Fifteenth International Conference on Geometry, Integrability and Quantization June 7–12, 2013, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2014, pp 67–78 doi: 10.7546/giq-15-2014-67-78

A CLASSIFICATION OF QUADRATIC HAMILTON-POISSON SYSTEMS IN THREE DIMENSIONS

RORY BIGGS and CLAUDIU C. REMSING

Department of Mathematics (Pure and Applied), Rhodes University 6140 Grahamstown, South Africa

Abstract. We classify homogeneous positive semidefinite quadratic Hamilton-Poisson systems on a certain subclass of three-dimensional Lie-Poisson spaces.

1. Introduction

The dual space of a Lie algebra admits a natural Poisson structure, namely the Lie-Poisson structure. Such structures, and more specifically quadratic Hamiltonian systems on these structures, form a natural setting for a variety of dynamical systems. Prevalent examples are Euler's classic equations for the rigid body, its extensions and its generalizations (see, e.g. [15–17, 22, 25, 28, 29]). In particular, a number of Lie-Poisson structures arise naturally in the study of optimal control problems (see e.g. [2–4, 9, 17, 26, 27]). The equivalence of quadratic Hamilton-Poisson systems on Lie-Poisson spaces has been considered only by a few authors ([5, 10, 11, 13, 28, 29]).

In the present paper, we consider quadratic Hamilton-Poisson systems on those three-dimensional Lie-Poisson spaces that admit a global Casimir function. (The spaces that do not admit a global Casimir function exhibit some degeneracies and need to be treated in a somewhat different manner.) Furthermore, we restrict to those systems that are both homogeneous and for which the underlying quadratic form is (positive) semidefinite. Such systems (usually on specific Lie-Poisson spaces) have been considered by several authors ([5–8, 28–30]). We address the equivalence of such systems. A classification (under linear equivalence) is obtained; a complete list of normal forms is exhibited. This is done in two parts. First we classify systems within the context of each three-dimensional Lie-Poisson