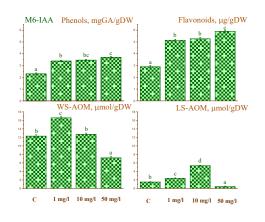


Mariana Sichanova^{1*}, Maria Geneva¹, Maria Petrova¹, Kamelia Miladinova-Georgieva¹, Daniela Tsekova²

¹ Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria

² Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria

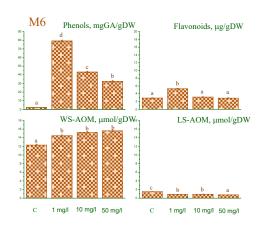

*E-mail address of presenting author: m.sichanova@abv.bg

BACKGROUND: Stevia rebaudiana B. is an herbaceous perennial plant of Asteraceae family and is known as stevia, sweet leaf, honey leaf, and candy leaf. Stevia leaves contain many biologically active substances, which have beneficial effects on human health. The antioxidant activity of *in vitro* cultivated S. rebaudiana is influenced by growth regulators and amino acids added to the nutrient media.

PLANT

BIOLOGY

Structure of the compound M6



OBJECTIVE: This study aimed to evaluate the influence of the concentration (1, 10 and 50 mg L⁻¹) of organic nanofibers, carriers of plant growth hormone on the growth characteristics, physiology and biochemistry in *S. rebaudiana* plantlets.

MATERIALS AND METHODS

The nanofibers structure (M6) contains two fragments - valine and nicotinic acid, linked together and doubled through diamino hexane spacer.

Shoot explants (1.5–2 cm) were cultured on MS media including vitamins supplemented with 3.0% sucrose and 7.0 g L⁻¹ agar. The main biometric indicators of 30-day-old micro plantlets were determined. To quantify the main complexes of biologically active substances in *Stevia rebaudiana* Bert., a number of phytochemical spectrophotometric methods were used to measure the non-enzymatic antioxidant activity.

Compound	FW	Shoot height	Shoot number	Number of interno des	MR	Root formati on %
Control	0,115	5,97	1,01	2,5	2,52	0,04
M6 (mg/l)						
1	0,229	7,621	1,75	5,767	10,09	65
10	0,249	9,538	1,95	5,265	10,28	85
50	0,213	7,192	1,65	4,80	7,92	75
M6+IAA (mg/l)						
1	0,185	5,413	1,70	3,875	6,59	100
10	0,191	5,706	1,75	4,125	7,22	100
50	0,176	4,713	1,55	4,058	6,29	85

In this study, the application of different concentrations (1 mg L⁻¹, 10 mg L⁻¹ and 50 mg L⁻¹) of organic nanofibers (M6) carrying auxin (IAA) in MS medium during micropropagation provoke the metabolism of Stevia rebaudiana and led to better performance in some biometric parameters and to higher content of most metabolites with antioxidant potential.

Acknowledgements: This research was funded by the National Science Fund at the Bulgarian Ministry of Education and Science, Project KΠ-06-H56/8 12.11.21. The authors thank the Centre of Competence: BG05M2OP001-1.002-0012 "Sustainable utilization of bio-resources and waste of medicinal and aromatic plants for innovative bioactive products" for the HPLC equipment used.