis inhibitor brassinazole [3] and the

BR signaling effector bikinin [4].
Current Opinion in Plant Biology 2014, 22:48–55 
The major advantages of chemical tools are their simpli-

city for translational research, capability to account for

gene redundancy and lethality, and the conditionality of

treatment. The latter implies that time, duration, and

concentration of treatments can be adapted, allowing the

study of any process of interest in a dynamic manner

opposed to a steady-state situation at the genomic level.

Over recent years, plant research has embraced chemical

biology more and more as an alternative to classical

methods, encouraging the development of new chemical

tools. Here, we provide an overview of the latest reports

on small molecules affecting BR processes, improving the

chemical toolbox at our disposal to venture farther into

the complex cellular and molecular mechanisms upon BR

action.

Small molecules affecting BR biosynthesis
Specific inhibitors of BR biosynthesis offer a powerful

tool to manipulate BR levels in different plant tissues and

have been crucial for identifying novel components

involved in the BR signal transduction pathway [5]. All

known inhibitors of BR biosynthesis (Figure 2) share an

azole moiety that is thought to bind the iron-containing

heme prosthetic group of P450 cytochrome enzymes. The

best known examples with a specific impact on BR

biosynthesis are brassinazole (brz) [3] and brz2001 [6].

Both small molecules are similar to uniconazole, a known

gibberellin biosynthesis inhibitor that also affects BR

biosynthesis [7], and result from uniconazole derivatiza-

tion to obtain specific BR biosynthesis inhibitors. A

similar strategy has been adopted with another BR bio-

synthesis inhibitor propiconazole [8] used to develop a

more potent inhibitor, namely brz220 [9]. Brz, brz2001,

and brz220 target DWARF4 (DWF4), a P450 monooxy-

genase hydroxylating the C-22 position during BR bio-

synthesis (Figure 2) [10,11]. Brz2001, recently used in a

quartz-crystal microbalance-based T7 phage display tar-

get identification strategy, confirmed DWF4 as its target,

mapping the binding site as a potential disordered region

of the enzyme [12�].

Several other BR biosynthesis inhibitors have been

found. Voriconazole inhibits the BR-dependent sterol

biosynthesis at the level of the P450 cytochrome

CYP51 (Figure 2) resulting in accumulation of the sterol

biosynthesis intermediate obtusifoliol [13��]. In addition,

voriconazole appears to be specific to BR biosynthesis,

because gibberellin application did not rescue the vor-

iconazole-caused growth phenotypes. A group of BR

biosynthesis inhibitors, designated the YCZ series, was

developed from a ketoconazole scaffold [14] (Figure 2).
www.sciencedirect.com
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Endomembrane trafficking has a key role for ensuring homeostasis, growth and development, hormonal
signaling, and adaptation of eukaryotes to the constantly changing environmental conditions. The complex
organization of the endomembrane system implies the need for searching novel tools to specifically probe
the regulatory components and dissect the tightly interconnected vesicle transport pathways. Here, we re-
view the large-scale chemical genetic screens, which led to the identification of small molecules with an
impact on various parts of the vesicle trafficking network. We discuss the similarities and differences in
the organization of the endomembrane systems in yeasts, mammals, and plants based on studies of small
molecules and their effects on trafficking hubs, routes, and conserved protein targets.
Eukaryotic cells are characterized by functional compartmen-

talization of macromolecule trafficking, which is performed

by an elaborate and fine-tuned endomembrane system. The

endomembrane network comprises dynamic organelles with

discrete morphology, localization, and functions and ensures

both the secretion of biomolecules and the uptake of extracel-

lular material that is delivered to intracellular locations in a

highly coordinated manner. The exchange of cargo, membrane

components, and solutes between the cellular compartments

is a continuously ongoing process that involves alternating

steps of membrane deformation, budding, fission, tethering,

and fusion. The secretory and endocytic pathways are largely

interconnected at the level of common trafficking hubs and pro-

tein regulators, which substantially increases the complexity of

the endomembrane system. When key protein components of

the endomembrane system are compromised, pleiotropic phe-

notypes may occur, making it difficult to elucidate the underly-

ing molecular mechanism with classical genetic approaches.

