SYMMETRIES OF HAMILTONIAN DYNAMICAL SYSTEMS,
MOMENTUM MAPS AND REDUCTIONS

CHARLES-MICHEL MARLE

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie
Paris, France

Abstract. This text presents some basic notions in symplectic geometry,
Poisson geometry, Hamiltonian systems, Lie algebras and Lie groups actions
on symplectic or Poisson manifolds, momentum maps and their use for the
reduction of Hamiltonian systems. It should be accessible to readers with a
general knowledge of basic notions in differential geometry. Full proofs of
many results are provided.

CONTENTS

1. Introduction .. 12
2. Symplectic Manifolds .. 13
 2.1. Definition and Elementary Properties 13
 2.2. Examples of Symplectic Manifolds 14
 2.3. Remarkable Submanifolds of a Symplectic Manifold 16
 2.4. Hamiltonian Vector Fields on a Symplectic Manifold 17
 2.5. The Poisson bracket ... 21
3. Poisson Manifolds .. 23
 3.1. The Inception of Poisson Manifolds 23
 3.2. Definition and Structure of Poisson Manifolds 24
 3.3. Some Properties of Poisson Manifolds 27
 3.4. Examples of Poisson Manifolds 31
4. Symplectic, Poisson and Hamiltonian Actions 32
 4.1. Actions on a Smooth Manifold 32
 4.2. Poisson, Symplectic and Hamiltonian Actions 35
 4.3. Some Properties of Momentum Maps 37
 4.4. Actions of a Lie Group on its Cotangent Bundle 43
5. Reduction of Hamiltonian Systems with Symmetries 45
 5.1. The Marsden-Weinstein Reduction Procedure 46