

MODULAR FORMS ON BALL QUOTIENTS OF NON-POSITIVE KODAIRA DIMENSION

AZNIV KASPARIAN

Communicated by Vasil V. Tsanov

Abstract. The Baily-Borel compactification \mathbb{B}/Γ of an arithmetic ball quotient admits projective embeddings by Γ -modular forms of sufficiently large weight. We are interested in the target and the rank of the projective map Φ , determined by Γ -modular forms of weight one. This paper concentrates on the finite *H*-Galois quotients \mathbb{B}/Γ_H of a specific $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, birational to an abelian surface A_{-1} . Any compactification of \mathbb{B}/Γ_H has non-positive Kodaira dimension. The rational maps Φ^H of $\widehat{\mathbb{B}}/\Gamma_H$ are studied by means of the *H*-invariant abelian functions on A_{-1} .

The modular forms of sufficiently large weight are known to provide projective embeddings of the arithmetic quotients of the two-ball

 $\mathbb{B} = \{ z = (z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 < 1 \} \simeq \mathrm{SU}(2, 1) / \mathrm{S}(\mathrm{U}_2 \times \mathrm{U}_1).$

The present work studies the projective maps, given by the modular forms of weight one on certain Baily-Borel compactifications $\widehat{\mathbb{B}/\Gamma_H}$ of Kodaira dimension $\kappa(\widehat{\mathbb{B}/\Gamma_H}) \leq 0$. More precisely, we start with a fixed smooth Picard modular surface $A'_{-1} = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)'$ with abelian minimal model $A_{-1} = E_{-1} \times E_{-1}$, $E_{-1} = \mathbb{C}/\mathbb{Z} + \mathbb{Z}i$. Any automorphism group of A'_{-1} , preserving the toroidal compactifying divisor $T' = \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)' \setminus \left(\mathbb{B}/\Gamma_{-1}^{(6,8)}\right)$ acts on A_{-1} and lifts to a ball lattice Γ_H , normalizing $\Gamma_{-1}^{(6,8)}$. The ball quotient compactification $A'_{-1}/H = \overline{\mathbb{B}/\Gamma_H}$ is birational to A_{-1}/H . We study the Γ_H -modular forms $[\Gamma_H, 1]$ of weight one by realizing them as H-invariants of $[\Gamma_{-1}^{(6,8)}, 1]$. That allows to transfer $[\Gamma_H, 1]$ to the H-invariant abelian functions, in order to determine $\dim_{\mathbb{C}}[\Gamma_H, 1]$ and the transcendence dimension of the graded \mathbb{C} -algebra, generated by $[\Gamma_H, 1]$. The last one is exactly the rank of the projective map $\Phi : \overline{\mathbb{B}/\Gamma_H} \longrightarrow \mathbb{P}([\Gamma_H, 1])$.

69