Significant limitations of forward and reverse genetics are the

lack of phenotypic changes if functionally redundant compo-

nents of vesicular trafficking are analyzed and, in the opposite

case, the lethality of loss-of-function mutants due to the essen-

tial role of the intracellular transport for cell viability (Hicks and

Raikhel, 2012). An alternative approach that circumvents these

limitations deals with the use of small organic molecules as

specific effectors of endomembrane trafficking. An important

advantage of chemical genetics in dissecting complex biolog-

ical processes is the enormous diversity of chemical structures

that could be used for probing protein functions in a dose-

dependent and reversible manner (Kaschani and van der

Hoorn, 2007). Hence, it should be possible to perturb almost

any protein in a specific way, allowing the targeting of essential

genes. In addition, entire gene families can be targeted by

bioactive chemicals through perturbation of a common feature

of the corresponding proteins, thus addressing redundancy

among genes (Hicks and Raikhel, 2012; Tóth and van der

Hoorn, 2010).
Chemistry & B
Recent advances in systems biology, bioinformatics, and

modern cell imaging opened novel opportunities for identifying

small molecules that can be used as tools to dissect endomem-

brane trafficking pathways. Here, we outline the progress in cur-

rent chemical genetics related to intracellular vesicle trafficking,

with an emphasis on the use of small molecules in plants, mam-

mals, and yeasts identified through high-throughput screens

(Figure 1). The central routes and hubs of the endomembrane

trafficking network in eukaryotic cells will be discussed for their

sensitivity to the compounds (Figure 2; Table 1), which is deter-

mined by the extent of conservation of the protein targets.

Endomembrane Trafficking Routes in Yeasts, Plants,
and Mammals: A Comparative View
The eukaryotic endomembrane system is composed of mem-

brane-delimited organelles, small vesicular compartments that

shuttle between those organelles, and a spectrum of transiently

associated, peripheral membrane components from the cytosol

that support, regulate, and define endomembrane trafficking

(Foresti and Denecke, 2008). Proteins that are cotranslationally

translocated into the endoplasmic reticulum (ER) are subse-

quently sorted for trafficking through the Golgi apparatus and

the trans-Golgi network (TGN). Anterograde transport from the

ER is mediated by COPII-coated vesicles, which fuse with pre-

Golgi intermediates to release their cargo, while Golgi-to-ER

protein recycling requires COPI vesicle formation. Unlike mam-

mals, the plant endomembrane system lacks an ER-Golgi

intermediate compartment (Foresti and Denecke, 2008). After

reaching the TGN, secretory proteins are packaged into secre-

tory vesicles and targeted to the plasma membrane (PM) (Váz-

quez-Martı́nez et al., 2012). So far, the secretory route from the

TGN to the PM in plants is poorly understood. The TGN compart-

ment also produces clathrin-coated vesicles directed to the lytic

compartment (the lysosome inmammalian cells or the vacuole in

plants and yeasts). The latter route involves late endosomes

(LEs) in mammals, also called prevacuolar compartments/multi-

vesicular bodies (PVCs/MVBs) in plant cells. Unlike mammals,
iology 20, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 475
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Numerous reports in animals support the concept that inte-
grated networks of endocytosis and plasma membrane– 
regulated signaling outputs control cellular processes. 

Endocytosis either physically removes activated receptor-ligand 
complexes from the cell surface, thus attenuating signaling, or 
moves them to endosomes to perpetuate their signaling activity 
before recycling or degradation1,2.

