COHOMOGENEITY TWO RIEMANNIAN MANIFOLDS OF NON-POSITIVE CURVATURE

REZA MIRZAIE
Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

We consider a Riemannian manifold $M(\operatorname{dim} M \geq 3)$, which is flat or has negative sectional curvature. We suppose that there is a closed and connected subgroup G of $\operatorname{Iso}(M)$ such that $\operatorname{dim}(M / G)=2$. Then we study some topological properties of M and the orbits of the action of G on M.

1. Introduction

Let M^{n} be a connected and complete Riemannian manifold of dimension n, and G be a closed and connected subgroup of the Lie group of all isometries of M. If $x \in M$ then we denote by $G(x)=\{g x ; g \in G\}$ the orbit containing x.
If $\max \{\operatorname{dim} G(x) ; x \in M\}=n-k$, then M is called a $\boldsymbol{C}_{\boldsymbol{k}}$ - \boldsymbol{G}-manifold (G manifold of cohomogeneity k) and we will denote it by $\operatorname{Coh}(G, M)=k$. If M is a C_{k} - G-manifold then the orbit space $M / G=\{G(x) ; x \in M\}$ is a topological space of dimension k. When k is small, we expect close relations between topological properties of M and the orbits of the action of G on M. If M is a $C_{0}-G$-manifold then the action of G on M is transitive, so M is a homogeneous G-manifold and it is diffeomorphic to G / G_{x} (where $x \in M$ and $G_{x}=\{g \in$ $G ; g x=x\}$). Thus, topological properties of homogeneous G-manifolds are closely related to Lie group theory. If M is a homogeneous G-manifold of nonpositive curvature, it is diffeomorphic to $\mathbb{R}^{n_{1}} \times \mathbb{T}^{n_{2}}, n_{1}+n_{2}=n$ ([20]). The study of $C_{1}-G$-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert characterized the orbit space of $C_{1}-G$-manifolds, when G is compact. Later, other mathematicians generalized the Mostert's theorem to G-manifolds with noncompact G. There are many interesting results on topological properties of the orbits of $C_{1}-G$-manifolds under conditions on the sectional curvature of M. If M is a $C_{1}-G$-manifold of negative curvature then it is proved (see [17]) that either M is simply connected or the fundamental group of M is isomorphic to \mathbb{Z}^{p} for some

