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Abstract. We classify homogeneous positive semidefinite quadratic Hamilton-
Poisson systems on a certain subclass of three-dimensional Lie-Poisson spaces.

1. Introduction

The dual space of a Lie algebra admits a natural Poisson structure, namely the
Lie-Poisson structure. Such structures, and more specifically quadratic Hamilton-
ian systems on these structures, form a natural setting for a variety of dynamical
systems. Prevalent examples are Euler’s classic equations for the rigid body, its
extensions and its generalizations (see, e.g. [15-17,22,25,28,29]). In particular,
a number of Lie-Poisson structures arise naturally in the study of optimal control
problems (see e.g. [2-4,9,17,26,27]). The equivalence of quadratic Hamilton-
Poisson systems on Lie-Poisson spaces has been considered only by a few authors
([5,10,11,13,28,29]).

In the present paper, we consider quadratic Hamilton-Poisson systems on those
three-dimensional Lie-Poisson spaces that admit a global Casimir function. (The
spaces that do not admit a global Casimir function exhibit some degeneracies and
need to be treated in a somewhat different manner.) Furthermore, we restrict to
those systems that are both homogeneous and for which the underlying quadratic
form is (positive) semidefinite. Such systems (usually on specific Lie-Poisson
spaces) have been considered by several authors ([5-8,28-30]). We address the
equivalence of such systems. A classification (under linear equivalence) is ob-
tained; a complete list of normal forms is exhibited. This is done in two parts.
First we classify systems within the context of each three-dimensional Lie-Poisson
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