Plants have a large number of cell-surface receptor–like kinases 
(RLKs) that control development and respond to an ever-changing 
extracellular environment3. Although several plant RLKs accumu-
late in endosomes and endocytosis controls their recycling and 
degradation4, the mechanism and function of receptor-mediated 
endocytosis (RME) in signal transduction in plants are largely 
unexplored. The growth-promoting plant steroid hormones known 
as BRs and their plasma membrane–localized receptor, the leucine-
rich repeat RLK BRI1, are the best-known ligand-receptor pair 
in plants5,6. Binding of BRs to the extracellular domain of BRI1  
(refs. 7–9) activates its intracellular kinase activity and triggers the 
dissociation of the inhibitory BRI1 KINASE INHIBITOR 1 (BKI1)10. 
This dissociation allows the interaction and transphosphorylation 
between BRI1 and its co-receptor BRI1-ASSOCIATED KINASE 1  
(BAK1)11,12. The BR signals are then conveyed from the cell  
surface to the nucleus through sequential signaling modules includ-
ing the GSK3/SHAGGY-like kinase BR-INSENSITIVE 2 (BIN2)13. 
The BR-induced inactivation of BIN2 leads to dephosphorylation of 
its targets, the transcription factors BRASSINAZOLE-RESISTANT 1  
(refs. 14,15) and BRI1-EMS-SUPPRESSOR 1 (BES1, also known as 
BZR2)16, resulting in their relocation to the nucleus for transcrip-
tional regulation of plant development processes15.

Although much is known about the regulation of the kinase 
activity of BRI1 and BRI1’s role in initiating the BR response, the 
interplay between receptor-mediated signaling and BRI1 trafficking 
is less understood. The functional green fluorescent protein (GFP)-
tagged BRI1 has been used to describe the subcellular dynamics of 
the receptor in Arabidopsis roots6,12,17–19. BRI1 constitutively cycles 
between the plasma membrane and the trans-Golgi network/early 
endosome (TGN/EE), and it is targeted to the vacuole for degrada-
tion17 via the late endosomes/multivesicular bodies (MVBs)19 inde-
pendently of its ligand12,17. It has been proposed that an increase in 
the endosomal pool of BRI1-GFP, induced by the ARF-GEF inhibi-
tor brefeldin A (BFA), promotes BR signaling17. However, the local-
ization of BRI1-GFP alone is not sufficient to distinguish between 
the endocytosed ligand-bound or free receptors and those travers-
ing the secretory pathway, a serious caveat in identifying the intra-
cellular sites for signaling. This limitation, together with the lack 
of knowledge of the endocytic machinery20 involved in BRI1 endo-
cytosis, represents a limiting step in studying the role of endocytosis 
in the regulation of BRI1 signaling.

Here we developed a bioactive fluorescently labeled BR, AFCS 
(1), and followed the endocytic route of receptor-ligand complexes 
in living cells for what is to our knowledge the first time in plants. 
We used chemical and genetic approaches to interfere with the 
trafficking of the BRI1–BR complexes and examined their effect 
on BR signaling. Our data identified BRI1–BR endocytosis to be 
dependent on clathrin, ARF-GEFs and the Rab5 GTPase pathway. 
Interference with clathrin- or ARF-GEF–mediated endocytosis of 
BRI1 enhanced BR signaling, whereas retaining BRI1–BR com-
plexes at the TGN/EE did not affect signaling, indicating that the 

1Department of Plant Systems Biology, vIB, Ghent, Belgium. 2Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. 
3laboratory for organic and Biomimetic Chemistry, Department of organic Chemistry, Ghent University, Ghent, Belgium. 4Institute of organic Chemistry 
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of Experimental Botany, Academy of Sciences of the Czech Republic, olomouc, Czech Republic. 6Department of Molecular Genetics, Centre for Research 
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Fluorescent castasterone reveals BrI1 signaling 
from the plasma membrane
niloufer G Irani1,2,7, simone di rubbo1,2,7, evelien Mylle1,2, Jos Van den Begin3, Joanna schneider-pizoń1,2,  
Jaroslava Hniliková4, Miroslav Šíša5, dieter Buyst3, Josep Vilarrasa-Blasi6, anna-Mária szatmári1,2,  
daniël Van damme1,2, Kiril Mishev1,2, Mirela-Corina Codreanu1,2, Ladislav Kohout4, Miroslav strnad5,  
ana I Caño-delgado6, Jiří Friml1,2, annemieke Madder3 & eugenia russinova1,2*

Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides  
spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor–like kinases in plants, 
BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is 
constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a  
bioactive, fluorescent BR analog, Alexa Fluor 647–castasterone (AFCS), and visualized the endocytosis of BRI1–AFCS complexes 
in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange  
factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma 
membrane. Increasing the trans-Golgi network/early endosome pool of BRI1–BR complexes did not affect BR signaling.  
Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- 
and ARF-GEF–dependent endocytic regulation of BR signaling from the plasma membrane. 
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Local induction of senescence by darkness in Cucurbita pepo
(zucchini) cotyledons or the primary leaf induces opposite effects
in the adjacent illuminated organ
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Abstract Local darkening of zucchini cotyledons or the

primary leaf affected in an organ-specific manner the

adjacent ones which remained under the initial light

regime. Individual darkening of either the pair of cotyle-

dons or the primary leaf led to acceleration of senescence

expressed by lowering of chlorophyll content and net

photosynthetic rate. Darkening of the pair of cotyledons

induced a reduction in total cytokinin (CK) levels and

increased CK oxidase/dehydrogenase (CKX) activity in

the adjacent illuminated primary leaf. In addition, abscisic

acid (ABA) content was increased which correlated with

reduced stomatal aperture leading to decreased stomatal

conductance and transpiration rate. In contrast, darkening

of the adjacent primary leaf led to increased metabolic

activity in the illuminated cotyledons including increased

total CK levels in parallel with decreased CKX activity,

decreased ABA content in correlation with increased sto-

matal aperture, stomatal conductance and transpiration

rate. On the other hand, the functional activity of the

photosynthetic apparatus as well as the transcript levels of

the three photosynthesis-related genes psbA, psaB and rbcL

remained almost unaffected in both illuminated organs.

Thus, compared with the primary leaves, cotyledons

appeared to be much more resistant to the dark stress

applied either directly or to the adjacent primary leaf.

Our results indicated the involvement of CKs and ABA

signalling in the control of the communication mechanisms

between cotyledons and the primary leaf that could operate

in response to changing environmental factors like shading

during earlier stages of plant development.

Keywords Abscisic acid � Cotyledons � Cytokinins �
Cytokinin oxidase/dehydrogenase � Dark treatment �
Primary leaves
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Introduction

Darkness can affect the senescence progres-
sion in plants by modulating the photosynthetic 
effi ciency, the generation of reactive oxygen spe-
cies, as well as by activation of different signalling 
cascades (Lers, 2007). One of the earliest targets 
of dark-induced senescence is the chloroplast 
where a number of ultrastructural and functional 
alterations cause a rapid drop in the photosyn-
thetic activity (Nooden et al., 1997; Krupinska and 
Humbeck, 2004). Chloroplast senescence includes 
intensive degradation of pigments, membrane li-
pids, nucleic acids, and stroma-localized proteins 

such as ribulose-1,5-bisphosphate carboxylase/
oxy genase (Rubisco). The degradation of thyla-
koid proteins from photosystem II (PSII), photo-
system I (PSI), and the light-harvesting complex-
es (LHCs) of both photosystems is accelerated at 
later stages of leaf senescence compared to the 
stromal proteins (Humbeck and Krupinska, 2003).

It has been shown that darkness can induce two 
opposite senescence-related responses depending 
on the level at which it is perceived (whole plant or 
individual leaf organ) as revealed by experiments 
with Arabidopsis thaliana rosette leaves (Weaver 
and Amasino, 2001). One response represents the 
locally induced promotion of senescence when 
dark treatment is applied to individual leaves. 
In these leaves, a rapid decline in photosynthetic 
activity has been found while high mitochondri-
al respiration is maintained associated with the 

