Eleventh International Conference on Geometry, Integrability and Quantization June 5–10, 2009, Varna, Bulgaria Ivaïlo M. Mladenov, Gaetano Vilasi and Akira Yoshioka, Editors Avangard Prima, Sofia 2010, pp 97–107

SEIBERG-WITTEN EQUATIONS ON \mathbb{R}^6

NEDIM DEĞIRMENCI and ŞENAY KARAPAZAR

Department of Mathematics, University of Anadolu Eşkisehir 26470, Turkey

> Abstract. It is known that Seiberg-Witten equations are defined on smooth four dimensional manifolds. In the present work we write down a six dimensional analogue of these equations on \mathbb{R}^6 . To express the first equation, the Dirac equation, we use a unitary representation of complex Clifford algebra $\mathbb{C}l_{2n}$. For the second equation, a kind of self-duality concept of a two-form is needed, we make use of the decomposition $\Lambda^2(\mathbb{R}^6) = \Lambda_1^2(\mathbb{R}^6) \oplus \Lambda_6^2(\mathbb{R}^6) \oplus \Lambda_8^2(\mathbb{R}^6)$. We consider the eight-dimensional part $\Lambda_8^2(\mathbb{R}^6)$ as the space of self-dual two-forms.

1. Introduction

The Seiberg-Witten equations defined on four-dimensional manifolds yield some invariants for the underlying manifold. There are some generalizations of these equation to higher dimensionsinal manifolds. In [2, 7] some eight-dimensional analogies were given and a seven-dimensional analog was presented in [5]. In this work we write down similar equations to Seiberg-Witten equations on \mathbb{R}^6 .

2. spin^{*c*}-structure and Dirac Operator on \mathbb{R}^{2n}

Definition 1. A spin^c-structure on the Euclidian space \mathbb{R}^{2n} is a pair (S, Γ) where S is a 2^n -dimensional complex Hermitian vector space and $\Gamma : \mathbb{R}^{2n} \to \text{End}(S)$ is a linear map which satisfies

$$\Gamma(v)^* + \Gamma(v) = 0, \qquad \Gamma(v)^* \Gamma(v) = |v|^2 1$$

for every $v \in \mathbb{R}^{2n}$.

The 2^n -dimensional complex vector space S is called spinor space over \mathbb{R}^{2n} .

From the universal property of the complex Clifford algebra $\mathbb{C}l_{2n}$ the map Γ can be extended to an algebra isomorphism $\Gamma: \mathbb{C}l_{2n} \to \mathrm{End}(S)$ which satisfies $\Gamma(\tilde{x}) =$