ON GIBBS STATES OF MECHANICAL SYSTEMS WITH SYMMETRIES∗

CHARLES-MICHEL MARLE

Communicated by Ivaïlo M. Mladenov

Abstract. The French mathematician and physicist Jean-Marie Souriau studied Gibbs states for the Hamiltonian action of a Lie group on a symplectic manifold and considered their possible applications in Physics and Cosmology. These Gibbs states are presented here with detailed proofs of all the stated results. A companion paper to appear will present examples of Gibbs states on various symplectic manifolds on which a Lie group of symmetries acts by a Hamiltonian action, including the Poincaré disk and the Poincaré half-plane.

MSC: 53D05, 53D20, 53D17, 82B03, 82B30

Keywords: Gibbs states, Hamiltonian systems, Liouville measure, moment maps, symplectic and Poisson manifolds, thermodynamic equilibrium

Contents

1 Introduction 46

2 Some Concepts Used in Statistical Mechanics 47
 2.1 The Birth of Statistical Mechanics 47
 2.2 Statistical States and Entropy 48
 2.3 The Use of Hamiltonian Vector Fields in Classical Mechanics 48
 2.4 The Liouville Measure on a Symplectic Manifold 50
 2.5 Comments about the Use of Statistical States 51
 2.6 Examples .. 51
 2.7 Evolution with Time of a Statistical State 52
 2.8 Comments about Entropy 53
 2.9 Gibbs States for a Hamiltonian System 59
 2.10 Some Properties of Gibbs States 61
 2.11 Gibbs States, Temperatures and Thermodynamic Equilibria 62
 2.12 Evolution Towards a Thermodynamic Equilibrium 64

3 Gibbs States for Hamiltonian Actions of Lie Groups 64
 3.1 Symmetries and Statistical States 65
 3.2 The Manifold of Motions of a Hamiltonian System 65

∗In memory of the French mathematician and physicist Jean-Marie Souriau (1922–2012).