Darkness Affects Differentially the Expression of 
Plastid-Encoded Genes and Delays the Senescence-Induced 
Down-Regulation of Chloroplast Transcription in Cotyledons 
of Cucurbita pepo L. (Zucchini)
Kiril Misheva, Anna Dimitrovab, and Evguéni D. Ananievc,*

a Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, 
Acad. G. Bonchev Str., Bl. 21, 1113 Sofi a, Bulgaria

b Acad. D. Kostoff Institute of Genetics, Bulgarian Academy of Sciences, 1113 Sofi a, 
Bulgaria

c Department of Plant Physiology, Faculty of Biology, St. Kl. Ohridski University of Sofi a, 
8 Dragan Tsankov Blvd., 1164 Sofi a, Bulgaria. Fax: +359-2-856-56-41. 
E-mail: ananiev@biofac.uni-sofi a.bg
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In contrast to differentiated leaves, the regulatory mechanisms of chloroplast gene expres-
sion in darkened cotyledons have not been elucidated. Although some results have been 
reported indicating accelerated senescence in Arabidopsis upon reillumination, the capacity 
of cotyledons to recover after dark stress remains unclear. We analysed the effect of two-
days dark stress, applied locally or at the whole-plant level, on plastid gene expression in 
zucchini cotyledons. Our results showed that in the dark the overall chloroplast transcription 
rate was much more inhibited than the nuclear run-on transcription. While the activities of 
the plastid-encoded RNA polymerase (PEP) and nuclear RNA polymerase II were strongly 
reduced, the activities of the nuclear-encoded plastid RNA polymerase (NEP) and nuclear 
RNA polymerase I were less affected. During recovery upon reillumination, chloroplast 
transcription in the cotyledons was strongly stimulated (3-fold) compared with the naturally 
senescing controls, suggesting delayed senescence. Northern blot and dot blot analyses of 
the expression of key chloroplast-encoded photosynthetic genes showed that in contrast to 
psbA, which remained almost unaffected, both the transcription rate and mRNA content of 
psaB and rbcL were substantially decreased.

Key words: Cotyledon Senescence, Dark Stress, NEP, PEP

Abbreviations: DP, whole darkened plants; IDC, indi-
vidually darkened cotyledons; NEP, nuclear-encoded 
plastid RNA polymerase; PEP, plastid-encoded RNA 
polymerase; PSI, PSII, photosystem I, photosystem II.
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Organ-specific effects of dark treatment on photosynthesis  
and the expression of photosynthesis-related genes 
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Abstract 

The effects of two-day dark treatment, applied to whole plants or to individual organs, on the photosynthetic apparatus 
in cotyledons and first rosette leaves of young Arabidopsis thaliana plants were studied. Darkness affected the 
individually darkened pair of cotyledons as well as the cotyledons of whole darkened plants (DP) in a similar manner as 
revealed by the significant decrease in the actual yield of photosystem 2 electron transport and the down-regulation of 
the psaB and rbcL transcript levels. However, cotyledons and rosette leaves responded differently to darkness with 
respect to the non-photochemical quenching (NPQ) and the non-regulated energy dissipation (ΦNO), indicating different 
capacity for photoprotection depending on the type of the applied dark treatment. Besides, the expression of the genes 
for the two plastid proteases FtsH5 and Deg1 involved in D1 protein degradation was inhibited in both leaf organs, 
suggesting that these proteases function mainly under irradiance. Upon re-irradiation, dark-treated cotyledons recovered 
from the applied stress and during further senescence the changes in the photosynthetic parameters and the mRNA 
levels of psaB, rbcL and SAG12 were similar as in the control plants. However, in the course of recovery typical 
chloroplast senescence symptoms were observed only in individually darkened leaves while re-irradiated DP leaves 
maintained high photosynthetic capacity.  
Additional key words: cotyledons, photosystem 2, plastid protease, rosette leaves, senescence.  

