

A LORENTZIAN SURFACE IN A FOUR-DIMENSIONAL MANIFOLD OF NEUTRAL SIGNATURE AND ITS REFLECTOR LIFT

KAZUYUKI HASEGAWA

Communicated by Vasil V. Tsanov

Abstract. A Lorentzian surface in a four-dimensional manifold of neutral signature is called super-extremal if its reflector lift is horizontal. We give an elementary proof of a rigidity theorem for super-extremal surfaces in the space of constant curvature and neutral signature. As corollary, a characterization of the immersion of the Veronese type is given.

1. Introduction

The twistor lifts play an important role for oriented surfaces in oriented fourdimensional Riemannian manifolds and have been studied by many researchers (see [1, 3–5, 7–10] for example). In geometry of pseudo-Riemannian manifold of neutral signature, the reflector bundle is the corresponding object to the twistor space. For Lorentzian surfaces in four-dimensional manifolds of neutral signature, the reflector lifts are defined in [12], which are corresponding to the twistor lifts in Riemannian case. In this paper, we study Lorentzian surfaces in four-dimensional manifolds of neutral signature with horizontal reflector lifts, which are corresponding to superminimal surfaces in Riemannian geometry. In pseudo-Riemannian geometry, because of the failure of definiteness for metrics, different situations often occur from Riemannian cases. For example, in Riemannian case, a connected minimal surface of constant Gaussian curvature in the Euclidean space must be flat and an open part of a two-plane (see [2]). But one can find many non-totally geodesic extremal flat surfaces in the pseudo-Euclidean space of neutral signature (see Section 4), where extremal means vanishing of the mean curvature vector field. We say that a Lorentzian surface is super-extremal if its reflector lift is horizontal. Note that the notions of the reflector lift and super-extremal surface can be defined for higher even-dimentional cases. In [11], a rigidity theorem for super-extremal surfaces is obtained.

The purpose of this paper is to give several examples of surfaces such that their reflector lifts are horizontal or para-holomorphic and an elementary proof of a

71