Introduction 

The photosynthetic apparatus is highly dynamic and able 
to respond to environmental stresses, including changes 
in the quality and quantity of incident radiation (Szabo  
et al. 2005, Chowdhury et al. 2009), mineral starvation 
(Dannehl et al. 1996), drought and extreme temperatures 
(Smart 1994, Humbeck et al. 2007, Zhang et al. 2009). 
The transfer of individual intact or detached leaves, as 
well as whole plants, to darkness is a widely used 
experimental approach to study the molecular basis of the 
stress response and the adaptive mechanisms allowing 
plants to survive the adverse conditions (Biswal and 
Biswal 1984, Oh et al. 1996, Weaver et al. 1998). 
Darkness has been implicated in provoking a decline in 
total chlorophyll and protein contents, photosystem 2 
(PS 2) activity and transcript levels of photosynthesis-
related genes (Kleber-Janke and Krupinska 1997, Lu and 

Zhang 1998, Lin and Wu 2004). Moreover, transcripts of 
senescence-associated genes (SAGs), which normally 
appear during natural (age-mediated) senescence, have 
also been detected in dark-treated leaves (Azumi and 
Watanabe 1991, Weaver et al. 1998). On the other hand, 
genes induced during dark treatment are not necessarily 
expressed during natural senescence, suggesting that 
these two senescence processes are not identical (Becker 
and Apel 1993). As revealed by microarray analysis, the 
number of genes which are up-regulated during natural 
senescence is higher compared with those which are 
down-regulated, whereas in individually darkened intact 
or detached leaves the fractions are similar or opposite 
(Van der Graaff et al. 2006). In addition, only half of the 
genes up-regulated during developmental senescence are 
also strongly enhanced in leaves of darkened plants 

⎯⎯⎯⎯ 
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Abbreviations: DP - whole plants transferred to darkness; IDC - individually darkened cotyledons; IDL - individually darkened first 
rosette leaves; NPQ - non-photochemical quenching; PS - photosystem; ΦNO - quantum yield of the non-regulated energy dissipation; 
ΦPS2 - actual quantum yield of the PS 2 electron transport in the light-adapted state. 
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Abstract

Thylakoids were used as a model system to evaluate the effect of bee venom peptide melittin(Mt) on membrane
surface charge. At neutral pH, thylakoid membrane surfaces carry excess negative electrical charge. Mt strongly
altered the electrophoretic mobility(EPM) of ‘low-salt’ thylakoids and did not significantly change the EPM of
‘high-salt’ thylakoids. Mt increased the primary ionic-exchange processes across the ‘low-salt’ thylakoid membranes,
while it did not affect those of ‘high-salt’ thylakoids. Mt decreased the proton gradient generation on the membranes
at both ionic strengths, but it affected more strongly the ‘high-salt’ than that of ‘low-salt’ thylakoids. The primary
photochemical activity of photosystem II, estimated by the ratioF yF , was not influenced by the low Mtv m

concentrations. It decreased only when chloroplasts had been incubated with higher Mt concentrations and this effect
was better expressed in ‘low-salt’ than in ‘high-salt’ thylakoid membranes.
� 2003 Elsevier B.V. All rights reserved.

Keywords: Melittin; Thylakoid membranes; Electrophoretic mobility; Surface charge; Light scattering; Chlorophyll fluorescence

1. Introduction

Melittin (Mt), the main component of the Eur-
opean honeybeeApis mellifera, is a cationic

Abbreviations: EPM, electrophoretic mobility; LS, light
scattering; Mt, melittin; PMS, phenazine methosulfate; Chl,
chlorophyll; F , initial chlorophyll fluorescence;F , variable0 v

chlorophyll fluorescence;F , maximum chlorophyll fluores-m

cence; PS I, photosystem I; PS II, photosystem II.
*Corresponding author. Tel.:q359-2-63-30-281; fax:q

359-2-656-641.
E-mail address: virjird@biofac.uni-sofia.bg

(V. Doltchinkova).

amphiphilic peptide, which binds to membranes.
Mt is a surface-active, amphipathic peptide and
serves as a useful model for a variety of membrane
interactions w1x. Mt exhibits voltage-dependent
channel formation in lipid bilayersw2x. Mt carries
highly hydrophilic residues(2 Lys, 2 Arg, 2 Gln
at the C-terminus) w3x. Its binding to negatively
charged membranes was distinctly enhanced com-
pared to neutral membranes. Because of its amphi-
philic properties, it can disrupt lipid bilayers like
detergentsw4,5x. It was also suggested the possi-
bility of action of Mt on membrane proteins
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